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Abstract

Ozsváth and Szabó discovered the coefficients constraints of the Alexander poly-
nomial of lens space knot. All the coefficients are either ±1 or 0 and the non-zero coef-
ficients are alternating. We here show that the non-zero coefficients give a traversable
curve in a plane R2. This determines the second top coefficient ag−1 easily, and can
see more constraints of coefficients of a lens space knot. In particular, we determine
the third and fourth non-zero coefficients for lens space knot with at least 4 non-zero
Alexander coefficients. 1 2

1 Introduction.

1.1 Alexander polynomial of lens space knot.

Let Yr(K) denote a r-surgery along K of a homology sphere Y . We call the rational
number r slope of the Dehn surgery. L(p, q) is defined to be −p/q-surgery of the
unknot in S3. A knot K ⊂ Y is called a lens space knot if an integral Dehn surgery
of K is a lens space. Here we only consider the integeral Dehn surgery. Berge in [1]
defined double-primitive knot, which is a class of lens space knots in S3. Conjecturely,
double-primitive knots are all lens space knots in S3. We will define double-primitive
knot in a homology sphere. The typical example of double-primitive knots is the dual
knot of any simple 1-bridge knot in a genus 1 Heegaard splitting of a lens space. Such
a knot yields a lens space by an integral Dehn surgery. These knots are parametrized
by a pair of coprime integers (p, k) and we denote the knot by Kp,k. Hence the knot
Kp,k is a lens space knot in a homology sphere.

The lens space knot has interesting features as follows. Suppose that K or Kp,k

is a lens space knot in an L-space homology sphere or such a knot as explained in a
homology sphere. Then those lens space knots are fibered knots, which this is proven
by Ni [17] and Ozsváth-Szabó [10] respectively. Thus, the genus g coincides with
the degree of the Alexander polynomial in these cases. The coefficients of Alexander
polynomials of those lens space knots are studied in [10] and in [9]. The Alexander
polynomials of both types of lens space knots have been also studied in [7], [10], and
[12].

Throughout this paper, we deal with the symmetrized Alexander polynomial.

1Keyword: lens surgery, Alexander polynomial, double-primitive knot, simple 1-bridge knot
2MSC: 57M25,57M27
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Theorem 1.1 (Ozsváth-Szabó [10], Ichihara-Saito-Teragaito [9]). Suppose that K
Kp,k is an L-space knot in S3, or the dual of simple 1-bridge knot in a lens space.
Then the Alexander polynomial of K is of form

∆K(t) = (−1)r +
r∑

j=1

(−1)j−1(tnj + t−nj ), (1)

for some decreasing sequence of positive integers d = n1 > n2 > · · · > nr > 0.

This theorem holds even if K is a lens space knot in an L-space homology sphere.
Theorem 1.1 says that any Alexander polynomial of lens space knot satisfies the fol-
lowing: {

The absolute values of coefficients are ≤ 1. (Flat)

The non-zero coefficients alternate in sign. (Alternating)
(2)

In particular, the top coefficient of ∆K(t) is 1. The Alexander polynomial of (r, s)-

torus knot T (r, s), which is computed by ∆T (r,s) = t−
(r−1)(s−1)

2
(trs−1)(t−1)
(tr−1)(ts−1) , is a typical

example satisfying (2), because the (rs± 1)-surgery of T (r, s) is a lens space. We call
this polynomial a torus knot polynomial. In general, we call the Alexander polynomial
of a lens space knot lens surgery polynomial.

We call the sequence (d = n1, · · · , nr) half non-zero sequence (or exponents) and
the decreasing sequence (d = n1, n2, · · · , n2r, n2r+1 = −d) (full) non-zero sequence (or
exponents). From the symmetry of the Alexander polynomial n2r+2−i = −ni holds.
Let K be a lens space knot in an L-space homology sphere or the dual of a simple
1-bridge knot. We denote the non-zero sequence (or the half non-zero sequence) of K
by NS(K) or NSh(K) respectively. For example, NSh(31) = (1, 0) and

NS(Pr(−2, 3, 7)) = (n1, n2, n3, n4, n5, n6, n7, n8, n9) = (5, 4, 2, 1, 0,−1,−2,−4,−5),
(3)

where Pr(−2, 3, 7) is the (−2, 3, 7)-pretzel knot.
In this paper we reveal that there exists some ‘connection’ between the non-zero

coefficients of the Alexander polynomial of a lens space knot. This connectivity gives
some constraints about the non-zero sequences or lens space knots.

1.2 The genus and lens space surgery

Suppose that the p-surgery Yp(K) of an L-space homology sphere Y is an L-space.
Then the following inequality holds:

2g(K) ≤ p+ 1. (4)

In the lens surgery case of Y = S3, actually the inequality can be made sharper as in
[4]. Furthermore, there exist lens surgeries satisfying the equality when Y = Σ(2, 3, 5)
as in [13].

Here we define Dehn surgery realization.

Definition 1.1. Let K be a lens space knot with Yp(K) = L(p, q) for a homology
sphere Y with parameter (p, k). If there exists a knot K ′ in a homology sphere Y ′

such that Y ′
p(K

′) = L(p, q) and these lens surgeries give the same surgery parameter
(p, k). Then we say that the surgery Yp(K) = L(p, q) can be realized by a lens surgery
of K ′, or (p, k) can be realized by (Y ′,K ′).

The surgery parameter (p, k) will be defined in Section 2.1. The second parameter
k means the homology class of the dual knot of lens space surgery.
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The nice realization of lens space surgery is the set of double-primitive knots, which
is defined in [1]. In fact, it is proven in [5] that any lens surgery on S3 can be realized
by a double-primitive knot in S3. It is reasonable that double-primitive knots are
all lens space knots. However, in general homology sphere case, we can find a lens
space knot with not double-primitive knot. If you are restricted to L-space homology
spheres, any double primitive knots might be all lens space knots. In the homological
level, equivalently in terms of realization of lens surgery, lens space knots whose dual
knots are simple 1-bridge knots in the genus one Heegaard splitting of the lens spaces
are the complete representatives. Because the knots has one-to-one correspondence a
pair of coprime integers (p, {k, k2}) up to the clear ambiguity.

Rasmussen in [11] gave the genus bound 2g(K) − 1 ≤ p for a lens space knot in
an L-space homology sphere. In [15] the author showed many Kp,k in the Poincaré
homology sphere with the usual orientation have 2g(K) ≤ p. Conjecturely, there
never exist Kp,k in L-space homology sphere with 2g(Kp,k) − 1 = p (see [14] for this
conjecture).

Definition 1.2. Let K be a knot in an L-space homology sphere Y . We call lens
surgery Yp(K) = L(p, q) with 2g(K) ≤ p an admissible lens surgery. Such a knot K
is called an admissible lens space knot.

Throughout this paper, we only treat any admissible lens surgery on an L-space
homology sphere or {Kp,k} in homology spheres, where Kp,k is the knot whose dual
knot is a simple 1-bridge knot in a lens space. The Seifert genus g(K) of those knots
coincides with the degree d of the Alexander polynomial. Rasmussen proved the
following:

Theorem 1.2 (Rasmussen [11]). Let K ⊂ Z be a knot in an L-space, and suppose
that some integral surgery on K yields a homology sphere Y . If 2g(K) < p + 1, then
Y is an L-space, while if 2g(K) > p+ 1, then Y is not an L-space.

Thus, if p is a lens surgery slope of a double-primitive knot K in a non-L-space
homology sphere, then 2g(K) ≥ p+ 1 holds.

1.3 Results

Let K be a lens space knot with a parameter (p, k). We set the Alexander coefficients
A = {a−d, a−d+1, · · · , ad} on Z2 along the line j = j0 ∈ Z. On the other vertical lines
we also set A with the shift by k or |k2|. Theorem 2.3 (one of the main theorems in
this paper) says the non-zero coefficients are weakly-increasing (or weakly-decreasing)
and traversable in some ways. We call the traversable curve non-zero curve. This
curve is connected and simple.

Results in this section are obtained by using a connectivity of the non-zero curve
in the plane R2 and the property (2).

We mainly deal with the following types of non-trivial lens space knots:

(A) An admissible lens space knot in an L-space homology sphere Y .

(B) A lens space knot whose dual is a simple 1-bridge knot in genus one Heegaard
splitting of the lens space.

Any knot of (A), or (B) is called type-(A), or type-(B) knot. The type-(B) knot is
parametrized by coprime positive integers (p, k) and denote by Kp,k.

For example, all the lens space knots in S3 are contained in the knots of type (A).
Conjecturely, all Kp,k in the Poincaré homology sphere would be in (A).

In the several main theorems of the present paper the same assertion will be proven
for both types (A) and (B) separately, however knots of both types have a common
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traversable property (Theorem 2.3) and we prove these theorems by using the same
method.

As a corollary, we can determine the second term as an application of the non-zero
curve. This result was also proven independently in [8] and [6].

Theorem 1.3. Let K ⊂ Y be a non-trivial knot of (A) or (B), then we have

n2 = d− 1. (5)

In particular, any non-trivial lens space knot in S3 satisfies n2 = d− 1.

This property (5) gives an interesting strict constraint. For example, if ∆K(t) is
of form f(tm) (e.g., (m, 1)-cable knot of any knot), then m must be 1. Hence, the
(m, 1)-cable of any knot for m > 1 is not a lens space knot, which this was already
proven in [2].

In the following, we will prove a characterization of lens space knots with (2, n)-
torus knot polynomial.

Theorem 1.4. Let K ⊂ Y be a non-trivial knot of (A) or (B) with surgery parameter
(p, k, k2) and k ≤ |k2|. Then the following conditions are equivalent:

1. ∆K(t) = ∆T (2,2d+1)(t)

2. The lens surgery parameter of Yp(K) = L(p, q) is (p, 2, 2d+ 1).

3. The lens surgery can be realized by the surgery of (2, 2d+ 1)-torus knot

4. |k2| = 2g(K) or |k2| = 2g + 1.

This theorem says that if Kp,k in a homology sphere Y satisfies ∆Kp,k
(t) =

∆T (2,2d+1)(t), then Y is homeomorphic to S3 and K is isotopic to T (2, 2d+1). Hence,
we obtain the following corollary:

Corollary 1.1. Let Kp,k be a type-(B) knot in a non-L-space homology sphere Y .
Then ∆Kp,k

(t) ̸= ∆T (2,2d+1)(t) for any integer d.

In general, it is unknown whether any double-primitive knot K in a non-L-space
homology sphere satisfies ∆K ̸= ∆T (2,2d+1)(t).

Question 1.1. Let K ⊂ Y be a double-primitive knot in a homology sphere. If
∆K(t) = ∆T (r,s)(t), then is Y homeomorphic to S3 and is K isotopic to T (r, s)?

Later, we give the some counterexamples for this question in Remark 2.1.
Let K be a knot whose Alexander polynomial satisfies with (2). For the non-zero

sequence {ni} of the polynomial we define the following index:

α(K) = max{n1 − n2j+1|n2i−1 − n2i = 1, 1 ≤ ∀i ≤ j ≤ r − 1},

where 2r − 1 is the number of the full non-zero sequence. The index α satisfies
2 ≤ α(K) ≤ 2d. The condition of the polynomial satisfying the equality α(K) = 2d is
equivalent to ∆K(t) = ∆T (2,2d+1). This index α(K) means the length of the maximal
region which contains the top term and coefficients 1,−1 are adjacent.

The non-zero sequence with α(K) = α0 satisfies with

(n1, n2, · · · , n2s−3, n2s−2, n2s−1, · · · ) = (d1, d1 − 1, · · · , ds−1, ds−1 − 1, ds, · · · ),

where d1 − ds = α0. We call the region {i ∈ Z|n2s+1 ≤ i ≤ n1} adjacent region.
In this paper we use notations (d1, d2, · · · , ds) for sequence of +1 coefficients in

the adjacent region. It is called the adjacent sequence and denoted by AS(K) and
di−1 > di + 1 for any i ≤ s. Hence, s is the number of +1 in the adjacent region. For
example, α(Pr(−2, 3, 7)) = 7 holds from non-zero sequence (3) and s = 4.

We give the following lower estimate of the index α:
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Theorem 1.5. Let K be a lens surgery parameter with (p, k). Then we have

α+ 1 ≥ max{|k2|, k}. (6)

Furthermore, if d1−ds1+1 = |k2| or k holds for some integer s1, then the coefficient
of tds1−1 is zero.

If the Alexander polynomial ∆K can be expanded as follows

∆K(t) = td1 − td1−1 + td2 − td2−1 + · · ·+ tdγ−1 − tdγ−1−1 + tdγ − · · · ,

then d1 − dγ + 1 ≥ max{|k2|, k}.
From the inequality, we classify lens space knots with α(K) = 2.

Corollary 1.2. Let K be an admissible lens space knot. If α(K) = 2, then the surgery
can be realized by the trefoil knot.

Proof. The inequality implies max{k, |k2|} ≤ 3. The surgery parameters with this
condition are (5, 2), (7, 2), (8, 3) or (10, 3). The parameters (5, 2) and (7, 2) can be
realized by the trefoil. The non-zero sequence of the parameters (8, 3) and (10, 3) are
(4, 3, 1, 0) and (6, 5, 3, 2, 0) respectively. These sequences do not satisfy α = 2.

Let AS = (d1, d2, · · · , ds) be an adjacent sequence. We will prove the following
relationship between the adjacent sequence and the surgery parameter.

Proposition 1.1. Let (p, k) and (d1, · · · , ds) be a surgery parameter of (A) or (B)
and the adjacent sequence respectively. Then there exist integers 1 ≤ s1, s2 ≤ s such
that

ds1 =

{
d1 − k

d1 − k + 1
and ds2 =

{
d1 − |k2|
d1 − |k2|+ 1.

The connectivity of the non-zero curve gives further determination of non-zero
coefficients.

Proposition 1.2. If ds1 = d1 − k + 1 or d1 − |k2| + 1, then α(K) = d1 − ds1 holds.
Furthermore one of the following cases holds:

(a) The case of n2s−1 − n2s > 3. Then we have n3 = n2 − 1.

(b) The case of n2s−1 − n2s = 3. Then we have n3 < n2 − 1.

(c) The case of n2s−1 − n2s = 2.

If n2s−1 − n2s = 2 and n2 − n3 = 1, then n2s − n2s+1 = 1 holds.

We immediately get the two corollaries:

Corollary 1.3. Suppose that K a knot in (A) or (B) with parameter (p, k, |k2|) sat-
isfies |k2| = k + 1. Then, α(K) = k holds.

The equality holds when K = T (u, u + 1) where we have u ≥ 2. In this case, we
have k = u and k2 = u+ 1. The expansion of ∆T (u,u+1)(t) is as follows:

∆T (u,u+1)(t) = td − td−1 + td−u − td−u−2 + · · · ,

where d = u(u−1)
2 . The non-zero sequence is AS(T (u, u+1)) = (d, d−u) and α(T (u, u+

1)) = u.
Theorem 1.3 and 1.5 were proven by the author before in [13], although, here we

reprove by using the global coefficient relationship of Alexander polynomials.
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Corollary 1.4. The number r of non-zero exponents of ∆K(t) is bounded as follows:

max{k, |k2|} ≤ 2r + 1.

By using the following results, we determine the third and fourth non-zero coeffi-
cients of any lens space knot.

Theorem 1.6. Let K be a lens space knot of type (A) or (B) with at least 4 non-zero
coefficients of the Alexander polynomial. Then, the third coefficient n3 and fourth
coefficient n4 are one of the following:

(n1, n2, n3, n4) = (d, d− 1, d2, d2 − 1), (d, d− 1, d2, d2 − 2), or (d, d− 1, d2, d2 − 3),

where d > d2 +1. If (p, k) be a surgery parameter of lens space knot of type (A), then
(n1, n2, n3.n4) = (d, d− 1, d2, d2 − 3) does not occur.

In particular, the Alexander polynomial of lens space knot K in S3 can be expanded
as follows:

∆K(t) = td − td−1 + td2 − td2−1 + · · ·

or
∆K(t) = td − td−1 + td2 − td2−2 + · · · .

In Section 3.2, we give all lens surgeries with 2g−4 ≤ |k2| ≤ 2g−1, in Section 3.3,
we give all lens surgeries with g ≤ 5 or with 7 non-zero coefficients

Theorem 1.7. Let (p, k, k2) be a type-(A) lens space knot with 2g(K) − 4 ≤ |k2| ≤
2g(K)− 1. Then K can be realized by the following knots:

T (4, 3), or Pr(−2, 3, 7)

These lens surgeries just correspond to the ones with the half non-zero sequence

(d, d− 1, d− 3, d− 4, · · · , 2, 1, 0).

Any lens surgery of type-(B) has g ≥ 6 as proven in Proposition 2.2. We list surgery
parameters with g ≤ 5 and the realizations.

Theorem 1.8. Let K be a lens space knot with g(K) ≤ 5 of type-(A). Then K can
be realized by one of the following:

T (2, 3), T (2, 5), T (2, 7), T (3, 4), T (2, 9), T (3, 5), T (2, 11), or Pr(−2, 3, 7)

Theorem 1.9. Let K be a lens space knot with at most 7 non-zero coefficients of
type-(A) or -(B). Then K can be realized by one of the following:

T (2, 3), T (2, 5), T (4, 3), T (2, 7), T (3, 5), or T (4, 5)
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2 Preliminaries

In this section we give several basics of lens space surgery. To prove the main theorems
we define the non-zero curve in the plane and prove that this curve is traversable in a
non-zero region, which is called a traversable theorem.

2.1 Lens surgery parameter and Alexander polynomial

Here we review some definitions, notations and formulae used in this paper. Let Y
be a homology sphere. Suppose that the p-surgery of K ⊂ Y yields lens space L(p, q)
i.e., Yp(K) = L(p, q). The dual knot K̃, which is the surgery core of the Dehn surgery,

gives a homology class [K̃] ∈ H1(L(p, q)). The class can be represented as an integer
k as follows: [K̃] = k[C], where C is the core of the genus one Heegaard splitting of
L(p, q). The integer k is a multiplicative generator in (Z/pZ)×. The choice of the
core of genus one Heegaard splitting of L(p, q) gives an ambiguity k → k−1 mod p.
The change of orientation gives the involution k → −k. We change the integer k →
−k, k−1,−k−1 mod p, if necessary, to get k2 = −q mod p and 0 < k < p

2 .
We define the integer k2 satisfying kk2 = 1 mod p and −p

2 < k2 < p
2 .

Definition 2.1. We call the pair (p, k, |k2|) (lens) surgery parameter of Yp(K) =
L(p, q). We omit the third parameter |k2| in some cases. In the case where (p, k, |k2|)
gives an admissible lens surgery, we call it an admissible parameter.

Theorem 2.1 ([12],[7]). Let Y be a homology sphere and K a lens space knot of
type-(A) with surgery parameter (p, k). Then, for an integer l with kl = 1 mod p and
gcd(k, l) = 1, we have

∆K(t) ≡ ∆T (k,l)(t) mod tp − 1.

Furthermore, if the surgery is an admissible lens surgery, then ∆K(t) is the smallest
symmetric representative of ∆T (k,l) in Z[t±1]/(tp − 1).

For a Laurent polynomial f(t) =
∑

i βit
i ∈ Q[t±1], the smallest symmetric repre-

sentative of f(t) in mod tp − 1 means

f̄(t) =

{∑
|i|< p

2
αit

i p ≡ 1 mod 2∑
|i|< p

2
αit

i +
α p

2

2 (t
p
2 + t−

p
2 ) p ≡ 0 mod 2

,

where αi =
∑

j≡i mod p βj . The polynomial f̄(t) is equivalent to f(t) in Q[t±1]/(tp−1).

Hence, the last statement is equivalent to ∆K(t) = ∆T (k,l)(t).

2.2 The coefficient formula of Alexander polynomial for ad-
missible lens surgery.

Here we give the coefficient formula of the Alexander polynomials of admissible lens
space knots. This formula has been proven in [12], and we will reprove it as a formula
with a bit different form.

We put e = sgn(k2), c =
(k+1−p)(k−1)

2 , m = kk2−1
p , and

Iα =

{
{1, 2, · · · , α} α > 0

{α+ 1, α+ 2, · · · ,−1, 0} α < 0

The bracket [·]p stands for the least absolute remainder with respect to p. Namely,
the remainder satisfies −p

2 < [y]p ≤ p
2 for integer y. In [12] the coefficient ai of the

symmetrized Alexander polynomial ∆K(t) is computed as follows:
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Proposition 2.1 ([12]). Let K be a lens space knot of type-(A). Suppose that Yp(K) =
L(p, q) and 2g(K) < p, where Y is an L-space homology sphere. Then we have

ai(K) = −m+ e ·#{j ∈ Ik|[−q(j + ki+ c)]p ∈ Ik2}. (7)

If 2g(K) = p, then

ai(K) =

{
−m+ e ·#{j ∈ Ik|[−q(j + ki+ c)]p ∈ Ik2} |i| < p

2

1 i = ±p
2

.

From the upper bound of g(K) by Greene [4] in the case of Y = S3, for the formula
of ai we use (7). Here we prove this proposition. Essentially, this equality (7) was
proven in [12]

Proof. We set the right hand side of (7) as αi(K). Then

tlc+1(tk−1)(tl−1)
∑

0≤i<p

αit
i ≡

∑
0≤i<p

(αi−k−l−lc−1−αi−k−lc−1−αi−l−lc−1+αi−lc−1)t
i mod tp−1.

(8)
Since we have

αi−l − αi = eEk2(−q(ki+ c))− eEk2(−q(k(i+ 1) + c)),

αi−k−l−lc−1 − αi−k−lc−1 − αi−l−lc−1 + αi−lc−1

= eEk2(k2(i− 1)− 1)− eEk2(k2(i− 1))− eEk2(k2i− 1) + eEk2(k2i)

=


1 i = k + 2, k

−2 i = k + 1

0 otherwise.

Thus, (8) is tk(t− 1)2. Thus we have

tlc+1(tk − 1)(tl − 1)∆K(t) ≡ tk(tkl − 1)(t− 1) mod tp − 1.

Thus, we have

∆K(t) ≡ t−lc−1+k (t
kl − 1)(t− 1)

(tk − 1)(tl − 1)
(9)

in Q[t±1]/
∑p−1

i=0 ti. Here lc+ 1− k = 1
2 (k − 1)(l − 1) mod p holds. In fact, 2lc+ 2−

2k−(k−1)(l−1) = l(k−1)(k+1−p)+2−k+ l+kl−1 mod 2p. Further, when t = 1,

the right hand side of (9) is 1. ∆K(1) = −mp+ e
∑p−1

i=0 #{j ∈ Ik|[−q(j + ki+ c)]p ∈
Ik2} = −mp+ kk2 = 1. Thus, (9) lifts as the equality in Z[t±1]/tp − 1.

For coefficients ai of the symmetrized Alexander polynomial we define the coeffi-
cient āi ∈ Z to be

∑
j≡i mod p aj . The coefficients have the period p namely, āi+p = āi.

We define A-function A(x) and A-matrix (Ai,j) to be

A : Z → Z, A(x) = ā−k2(x+c)

and
Ai,j = ā−j−k2(i+c), (i, j) ∈ Z2

respectively. A-function and A-matrix define essentially the same function by the
following relation A(i+ jk) = Ai,j . Further, we denote the difference A(x+1)−A(x)
by dA(x), and Ai+1,j −Ai,j = dAi,j . We call these dA-function and dA-matrix.

We define A′-function and A′-matrix to be A′(x) = ā−k(x+c′), where c = (k2 +1−
p)(k2 − 1)/2 and A′(x) = ā−k2(x+c′) and A′

i,j = ā−j−k2(i+c′).
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Definition 2.2. Let β be a non-zero integer. We define a function Eβ and Ai,j as
follows:

Eβ(α) =

{
e [α]p ∈ Iβ

0 otherwise.

Lemma 2.1. The difference dA(x) is computed by

dA(x) = Ek2(xq + k2)− Ek2(xq) =


−1 [xq]p ∈ I|k2|

1 [xq]p ∈ I−|k2|

0 otherwise

(10)

and
dA(x) = −1 ⇔ dA(x+ ek) = 1.

Proof. dA(x) = −m+ e{j ∈ Ik|[−q(j − x)]p ∈ Ik2}

dA(x) = A(x)−A(x+ 1)

= e{j ∈ Ik|[−q(j − x)]p ∈ Ik2} − e{j ∈ Ik|[−q(j − x− 1)]p ∈ Ik2}
= Ek2(xq + k2)− Ek2(xq)

If dA(x) = −1 and e = 1, then Ek2(xq) = 1 and dA(x+k) = Ek2(xq)−Ek2(xq−k2) =
1. If dA(x) = −1 and e = −1, then Ek2(xq+k2) = 1 and dA(x−k) = Ek2(xq+2k2)−
Ek2(xq + k2) = 1 holds. Hence, dA(x) = −1 implies dA(x+ ek) = −1. The converse
is also true.

In the same way as the case of dA, we have dA′(x) = Eek(xq
′+ ek)−Eek(xq

′) and

dA′(x) = −1 ⇔ dA′(x+ k2) = 1.

2.3 The knot Kp,k in Yp,k.

In this and next section we deal lens space surgery of the type-(B), which the dual of
the knot is a simple 1-bridge knot in the lens space.

Definition 2.3. We call K ⊂ Y a double-primitive knot if it satisfies the following
properties:

(i) Y has a genus 2 Heegaard splitting H0∪Σ2H1, where Hi is the genus 2 handlebody
and Σ2 is the Heegaard surface.

(ii) K ⊂ Σ2

(iii) Fo i = 1, 2, the induced element [K] ∈ π1(Hi) is a primitive one.

Due to [1], any double-primitive knot K ⊂ Y produces a lens space by an integral
Dehn surgery. A simple class of double-primitive knots is the set of knots whose dual
knots in the lens spaces have 1-bridge position in the genus one Heegaard splitting of
the lens space as in Figure 1. The α-curve and β-curve are the circles compressing in
the two handlebodiesH0 andH1 respectively. Each of broken lines in Figure 1 presents
an arc in the handlebody Hi. Joining the arcs, we produce a knot K̃ in the lens space.
The knot K̃ in the lens space gives the homology class [K̃] = k[C] ∈ H1(L(p, q)),
where C is the core of the genus one Heegaard decomposition of L(p, q). By doing a
surgery along K̃, we get the homology sphere and a double-primitive knot K on the
genus two Heegaard surface induced by the surgery of the lens space and the genus
one Heegaard splitting of the lens space.

Definition 2.4. We denote a double-primitive knot contructed in the this way by
Kp,k, and the homology sphere obtained by the surgery of the lens space by Yp,k.

The formula of ∆Kp,k
(t) will be given in Theorem 2.2.

9



β

α

α

β

Figure 1: The knot K3,1 in the Heegaard splitting of L(3, 1).

2.4 Alexander polynomial of Kp,k.

Ichihara, Saito, and Teragaito gave a formula of the Alexander polynomial of any
type-(B) knot Kp,k in S3. This formula works for any 1-bridge knot Kp,k in any
homology sphere as well as S3. Here a symbol [[·]]p presents the remainder between 1
and p when divided by p.

Theorem 2.2 ([9]). Let Kp,k be a type-(B) knot in a homology sphere Y . Then
∆Kp,k

(t) is computed by the following formula:

∆Kp,k
(t)

.
=

∑
i t

Φ(i)·p−[[q′i]]p·k∑k−1
i=0 tk

, (11)

where q′ is the inverse of q in (Z/pZ)× and Φ(i) = #{j ∈ Ik−1|[[q′j]]p < [[q′i]]p}.

Here notice that the right hand side of the formula (11) is not symmetrized. In
this paper we use this formula in many times to compute the Alexander polynomials
and the genus of Kp,k. We denote the coefficient of the right hand side of (11) by ci.

We define a B-function and B-matrix to be

B : Z → Z B(x) = b−kx

and
Bi,j = bi−jk2 ∈ Z, (i, j) ∈ Z2.

Similarly, we define the difference dB-function dB-matrix as follows: dB : Z → Z, and
dBi,j ∈ Z to be

dB(x) := B(x)−B(x+ 1)

and
dBi,j := Bi,j −Bi+1,j .

Lemma 2.2. Let bl be the expanding coefficients of the right hand side of (11). Then
we have

dBi,j = bj−ik − bj−(i+1)k =


1 Φ(l) · p− [[q′l]]p · k = j − ik for some l ∈ Ik−1

−1 Φ(l) · p− [[q′l]]p · k = j − 1− ik for some l ∈ Ik−1

0 otherwise.

Thus dB(i, j) = 1 ⇔ dB(i, j + 1) = −1.

10



Proof. Let F (t) denote the right hand side of (11).

(tk − 1)F (t) =
∑
i

(bi−k − bi)t
i

= (t− 1)

k−1∑
i=1

tΦ(i)·p−[[q′i]]p·k =

k−1∑
i=1

(tΦ(i)·p−[[q′i]]p·k+1 − tΦ(i)·p−[[q′i]]p·k)

=
∑
l

(
#{i ∈ Ik−1|Φ(i) · p− [[q′i]]p · k = l − 1} · tl

−#{i ∈ Ik−1|Φ(i) · p− [[q′i]]p · k = l} · tl
)

We have, therefore,

bl − bl−k = #{m ∈ Ik−1|Φ(m) · p− [[q′m]]p · k = l} −#{m ∈ Ik−1|Φ(m) · p− [[q′m]]p · k = l − 1}

=


1 Φ(i) · p− [[q′i]]p · k = l for integer i ∈ Ik−1

−1 Φ(i) · p− [[q′i]]p · k = l − 1 for integer i ∈ Ik−1

0 otherwise.

From this formula, the last assertion follows easily.

Here we prove the following:

Proposition 2.2. Let Kp,k be a type-(B) knot in a non-L-space homology sphere.
Then g(K) ≥ 6 holds. If g(K) = 6, then it is a double-primitive knot in Σ(2, 3, 7) with
the surgery parameter (10, 3).

The knot K10,3 lies in Σ(2, 3, 7) and Σ(2, 3, 7)10(K10,3) = L(10, 1).

Proof. When the slope is p ≤ 9, any double-primitive knot Kp,k lies in S3 or Σ(2, 3, 5)
(see the list in [1] and [15]). Hence, any double-primitive knot in a non-L-space
homology sphere satisfies p ≥ 10. From Theorem 1.2, those knots satisfy g(Kp,k) ≥
p+1
2 > 5. From the formula (11), the surgery parameter with g(Kp,k) = 6 is (p, k) =

(10, 3). This example is all the double-primitive knots in a non-L-space homology
sphere 10 ≤ p ≤ 11. Other double-primitive knots with p ≥ 12 in a non-L-space
homology sphere have g(Kp,k) ≥ p+1

2 > 6.

By [16], the homology sphere Y12,5 is homeomorphic to Σ(3, 5, 7), and we have
Σ(3, 5, 7)12(K12,5) = L(12, 11). By the formula (11), we have g(K12,5) = 12. Here we
put the list of Kp,k’s in non-L-space homology spheres with the slope p ≤ 23.

Remark 2.1 (Counterexample of Question 1.1 [16]). From Table 1 we get the equal-
ities:

NS(K10,3) = NS(T (3, 7)), NS(K12,5) = NS(K17,5) = NS(T (5, 7))

NS(K13,5) = NS(T (5, 8)), NS(K15,4) = NS(T (4, 11))

NS(K17,3) = NS(T (3, 11)), NS(K19,3) = NS(T (3, 13))

NS(K17,4) = NS(T (4, 13)), NS(K20,9) = NS(T (9, 11))

NS(K21,8) = NS(T (8, 13)), NS(K23,5) = NS(T (5, 9)).

Namely, there exist several knots Kp,k in non-L-space homology spheres with the same
Alexander polynomials as the ones of torus knots. On the other hand, K23,7 is a type-
(B) knot in Σ(2, 3, 11) and the polynomial ∆K23,7 is not a cyclotomic polynomial and
furthermore, it is not the Alexander polynomial of any admissible lens space knot.

11



p k Yp,k g(Kp,k) NSh

10 3 Σ(2, 3, 7) 6 (6, 5, 3, 2, 0)

12 5 Σ(3, 5, 7) 12 (12, 11, 7, 6, 5, 4, 2, 1, 0)

13 5 Σ(3, 5, 8) 14 (14, 13, 9, 8, 6, 5, 4, 3, 1, 0)

15 4 Σ(3, 4, 11) 15 (15, 14, 11, 10, 7, 6, 4, 2, 0)

16 7 Σ(4, 7, 9) 24 (24, 23, 17, 16, 15, 14, 10, 9, 8, 7, 6, 5, 3, 2, 1, 0)

17 3 Σ(2, 3, 11) 10 (10, 9, 7, 6, 4, 2, 1)

17 4 Σ(3, 4, 13) 18 (18, 17, 14, 13, 10, 9, 6, 4, 2, 0)

17 5 Σ(2, 5, 7) 12 (12, 11, 7, 6, 5, 4, 2, 1, 0)

19 3 Σ(2, 3, 13) 12 (12, 11, 9, 8, 6, 5, 3, 2, 0)

20 9 Σ(5, 9, 11) 40 (40, 39, 31, 30, 29, 28, 22, 21, 20, 19, 18, 17,
13, 12, 11, 10, 9, 8, 7, 6, 4, 3, 2, 1, 0)

21 8 Σ(5, 8, 13) 42 (42, 41, 34, 33, 29, 28, 26, 25, 21, 20, 18, 17,
16, 15, 13, 12, 10, 9, 8, 7, 5, 4, 3, 1, 0)

23 5 Σ(2, 5, 9) 16 (16, 15, 11, 10, 7, 5, 2, 0)

23 7 Σ(2, 3, 11) 13 (13, 12, 10, 9, 6, 5, 3, 2, 0)

Table 1: Type-(B) knots in non-L-space homology spheres up to p ≤ 23.

2.5 Non-zero curves and Alexander region.

We give the way to visualize all the non-zero coefficients in the A-matrix (Ai,j) and
B-matrix (Bi,j) from the values of dAi,j or dBi,j in Lemma 2.1 and 2.2.

Lemma 2.3. Let K and X be a knot of type-(A) or -(B) and A or B respectively. Let
(Xi,j) be the X-matrix of the lens space surgery for a knot K ⊂ Y with 2g(K) ̸= p. If
dXi,j ̸= 0 and dXi,j+1 ̸= 0, then the values of X-matrix around (i, j) have one of the
following local behaviors:

1

0−1

0 −10

10

(e = −1 and X = A or X = B),

−1

j + 1

i

0

1 0

0

−10

1

(e = 1 and X = A)

0

01

1

0 −1

0−1

1

10

0

−1 0

0 −1

j

i+ 1

Definition 2.5 (Non-zero curves). Let K and X be a lens space knot of type-(A) or
-(B) with g(K) ̸= p/2 and X = A or B respectively. Then we describe curves on the
2-plane by regarding the matrix as a function on the lattice points Z2 in R2.

(a) Draw a horizontal arrow on any lattice point (i, j) with Ai,j ̸= 0. The direction
is the right when Ai,j = 1 and the left when Ai,j = −1 as below. Draw nothing
on the point (i, j) with Ai,j = 0.

1 −1 0
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(b) Connect the horizontally adjacent arrows with the same direction. Namely, if
there exist two arrows on (i, j) and (i + 1, j) with the same direction, then we
connect them as below:

1 −11 −1

(c) For any point (i, j) satisfying dA(i, j + 1) = −dA(i, j) = e or dB(i, j) =
−dB(i, j + 1) = 1, connect the corresponding two non-empty arrows around
the point (i, j) as figure below. The four patterns are the four possibilities in
Lemma 2.3:

1 −10 0

−1 10 0

(X = A and e = −1, or X = B)

−1 00 1

1 00 −1

(X = A and e = 1)

0 1

1 0

0 −1

−1 0

1 0

0 1

−1 0

0 −1j + 1

i

j

i+ 1

Then we can make curves with direction on R2 and call the curves non-zero curves.

Notice that on no two points (i, j) and (i+1, j) opposite arrows are drawn, because
the absolute values of dA(x) are less than 0 or ±1. Furthermore, in the case of X = A,
we assume that the curves are periodic.

The curves are weakly-monotonicity about j. If X = A and e = 1, then each of
non-zero curves are weakly-decreasing about j, and conversely X = A and e = −1 or
X = B, then any non-zero curves are weakly-increasing or weakly-decreasing function
about j.

Lemma 2.4. Let γ be a non-zero curve of type-(A) or -(B) and p > 1. Each non-zero
curve is simple and does not have end points. In particular, a component of a non-zero
curve is the image of an embedding of R in R2.

The curve is monotone and unbounded about j.

Here an end point means a lattice point that does not connect two lattice points
with respect to (b) and (c) in Lemma 2.5.

Proof. What the curve is simple is clear from the construction. If the curve has the
end, which the point is (i, j) or (i+1, j), then dAi,j implies non-zero. Thus, by using
Lemma 2.1, dAi+1,j = −dAi,j or dAi−1,j = −dAi,j holds. Thus (i+ 1, j) or (i− 1, j)
is also end point with opposite direction as (i, j) or (i + 1, j). From the definition of
non-zero curve, connecting the two end points smoothly, we can cancel the two end
point. By using this cancelation, we can vanish all the possible end points as in the
figure below. The figures below are examples when e = 1.

⇒

⇒
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The second assertion for lens parameter of type-(B) is clear. We assume γ is of
type-(A). The monotonicity about j is true due to the construction of the non-zero
curve. If the curve is bounded about j, then from the monotonicity, j-value of the
curve is convergent to the an integer. However, since the curve is periodic, the curve
is constant. On the line j = j0 ∈ Z, there exists all the coefficients of the Alexander
polynomial. This implies p = 1. We, therefore, figure out that the γ is unbounded.

The definition of non-zero curve immediately implies the following:

Proposition 2.3. A non-zero curve of type-(A) or -(B) has symmetry about a point
in R2.

In the end, we can get some symmetric infinite curve with arrow and no end points
on R2. Furthermore, in the case of type-(A), any two non-zero curves are congruent
each other by some parallel translation. This will be proven later.

2.6 The case of 2g(K) = p case.

In the case of type-(A) and 2g(K) = p we have to consider the behavior of A-function
around non-trivial dA-function with āg = 2. Since any other coefficients are ±1 or 0,
the behaviors of those non-zero coefficients are the same as the case of 2g(K) < p.

Lemma 2.5. Let (p, k) and Ai,j be a lens space knot K of type-(A) with 2g(K) = p
and the A-matrix. If dAi,j ̸= 0 and dAi,j+1 ̸= 0, then the values of A-matrix around
(i, j) have one of the following local behaviors:

2 1

−1 0

(e = −1),

−1

j + 1

i

0

2 1

(e = 1)

1

−10

j

i+ 1

−1

1

0

i− 1

j + 1

j

i+ 1 i+ 2i

Figure 2:

Proof. Suppose dAi,j = −dAi,j+1 = −e holds, and one of (i, j), (i + 1, j), (i, j + 1)
and (i + 1, j + 1) contains 2. Since the A-function has the symmetry about a p

2
the

behavior of the coefficient 2 is one of the two possibilities in Figure 2. Because the other
possibilities as below can find an adjacent coefficient pair 1, 1 against the condition
(2).

0 1

2 11

1 0 0 1

1

1 0

1 2

(e = −1),(e = 1)

Definition 2.6. Let (p, k) and Ai,j be a lens space knot K of type-(A) with 2g(K) = p
and the A-matrix. We do (a)’ and (c)’ in addition to (a) and (c).

(a)’ Draw a horizontal double arrow at the values 2 as follows:
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2

(c)’ Connect the arrows around (i, j) with dAi,j ̸= 0 and dAi,j+1 ̸= 0.

2 1

−1 0

(e = −1),

−1

j + 1

i

0

2 1

(e = 1)

1

−10

j

i+ 1

−1

1

0

i− 1

j + 1

j

i+ 1 i+ 2i

Notice that since no two 2’s are adjacent in A-function, the length of any double
arrow is one.

2.7 Regions containing non-zero curves.

In the following, we investigate some domain in which the arrow lies.

Definition 2.7 (Non-zero region). Let (p, k) be the lens surgery parameter of type-(A)
or -(B). We define a subset N in R2 as follows.

Let (p, k) and d be a parameter of type-(A) and the degree of ∆K(t) for the lens
space knot K respectively. Suppose that (i, j) ∈ Z2 is a point satisfying −j−k2(i+c) ≡
0 mod p. We denote by N0 the union of closed 1

2 -neighborhood of points of

{(i, j − d), (i, j − d+ 1), · · · , (i, j + d)}. (12)

Let (p, k) and d be a parameter of type-(B) and the top degree of ∆Kp,k
respectively.

For a fixed integer j ∈ Z there exists (i, j) ∈ Z2 such that

{(i, j − d), (i, j − d+ 1), · · · , (i, j + d)}

contain all the non-zero coefficients. We denote by N0 the union of closed 1
2 -neighborhood

of these points.
In both cases, let Nl denote {(x+ l, y−k2l) ∈ R2|(x, y) ∈ N0}, which is the parallel

translation of N0 by (l,−k2l) on R2. We call the region

N = ∪l∈ZNl

a non-zero region.

Here we define closed ϵ-neighborhood of (i′, j′) to be {(x, y) ∈ R2| |x−i′|+|y−j′| ≤
ϵ}. In the case of type-(A), changing the choice of (i, j) satisfying −j − k2(i + c) ≡
0 mod p, we get another non-zero region. A non-zero region N is connected due to
−p/2 < k2 < p/2.

Lemma 2.6. Let K be a lens space knot of type-(A) and -(B). Then any connected
component of non-zero curves is contained in a non-zero region,

Proof. Suppose that (p, k) be a lens space surgery of type-(B). Since all the non-zero
coefficients are contained in the non-zero region, the non-zero curve is also contained
in the non-zero region.

Let (p, k) be a lens space surgery of type-(A) with e = −1. Suppose that a non-zero
curve γ is passing on two non-zero regions N and N ′ as in Figure 3. Let s be the
vertical segment in which γ traverses ∂N ∩ ∂N ′. We assume that the curve γ meets
at the highest meeting point on s and at the meeting point the direction is from the
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N ′

N

11
γ

s
N ′

N

11
γ

−1

δ s′

−1

Figure 3: A non-zero curves passing two non-zero regions.

left to the right. See Figure 3. If the left 1 is not the top coefficient of ∆K(t), then
from the alternating condition of ∆K , the next above non-zero coefficient is −1. Let δ
be the non-zero curve on that −1. Actually, the curve δ agrees with γ. In fact, if the
curve δ is not γ, then from the monotonicity and unboundedness about j (Lemma 2.4),
δ and γ have to meet at least a point as in Figure 3. Hence, we have δ = γ.

Suppose that the curve γ meets on the next segment s′. The left of the meeting
point is−1. In the shaded region of the right in Figure 3 there is no non-zero coefficient.
This contradicts the fact that the top coefficient of the Alexander polynomial is 1.

Suppose that the left 1 is the top coefficient of ∆K(t). Let N ′
1 be a non-zero part

{(x+1, y−k2−p) ∈ R|(x, y) ∈ N0}, which is the right below non-zero part of N1. For
the assumption to be true, we have to have −k2 − p ≥ 0. This case does not occur.

Suppose that γ is passing from the right to the left as in Figure 4. We may assume
the meeting point is the highest one among such meeting points. Then the next above
non-zero coefficient is 1, however, we cannot draw a curve passing the point. Because
the curve passing the coefficient 1 has to agree with γ, which is passing from the left
to the right at a point in the segment. From what we proved above, such curve does
not exist.

N ′

N

−1−1
γ

s

N ′

N

−1−1
γ

s

⇒ 1

Figure 4: A part of non-zero curves passing two non-zero regions from the right to the
left.

In the case of e = 1, since the argument is parallel by the mirror image about the
j-axis, then the same assertion holds.

Hence, any non-zero curve is contained in the non-zero region.

Lemma 2.7. Let K be a lens space knot of type-(A). Then, the i-coordinate of any
non-zero curve is unbounded both above and below.
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Proof. Suppose that e = −1. Let γ be a non-zero curve in a non-zero region N . If γ
is bounded above by i = i0. Let j0 be the minimal integer in A∩{i = i0}. The lattice
points on R := A ∩ {i ≤ i0 +

1
2} ∩ {j ≥ j0 − 1

2} are finite. Once the curve γ enters in
R, the curve does not go out from R. This contradicts the fact that the lattice points
in R are finite. Thus the curve γ is unbounded above about i.

In the case of e = 1, the argument of the proof is the mirror image or the case of
e = −1 about the j-axis.

The unboundedness about i of the non-zero curve of type-(B) is clear from the
construction of the non-zero region N .

Theorem 2.3 (Traversable Theorem). Let (p, k) be a lens surgery parameter of type-
(A) or -(B). The non-zero curves which are contained in each non-zero region have a
single connected component.

Proof. Suppose that two connected components γ and δ of non-zero curves are con-
tained in a non-zero region. Since γ and δ are disjoint each other, we may assume
that one of three components in R2 − γ − δ does not have any non-zero component
and γ is upper of δ. We can find a not-alternating pair 1 and 1 in ∆K(t) as seen in
Figure 5 (the case of e = −1). If you cannot find not-alternating coefficients, then γ

Two non-zero coefficients which are not allowed.

γ

δ

Figure 5: The case of e = −1.

and δ must be separated by a vertical line i = x0 for a real number x0. However, from
Lemma 2.7 any non-zero curve is unbounded about the i-coordinate.

Thus, we can get the inequality.

Corollary 2.1. Let (p, k) be a lens space surgery of type-(A). Then an inequality
max{k, |k2|} ≤ 2g(K) + 1 holds.

Proof. By exchanging k and |k2|, we assume that k ≤ |k2|. Let N = ∪i∈ZNi be a
non-zero region. If |k2| ≥ 2g(K) + 2, then by the translation (1,−k2), Ni and Nj

(i ̸= j) are disconnected. Thus, the non-zero region is infinite disjoint union of N0.
Since Ni has at most finite lattice points, we cannot embed any non-zero curve passing
infinite non-zero coefficients. This contradicts Theorem 2.3.
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Corollary 2.2. Let (p, k) be a lens surgery parameter of type-(A). If k ≤ |k2| and
2g(K) ≤ |k2| ≤ 2g(K)+1, then we have e = −1, ∆K(t) = ∆T (2,2d+1) and (p, k, |k2|) =
(4d+ 1, 2, 2d) or (4d+ 3, 2, 2d+ 1).

There exists no lens surgery with |k2| = 2g(K)− 1.

Proof. Let (p, k) be a lens surgery parameter of type-(A). If |k2| = 2d + 1, then by
the translation (1,−k2) = (1,−e(2d + 1)) two adjacent non-zero regions N0 and N1

meet one corner point. Then, we can embed a non-zero curve as in Figure 6. Hence,
naturally all the lattice points in the non-zero region Ni have non-zero coefficients.
Thus we have

∆K(t) = td − td−1 + td−2 − · · ·+ t−d.

Suppose that d > 1. Then if p > 2(2d+ 1) + 1, then the dA-function has adjacent
two 0s on the line i = i0. This contradicts that there exists an adjacent pair (1,−1)
and (−1, 1) of dA-function in order on the line with respect to e = 1 or e = −1
respectively. This is equivalent to p < 3|k2|. Thus we have p = 2(2d + 1) + 1 or
2(2d+ 1). Since gcd(p, k) = 1, p = 4d+ 3 and e = −1.

Suppose that d = 1. Then ∆K(t) = t− 1+ t−1 holds. The only lens surgery is the
trefoil knot surgery with (p, k) = (7, 2), k2 = −3 and e = −1 (see [12]).

T0

T−1

T1

Figure 6: The case of e = −1 with |k2| = 2d+ 1.

If |k2| = 2d, then the non-zero region becomes Figure 7. Since the non-zero curve
is connected in the region, other lattice points in the region are all non-zero. This
means that ∆K(t) = ∆T (2,2d+1)(t). Furthermore, in the same way as above, we have
p < 3|k2|. Thus we have p = 4d+1, 4d+2. Since gcd(p, |k2|) = 1, we have p = 4d+1.

If |k2| = 2g(K) − 1, then since the coefficients ag and ag−1 are adjacent in the
plane, there exist values ±2 in the dA-function. This is contradiction.

Corollary 2.3. Let K be a lens space knot in Y of type-(A) with surgery parameter
(p, k). If ∆K(t) ̸= ∆T (2,2m+1)(t), then we have max{k, |k2|} ≤ 2g(K)− 2.

Proof. From Corollary 2.2, the required assertion holds.

3 The coefficients of Xi,j.

3.1 The second term n2 and adjacent region.

The aim of this section is to prove the main theorem. First we prove the following
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11

11

11

11

−1

1

−1
⇒ ⇒

Figure 7: The case of e = −1.

Proposition 3.1. Let K be a nontrivial lens space knot of type-(A) or -(B). Suppose
that (p, k) be a surgery parameter of K. Then n2 = d− 1 holds.

Proof. Let K be a lens space knot of type-(A) or -(B) and (p, k) the surgery parameter
of K. Suppose that e = −1. Let N be the non-zero region and (i, j) ∈ N the bottom
point with the fixed i = i0. The point (i0, j) has the right arrow. Since |k2| > 1 and
the traversable theorem, the lattice point next to (i0, j) must be (i0, j + 1). Thus
(i0, j +1) has left arrow, that is, ag−1 = −1. In the case of e = 1, the same argument
follows āg−1 = −1.

1
N

(i0, j)

1
N

(i0, j)

⇒ −1

Figure 8: The case of e = −1.

This theorem implies Theorem 1.3. Next, we prove Theorem 1.5

Proof of Theorem 1.5. Suppose that e = 1. In the case of e = −1 the proof is the
mirror image with orientation reversing of the non-zero curve about the j-axis. Let s
be a vertical left segment in ∂N . Let (i0, j0) be a lattice point satisfying (i0, j0− e

2 ) ∈ s
and X(i0, j0) = 1. Then, the non-zero curve passing (i0, j0) connects (i0−e, j0+1) or
(i0, j0+1) since it is contained in the non-zero region. If (i0− e, j0+1) ̸∈ N , then the
former case holds. If (i0− e, j0+1) ∈ N , then the latter case holds and (i0− e, j0+1)
corresponds to the bottom term t−g. See the figure below.

Thus, on the right lattice points of the segment s are contained in the adjacent
region. Hence, we have α ≥ |k2| − 1. Exchanging the k and |k2|, we have α + 1 ≥
max{k, |k2|}.
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N(i0, j0)

s

N
(i0, j0)

a−g

Proof of Proposition 1.1. Suppose e = 1. Let (i0, j) be a bottom coefficient of the
Alexander polynomial on i = i0. The next point is (i0 + 1, j) or (i0 + 1, j − 1). Thus,
there exists an integer s2 such that d1 − ds2 = |k2| or |k2| − 1. In the same way there
exists s1 such that d1 − ds1 = k or k − 1.

B

(i0, j)

(i0 + 1, j − |k2|)
In the following, we prove Proposition 1.2.

Proof of Proposition 1.2. Suppose that e = 1. Let s be an integer satisfying d− ds =
|k2|− 1 and d the degree of the Alexander polynomial. Let (i0, j0) be the lattice point
of the bottom of non-zero region as in the picture below. From Proposition 1.1, we
have A(i0 + 1, j0) = 0. In the case of (a) in the proposition, the non-zero curve is as

0

(i0, j0)

0 0

(a) (b) (c)

00
0

n2s−1

n2s

n2s−1

Figure 9:

the leftmost picture of Figure 9. Since the non-zero curve is connected, n3 = d − 2
holds.

In the case of (b) in the proposition, the non-zero curve is the central picture of
Figure 9. Hence, n3 − n2 > 2 holds.

If n2s−1 − n2s = 2 and n3 = d − 2, then the connectedness of the non-zero curve
means n2s − n2s+1 = 1.

We prove Corollary 1.3.
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Proof of Corollary 1.3. We use the X-function and X ′-function, which is obtained by
exchanging k and k2. Suppose that e = 1. If for some integer s1, we have d1 − ds1 =
k − 1, then the coefficient of n2s1−1 − 1 is 0. Exchanging k and k2, we consider the
X-function. The point corresponding to n2s1−1 has coefficient 1 in the X-function, see
Figure 10. Then, the point would make an end point on the curve. This contradicts
Lemma 2.4. Thus d1 − ds1 = k = |k2| − 1 = α(K) holds.

0

(1,−k2)

0

(1,−k)

A′ A

n2s1−1

n2s1−1 − 1

Figure 10: The case of |k2| = k + 1.

For example the lens surgery parameter of Pr(−2, 3, 7) is (19, 7,−8). The coeffi-
cient is expanded as follows:

∆Pr(−2,3,7)(t) = t5 − t4 + · · ·+ t5−7 − t5−9 + · · · .

Here α(Pr(−2, 3, 7)) = 7 holds. The double-primitive knot K61,13 in S3 is expanded
as follows:

∆K61,13(t) = t22 − t21 + · · ·+ t22−13 − t22−15 + · · · .
Thus α(K61,13) = 13 holds.

Proof of Corollary 1.4. If the non-zero curve starts with a fixed lattice point p0

and goes to the point p0 +(1,−k2), then the curve tracks all the non-zero coefficients
of the Alexander polynomial. The number is at least max{|k2|, k} by considering the
shifting length of non-zero region about the j-coordinate.

3.2 Lens surgeries with ∆K(t) = ∆T (2,n)(t) or 2g−4 ≤ |k2| ≤ 2g−1.

In this section we give a characterization of lens space surgery with ∆K(t) = ∆T (2,n)(t)
(Theorem 1.4). This case corresponds to |k2| = 2g or |k2| = 2g + 1. In this section
we give the realization of lens surgeries with 2g − 4 ≤ |k2| ≤ 2g − 1. Furthermore, we
classify lens surgery NSh = (d, d− 1, d− 3, d− 4, · · · , 2, 1, 0) of type-(A).

Lemma 3.1. We have dA(0) = dA0,0 = e and dA(k) = dA0,1 = −e.

Proof. By using the equality (10), dA(0) = Ek2(k2) − Ek2(0) = e holds. We have
dA(k) = Ek2

(kq + k2)− Ek2
(kq) = Ek2

(0)− Ek2
(−k2) = −e.

Lemma 3.2. Let (p, k) be a surgery parameter of type-(A). Then there exists integer
m such that the number of 0s between the two pairs of the adjacent {1,−1} is m or
m+ 1.

Proof. From the computation of dA-function we have the following:

dAi0,j = dA(i0 + jk) =


−1 [i0q + jk2]p ∈ I|k2|

1 [i0q + jk2]p ∈ I−|k2|

0 otherwise.
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Thus, the number of sequent 0s in dA-function in a vertical line is determined by the
sequence [nk2]p ̸∈ I|k2| ∪ I−|k2|.

Proof of Theorem 1.4. The non-trivial part is from the condition 1 to the condition
2 and the equivalence of the conditions 1,2,3 and the condition 4. Let (p, k) be a lens
surgery parameter of an admissible lens surgery with ∆K(t) = ∆T (2,n). We will show

that the surgery parameter is (p, 2) or (p, p−1
2 ). Suppose that p − |k2| − 2g − 1 < 0.

Then a non-zero curve passes on the different non-zero regions, see the left picture in
Figure 11. This contradicts the traversable theorem.

−1
1
−1
1

N ′
N

N ′

N

Figure 11: The case of p− |k2| − 2g − 1 < 0 and p− |k2| − 2g − 1 ≥ 0.

Hence we have p−|k2|−2g−1 ≥ 0 (see the right picture in Figure 11). Then there
exists x ∈ Z such that dA(x) = e, dA(x+ k) = −e, dA(x+2k) = e, · · · , dA(x+(|k2| −
1)k) = −e, in particular k2 is an even integer or |k2| = 2g+1. See Figure 12. If 4 ≤ |k2|,
then the number of 0s between two vertical pairs of {1,−1} in the dA-function must
be zero or one. Namely, we have p < 3|k2| and p = |k2|+ 2g + 1 or p = |k2|+ 2g + 2.
Hence |k2| = 2g or 2g + 1 holds. This implies the proof from the condition 1 to
the condition 4. The only possibilities are (p, |k2|) = (4g + 1, 2g), (4g + 3, 2g + 1) in
Figure 13. Hence, we have e = −1 and |k2| = p−1

2 .
If |k2| < 4, then |k2| = 2 holds. In this case, we have 2k = |k2|k < p and

k|k2| = p− 1 holds. Thus, we have k = p−1
2 .

If (p, k) is a lens surgery parameter with the condition 4, then the Alexander
polynomial is the same as the one of T (2, 2d+1). This proves ‘from 4 to from 1’.

Corollary 3.1. If a lens space knot K with |k2| = 2g(K), then (p, k) = (5, 2). In
particular K is the trefoil knot.

Proof. Let (p, k) be a lens surgery parameter with |k2| = 2g(K). Since there exists
no case of |k2| ≥ 4 from the proof of the previous theorem, we have |k2| = 2 = 2g(K).
Thus g(K) = 1 holds. The genus one case is classified in [3]. The knot is the trefoil.

Let (p, k) be a surgery parameter and k2 = [k−1]p. We classified lens surgeries
with 2g(K) ≤ |k2|. Here we discuss further classification.
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0

The A-function.

0

The dA-function.

1
−1
1
−1
0
0
0

−1
1
−1

Figure 12: The case of p = |k2|+2g+2. The three 0s contradict the fact that the number
of 0s between the pairs of {1,−1} is zero or one.

The (p, |k2|) = (4g + 3, 2g + 1) case. The p = |k2|+ 2g(K) + 1 case.

0

0

Figure 13: The case of p = |k2|+ 2g + |k2|+ 1.
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Proposition 3.2. There exists no lens space knot with 2g(K)− 1 = |k2|.
If a lens space knot K satisfies 2g(K) − 2 = |k2| and g(K) < p−1

2 , then the only
surgery parameters are (19, 7) or (11, 3). The Alexander polynomials are

∆K(t) = ∆Pr(−2,3,7)(t), or ∆K(t) = ∆T (3,4)(t)

respectively.

Proof. In the case of 2g(K) − 1 = |k2|, the coefficients ag = 1 and ag−1 = −1 are
adjacent on the horizontal line j = j0.

In the case of 2g(K)−2 = |k2|, the non-zero sequence isNSh = (d, d−1, d−2, · · · , 0)
or (d, d− 1, d− 3, d− 4, · · · , 2, 1, 0).

The former case corresponds to the surgery parameter (p, 2) due to Theorem 1.4.
We consider the latter case. Let (p, k) be a surgery parameter with |k2| = 2g − 2. In
the case of g ≥ 5, the number of sequent 0s on a line of dA is 0 or 1 (Lemma 3.2).

By Lemma 3.2, we have p − |k2| = 2g + 1 and p − |k2| = 2g + 2. Thus, we have
(p, |k2|) = (4g − 1, 2g − 2). The case (4g, 2g − 2) is ruled out since gcd(p, k) = 1. See
Figure 14 (for e = −1) and Figure 15 (for e = 1).

The lengths between the 3 0-values in a vertical line in dA-function are 5, 2g − 3
and 2g − 3, see Figure 14. Thus, k = 2g − 3 holds. Therefore, we have k|k2| =
(2g − 3)(2g − 2) = 4g2 − 10g + 6 ≡ 3g + 3 ≡ ±1 mod p. This means 3g + 3 = 4g − 2,
that is, (p, k) = (19, 7) and g = 5. This case is realized by the (−2, 3, 7)-pretzel knot.

In the case of g < 5, we have g = 3 and (p, k) = (11, 3) see Figure 16.
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0
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−1
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0

A-function. dA-function.
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0
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1
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1
0

−1

−1

1
−1

1
−1

−1
1
0

5

2g − 3

1
−10

2g − 3

Figure 14:

Proposition 3.3. If a lens space knot K satisfies 2g(K)−3 = |k2| and type-(A), then
the only surgery parameter is (11, 4) and

∆K(t) = t3 − t2 + 1− t−1 + t−2 + t−3

This surgery can be realized by the (3, 4)-torus knot.
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A-function.
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Figure 16: The A-function or dA-function of the (3, 4)-torus knot.

25



Proof. From the condition 2g(K)− 3 = |k2|, the Alexander polynomial is

NSh(K) = (d, d−1, d−3, d−4, · · · , 2, 1, 0) =: N1 or (d, d−1, d−4, d−5, · · · , 2, 1, 0) =: N2.

If p− |k2| < 2g + 1holds, then the case of NSh = N1 holds and the A-function is the
picture (a) in Figure 17. This picture has periodicity 2 for the i-direction. Thus p = 2
holds. This case does not occur. Hence p− |k2| ≥ 2g + 1 holds.

Suppose that p − |k2| ≥ 2g + 1. If NSh = N1, then the dA-function is the
picture (b). This picture is inconsistent with Lemma 3.2. If NSh = N2 and g ≥ 5,
then the number m in Lemma 3.2 is 0. Thus p − |k2| = 2g + 1 or 2g + 2, therefore,
(p, k) = (4g−2, 2g−3), (4g−1, 2g−3). The number of 0-values in a vertical continuous
p points in dA-function is 5 or 4 respectively. The lengths of the 5 0-values in a vertical
line in dA-function are 2g − 6, 3, 3, 2g − 5, and 3. Here, the existence of the length 3
implies 3|k2| − p = 2g + 8 ≤ 4. However this is contradiction of the condition g ≥ 5.
In the similar way, the case of p = 4g − 1 does not occur.

If NSh = N2 and g < 5, then g = 3 and the A-function is Figure 18. Since
the case of p − |k2| < 2g + 1 does not occur, p − 3 = 8, 9, or 10. Thus we have
(p, |k2|) = (11, 3), (13, 3) due to gcd(p, |k2|) = 1. This case NSh = (3, 2, 0) is realized
by the torus knot T (3, 4).

0

0
0

0

The 2g(K)− 3 = |k2| case.

0
0
0

0
0
0

0
0
0

0

0
0

(a)

(b)

A-function

1
0
0

−1

1
−1

dA-function

1−1−1
1

Figure 17: The A-function or dA-function.
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The A-function. The dA-function.
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1−10
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1−1
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Figure 18: The A-function or dA-function in the case of NSh = N2 and g = 3.

Proposition 3.4. If a lens space knot K of type-(A) satisfies 2g(K)− 4 = |k2|, then
the only surgery parameter is (19, 8) and ∆K(t) = ∆Pr(−2,3,7)(t).
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The proof can be done by the similar method to Proposition 3.3, hence, we omit
it.

Proposition 3.5. The only lens space knot K whose half non-zero exponent is (g, g−
1, g − 3, g − 4, · · · , 3, 2, 1, 0) is g = 3, 5. This case can be realized by the (3, 4)-torus
knot and (−2, 3, 7)-pretzel knot respectively.

Proof. We suppose the case of 2g − 4 < |k2|. The only case is |k2| = 2g − 5, see
Figure 19.

Suppose that g ≥ 5. Since p−|k2| < 2g+1 contradicts the traversable theorem, we
may assume p− |k2| ≥ 2g + 1. However, the values are inconsistent with Lemma 3.2
and, see the right of Figure 19.

0
0

|k2| = 2g − 5

−1

0
0
1

0
0

1−1
0
1−1
1

Figure 19:

If g ≤ 4, then |k2| < 2g − 4. This contradicts the assumption.
Thus, |k2| ≤ 2g−4 holds. The case is already classified in the previous proposition.

Such lens surgeries are realized by T (3, 4) or Pr(−2, 3, 7).

Proof of Theorem 1.6. If (n1, n2, n3, n4) ̸= (d, d − 1, d2, d2 − 1), (d, d − 1, d2, d2 −
2), (d, d− 1, d2, d2 − 3), then by using Proposition 1.2, n3 = n2 + 1 holds.

We suppose the type-(A). If p − |k2| ≥ 2g + 1, then the number in Lemma 3.2 is
0. Thus |k2| = 3 or 4 holds. The left two pictures in Figure 20 are non-zero curves of
|k2| = 3 or 4. However, each of pictures does not describe the non-zero curve of lens
surgery. Because, in the case of |k2| = 3, we cannot connect the curve as a connected
curve and in the case of |k2| = 4, the curve does not have a symmetry about a point
(Proposition 2.3).

If p− |k2| < 2g+1, then the right picture is the non-zero curve. Since the number
m in Lemma 3.2 is 0, then p = 2g + 1 or 2g + 2. These cases are not type-(A).

3.3 Lens surgeries with g(K) ≤ 5 or with at most 7 non-zero
coefficients.

From Proposition 2.2, if a knot in type-(A) or -(B) satisfies g(K) ≤ 5, then the knot
has type-(A). Before the classification of lens space surgery of g(K) ≤ 5 or at most 7
non-zero coefficients, we characterize the lens surgery of torus knot surgery.

Proposition 3.6. We consider any admissible lens surgery with surgery parameter
(p, k, |k2|) (k ≤ |k2|). Let γ be a non-zero curve and γ′ the non-zero curve obtained by
the (k,−1) parallel translation. Then, the parameter (p, k) can be realized by a surgery
parameter of a torus knot surgery in S3, if and only if the interior of the strip between
γ and γ′ does not contain any other non-zero curve.
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p− |k2| > 2g + 1.p− |k2| ≤ 2g + 1.

Figure 20: The case of (n1, n2, n3, n4) = (d, d− 1, d2, d2 − 3) and |k2| = 3 or 4.

Proof. The parallel translation by a vector v1 = (1,−k2) gives a self-congruence map
on non-zero regions, due to the definition of the non-zero region. The lattice points
moved by this translation lie in the same non-zero region. The vector v2 = (0,−p)
gives a congruence map to the just right non-zero region. Thus kv1−mv2 = (k,−kk2+
mp) = (k,−1) gives a congruence map to the |m|-th non-zero region on the right, where
m is an integer defined by m = kk2−1

p . If (p, k) is the lens surgery parameter of a
torus knot surgery, then we have p = kek2 − e = emp and m = e. Hence the strip of
two non-zero curves γ, γ′ does not contain the other non-zero curves.

Corollary 2.2, Corollary 2.3 and Proposition 3.6 can easily give a classification of
non-torus polynomial with lens space surgeries with small Seifert genus.

Here we demonstrate the classification of ∆K(t) of lens space knot when small k
and |k2|, or small g(K) = d. First, if k = 1, then k2 = 1 holds, hence ∆K(t) = 1. The
case of k = 2 is already classified in Theorem 1.4.

In the case of g ≤ 3, all the lens surgery polynomials are torus polynomials. The
torus knots with g(K) = 4 are T (2, 9) and T (3, 5). Other admissible lens space knots
with g = 4 are the following:

Proposition 3.7. Let (p, k, |k2|) be a lens surgery parameter of (A) with k ≤ |k2|. If
g = 4, then any lens surgery polynomial is torus knot polynomial.

Proof. We may assume 3 ≤ k ≤ |k2|. In the case of g = 4, the possible half non-
zero sequence of non-torus polynomials is (4, 3, 2, 0). The sequences (4, 3, 1, 0) and
(4, 3, 2, 1, 0) present torus knot polynomials. The (4, 3, 0) case fails to Theorem 1.6.

From Corollary 2.3 |k2| ≤ 6 holds. If |k2| = 6, then the lens surgery polynomial
is ∆T (2,7) or ∆T (3,5) only. We assume |k2| ≤ 5. Since the surgery slope p satisfies
p ≥ 2g(K) and is the divisor of k|k2| ± 1 less than k|k2| ± 1, the only possibility is
(p, k) = (8, 3). The half non-zero sequence is (4, 3, 1, 0) = NSh(T5,3).

(8, 3) can be realized by a double-primitive knot in the Poincare homology sphere
as in [13] and has non-zero sequence NSh(K8,3) = NSh(K14,3). The sequence (4, 3, 0)
does not present any admissible lens space knot polynomial.

The author proved in [12] the following:

28



Theorem 3.1 (Theorem 16 in [12]). If a knot K satisfying ∆K(x) = xn − 1 + x−n

admits lens surgery, then n = 1 and moreover K is the trefoil knot.

This theorem was proved by a longer argument of coefficients, however, it is a
corollary of Theorem 1.3. In the present paper, we can continue to discuss the exis-
tence of lens surgery in terms of the number of non-zero coefficients of the Alexander
polynomial.

For example, the polynomial tn−tn−1+1−t−n+1+t−n satisfies the condition n2 =
d − 1 in Theorem 1.3, however, there exists an upper bound of n for the polynomial
to become a lens surgery polynomial for at least type-(A) or -(B) knots.

Corollary 3.2. If the Alexander polynomial ∆K(t) of lens space knot of type-(A) or
-(B) has 5 non-zero coefficients, then ∆K(t) = ∆T (5,2)(t), or ∆T (4,3)(t).

In other words, if the lens surgery polynomial is of form tn−tn−1+1−t−n+1+t−n,
then n = 2, 3 holds.

This type of polynomial is not given from any type-(B) knot in any non-L-space
homology sphere.

Proof. The case of type-(A) is a corollary of Theorem 1.6. In the case of type-(B)
and (n1, n2, n3, n4) = (d, d − 1, d2, d2 − 3), we have g(K) = 4. However the genus of
a type-(B) knot in a non-L-space homology sphere is g(K) ≥ 6. This case does not
occur.

Corollary 3.3. Admissible lens space knots with g = 5 are T (2, 11) and Pr(−2, 3, 7).

Here Pr(p, g, r) is the (p, q, r)-pretzel knot.

Proof. From Corollary 2.3, since 3 ≤ k ≤ |k2| ≤ 8 holds, the parameters (p, k) sat-
isfying mp = kk2 − 1 with |m| ≥ 2 are (11, 3), (13, 5), (17, 5), (18, 5), (19, 7). The
admissible parameters among these are (11, 3), (18, 5), (19, 7), and (22, 3). Thus,
K11,3 = T (3, 4), T18,5 = T19,7 = Pr(−2, 3, 7) and g(K22,3) = 11 holds.

The non-zero sequences of these knots T (2, 11) and Pr(−2, 3, 7) are (5, 4, 3, 2, 1, 0)
and (5, 4, 2, 1, 0).

The next classification is done for lens space knots with the 7 non-zero coefficients.

Corollary 3.4. If the Alexander polynomial ∆K(t) of lens space knot of type-(A) or
-(B) has 7 non-zero coefficients, then ∆K(t) = ∆T (7,2)(t), ∆T (5,3)(t), or ∆T (4,5)(t).

If K is a lens space knot of type-(A) or -(B) with

∆K(t) = tn − tn−1 + t− 1 + t−1 − t−n+1 + t−n (13)

∆K(t) = tn − tn−1 + t2 − 1 + t−2 − t−n+1 + t−n, (14)

then when (13), n = 4, 5 and when (14), n = 6.

Proof. If the lens surgery polynomial is (13), by describing the non-zero curve, we find
g(K) ≤ 5. Thus n = 5 or 4.

If the lens surgery polynomial is (14), then the possibilities of non-zero curves are
the pictures in Figure 21. The next is the table of the 4 non-zero curves.

|k2| p α
4 6 4
5 7 5
5 6 4
4 5 3
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By using the inequality (6) in Theorem 1.5, considering all the cases (p, k, |k2|), we
get (p, |k2|, g) = (19, 4, 6), (21, 4, 6) and ∆K(t) = ∆T4,5(t). These cases are torus knot
surgeries.
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Figure 21: The cases of (|k2|, g) = (4, 6), (5, 7), (5, 6), (4, 5) respectively.

The next classification of admissible lens surgeries should be done for the surgeries
with 9 non-zero coefficients. This is left for readers.

Problem 3.1. Classify the Alexander polynomial with 9 non-zero coefficients. The
polynomials are of the form:

tn − tn−1 + tm − tm−1 + 1 + t−m − t−m+1 − t−n + tn

or
tn − tn−1 + tm − tm−2 + 1 + t−m − t−m+2 − t−n + tn.

3.4 Examples

Finally, in Table 2 and 3 we list type-(B) knots with g(Kp,k) ≤ 30 in non-L-space
homology spheres.
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