数理物質科学研究科
微分幾何学I

多様体のトポロジー入門

田崎博之

2007年度
数理物質科学研究科
微分幾何学 I
Differential Geometry I
開講授業科目概要
写像度を使って多様体のトポロジーを解き明かす。
目次

第1章 準備 1
 1.1 多様体と C^∞ 級写像 1
 1.2 正則値の逆像 10
 1.3 Sard の定理の証明 24

第2章 多様体のトポロジー 28
 2.1 法2の写像度 28
 2.2 向きの付いた多様体 35
 2.3 線形群の連結性 41
 2.4 ベクトル場と Euler 数 46

第3章 フレーム付きコボルディズム 65
 3.1 フレーム付きコボルディズム 65
 3.2 まつわり数 75
 3.3 Hopf 不変量 82

参考文献について 83
 参考文献 84
第1章 準備

1.1 多様体とC^∞級写像

定義 1.1.1 $U \subset \mathbb{R}^k$ と $V \subset \mathbb{R}^l$ を開集合とする。U から V への写像 $f : U \to V$ のすべての偏微分 $\partial^n f / \partial x_i \cdots \partial x_j$ が存在し連続になるとき、f を C^∞ 級写像と呼ぶ。より一般に任意の部分集合 $X \subset \mathbb{R}^k$ と $Y \subset \mathbb{R}^l$ をとり、X から Y への写像 $f : X \to Y$ について考える。各 $x \in X$ に対して x の開近傍 $U \subset \mathbb{R}^k$ と C^∞ 級写像 $F : U \to \mathbb{R}^l$ が存在し、$F|_{U \cap X} = f|_{U \cap X}$ なるとき、$f : X \to Y$ を C^∞ 級写像と呼ぶ。

C^∞ 級写像の合成が C^∞ 級写像になること、恒等写像が C^∞ 級写像になることは、開集合上定義された C^∞ 級写像の場合に成り立つことからわかる。

定義 1.1.2 部分集合 $X \subset \mathbb{R}^k$ から $Y \subset \mathbb{R}^l$ への写像 $f : X \to Y$ が逆写像 $f^{-1} : Y \to X$ を持つ、各写像と f^{-1} がともに C^∞ 級写像になるとき、f を微分同型と呼ぶ。

定義 1.1.3 部分集合 $M \subset \mathbb{R}^k$ が次の条件を満たすとき、M を m 次元多様体と呼ぶ。各点 $x \in M$ は \mathbb{R}^k 内の開近傍 W を持つ、$W \cap M$ は \mathbb{R}^m の開集合 U と微分同型になる。微分同型は $g : U \to W \cap M$ は、$W \cap M$ のパラメータ付けと呼ばれ、その逆写像の開近傍 W を持つ。各点 $x \in M$ は \mathbb{R}^k 内の開近傍 W を持つ、$W \cap M$ が x 一点になるとき、M を 0 次元多様体という。

多様体の一点に対してその近傍のパラメータ付けと座標系は一意的定まるわけではない。

例 1.1.4 2次元単位球面

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

が 2次元多様体になることを示す。

$$U = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$$

は \mathbb{R}^2 の開集合になり、

$$W_+ = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}$$
は \mathbb{R}^3 の閉集合になる。写像

$$g : U \rightarrow W_+ \cap S^2 ; \ (x, y) \mapsto \left(x, y, \sqrt{1 - x^2 - y^2}\right)$$

は微分同型になることを示す。g は定義より C^∞ 級写像になる。g の逆写像は

$$g^{-1} : W_+ \cap S^2 \rightarrow U ; \ (x, y, z) \mapsto (x, y)$$

によって定まり、g^{-1} も C^∞ 級写像になる。よって、g は微分同型になる。

$$W_- = \{(x, y, z) \in \mathbb{R}^3 \mid z < 0\}$$

とおくと、W_+ の場合と同様に U と $W_- \cap S^2$ の間に微分同型を構成することができる。さらに、z の役割を他の変数 x, y に置き換えても同様の微分同型を構成することができる。したがって、S^2 は 2 次元多様体になる。

n 次元単位球面

$$S^n = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \cdots + x_{n+1}^2 = 1\}$$

についても、同様の議論で n 次元多様体になることがわかる。

多様体の接ベクトル空間とその性質を考えるために、Euclid 空間の閉集合から開集合への C^∞ 級写像の微分の基本的性質を復習しておく。

$U \subset \mathbb{R}^k$ と $V \subset \mathbb{R}^l$ を開集合とする。$x \in U$ における U の接ベクトル空間を $T_xU = \mathbb{R}^k$ によって定める。U から V への C^∞ 級写像 $f : U \rightarrow V$ の x における微分

$$df_x : \mathbb{R}^k \rightarrow \mathbb{R}^l$$

を $h \in \mathbb{R}^k$ に対して

$$df_x(h) = \frac{d}{dt} \bigg|_{t=0} f(x + th) = \lim_{t \to 0} \frac{1}{t} (f(x + th) - f(x))$$

によって定める。$t \mapsto x + th$ と f の合成は C^∞ 級写像になり、合成関数の微分の公式から

$$df_x(h) = \frac{d}{dt} \bigg|_{t=0} f(x + th) = \sum_{j=1}^{k} \frac{\partial f_j}{\partial x_j}(x)h_j = \left[\frac{\partial f_1}{\partial x_j}(x) \right] \begin{bmatrix} h_1 \\ \vdots \\ h_k \end{bmatrix}$$

が成り立つ。したがって、df_x は線形写像になり、\mathbb{R}^k と \mathbb{R}^l の標準基底に関する df_x の表現行列は、$(\partial f_i/\partial x_j(x))$ になる。
1.1．多様体と C^∞ 級写像

命題 1.1.5 (合成写像の微分) $f : U \to V$ と $g : V \to W$ を Euclid 空間の開集合から開集合への C^∞ 級写像とする。このとき $x \in U$ に対して

$$d(g \circ f)_x = dg_{f(x)} \circ df_x$$

が成り立つ。すなわち、二つの写像を合成してから微分したものは、それぞれ微分してから合成したものに等しい。

$U \subset U' \subset \mathbb{R}^k$ を開集合とし、$i : U \to U'$ を包含写像とする。このとき、任意の $x \in U$ に対して di_x は \mathbb{R}^k の恒等写像になる。

線形写像 $L : \mathbb{R}^k \to \mathbb{R}^l$ と任意の $x \in \mathbb{R}^k$ に対して、$dL_x = L$ が成り立つ。

命題 1.1.6 f を開集合 $U \subset \mathbb{R}^k$ から開集合 $V \subset \mathbb{R}^l$ への微分同型とすると、$k = l$ となり、任意の $x \in U$ に対して

$$df_x : \mathbb{R}^k \to \mathbb{R}^k$$

は線形同型になる。

証明 $f : U \to V$ の逆写像を $g : V \to U$ で表すと、$g \circ f$ は U の恒等写像になる。命題 1.1.5 より、$d(g \circ f)_x = dg_{f(x)} \circ df_x$ は \mathbb{R}^k の恒等写像になる。同様に $df_x \circ dg_{f(x)}$ は \mathbb{R}^l の恒等写像になる。したがって、$df_x : \mathbb{R}^k \to \mathbb{R}^l$ は線形同型になり、$k = l$ が成り立つ。

命題 1.1.6 の逆の主張が局所的には成り立つことを示しているのが、次の逆写像定理である。

定理 1.1.7 (逆写像定理) 開集合 $U \subset \mathbb{R}^k$ から開集合 $V \subset \mathbb{R}^k$ への C^∞ 級写像の点 $x \in U$ における微分が線形同型のとき、x の開近傍 U' が存在し、f の U' への制限 $f|_{U'}$ は $U' \to f(U')$ への微分同型になる。

定義 1.1.8 $M \subset \mathbb{R}^k$ を m 次元多様体とする。$x \in M$ に対して、x の開近傍のパラメータ付け $g : U \to M$ で $u \in U, g(u) = x$ となるものをとる。ここで、U は \mathbb{R}^m の開集合である。g の微分 $dg_u : \mathbb{R}^m \to \mathbb{R}^k$ の像を T_xM と表し、M の x における接ベクトル空間として定める。

上の定義において、多様体の接ベクトル空間の定め方が、パラメータ付けのとり方に依存しないことを示しておく必要がある。もう一つのパラメータ付け $h : V \to M$ で $v \in V, h(v) = x$ なるものをとる。$h^{-1} \circ g$ は u のある開近傍 U_1 から v のある開近傍への微分同型になる。

$$dh_v \circ d(h^{-1} \circ g)_u = dg_u$$

になるので、$dh_v(\mathbb{R}^m) = dg_u(\mathbb{R}^m)$ が成り立つ。さらに T_xM は m 次元ベクトル空間になる。
定義 1.1.9 $M \subset \mathbb{R}^k$, $N \subset \mathbb{R}^l$ を多様体とし、$f : M \rightarrow N$ を C^∞ 級写像とする。$x \in M$ をとる。f は C^∞ 級なので、\mathbb{R}^k 内の x の開近傍 W と C^∞ 級写像 $F : W \rightarrow \mathbb{R}^l$ が存在し、$f|_{W \cap M} = F|_{W \cap M}$ が成り立つ。そこで、
$$df_x = dF_x|_{T_xM} : T_xM \rightarrow T_{f(x)}N$$
によって f の x における微分 df_x を定義する。

上の定義において、$dF_x(T_xM) \subset T_{f(x)}N$ となることと、微分 df_x の定め方は、f の拡張 F のとり方に依存しないことを示しておく必要がある。パラメータ付け
$$g : U \rightarrow M \subset \mathbb{R}^k, \quad h : V \rightarrow N \subset \mathbb{R}^l$$
で $g(U)$ が x の開近傍になり、$h(V)$ が $f(x)$ の開近傍になるようにする。さらに必要なら、$g(U) \subset W$ と $f(g(U)) \subset h(V)$ が成り立つように U を小さくとる。すると、C^∞ 級写像
$$h^{-1} \circ f \circ g : U \rightarrow V$$
が定まる。これは Euclid 空間の開集合から開集合への C^∞ 級写像である。また、
$$h \circ (h^{-1} \circ f \circ g) = F \circ g$$
となるので、$u = g^{-1}(x), v = h^{-1}(f(x))$ とおくと、命題 1.1.5 より
$$dh_v \circ d(h^{-1} \circ f \circ g)_u = dF_x \circ dg_u$$
が成り立つ。これより、
$$dF_x(T_xM) = dF_x \circ dg_u(\mathbb{R}^m) = dh_v \circ d(h^{-1} \circ f \circ g)_u(\mathbb{R}^m) \subset dh_v(\mathbb{R}^n) = T_{f(x)}N$$
となり、$dF_x(T_xM) \subset T_{f(x)}N$ が成り立つ。さらに,
$$dg_u : \mathbb{R}^m \rightarrow T_xM, \quad dh_v : \mathbb{R}^n \rightarrow T_{f(x)}N$$
はともに線形同型写像だから、逆写像を考えることができる、
$$df_x = dh_v \circ d(h^{-1} \circ f \circ g)_u \circ (dg_u)^{-1}$$
となるので、df_x は F のとり方に依存しない。

命題 1.1.10 $f : M \rightarrow N$ と $g : N \rightarrow P$ を多様体から多様体への C^∞ 級写像とする。このとき $x \in M$ に対して
$$d(g \circ f)_x = dg_{f(x)} \circ df_x$$
が成り立つ。

$M \subset N$ を多様体とし、$i : M \rightarrow N$ を包含写像とする。このとき、任意の $x \in U$ に対して di_x は包含写像 $T_xM \subset T_xN$ になる。
1.1. 多様体と C^∞ 級写像

証明 命題1.1.5を適用すればよい。

命題1.1.11 $f : M \to N$ を多様体の間の微分同型とすると、任意の $x \in M$ に対して

$$df_x : T_x M \to T_{f(x)} N$$

は線形同型になる。特に、$\dim M = \dim N$ が成り立つ。

証明 M を m 次元多様体とし、N を n 次元多様体とする。定義より

$$M \subset \mathbb{R}^k, \quad N \subset \mathbb{R}^l$$

となっている。x は \mathbb{R}^k 内の開近傍 W_M を持ち、$W_M \cap M$ は \mathbb{R}^m の開集合 U_M と微分同型になる。さらに $f(x)$ は \mathbb{R}^l 内の開近傍 W_N を持ち、$W_N \cap N$ は \mathbb{R}^n の開集合 U_N と微分同型になる。U_M から $W_M \cap M$ への微分同型を g_M とし、U_N から $W_N \cap N$ への微分同型を g_N とする。ベクトル空間の定義 (定義1.1.8) より、

$$dg_M : \mathbb{R}^m \to T_x M \quad \text{と} \quad dg_N : \mathbb{R}^n \to T_{f(x)} N$$

は線形同型になり、$g_N^{-1} \circ f \circ g_M$ は$g_N^{-1}(x) \in \mathbb{R}^m$ の開近傍から $g_N^{-1}(f(x)) \in \mathbb{R}^n$ の開近傍への微分同型になる。命題1.1.6 より

$$d(g_N^{-1} \circ f \circ g_M) : \mathbb{R}^m \to \mathbb{R}^n$$

は線形同型になる。命題1.1.5 より

$$d(g_N^{-1} \circ f \circ g_M) = dg_N^{-1} \circ df_x \circ dg_M$$

となり、dg_N^{-1} と dg_M は線形同型だから、df も線形同型になる。さらに、次の等式が成り立つ。

$$\dim M = m = n = \dim N$$

定理1.1.12 (逆写像定理) 多様体の間の C^∞ 級写像 $f : M \to N$ の $x \in M$ における微分 $df_x : T_x M \to T_{f(x)} N$ が線形同型のとき、x の開近傍 U が存在し、f を U に制限すると微分同型になる。

証明 命題1.1.11 の証明中の設定をそのまま使うことにする。

$$d(g_N^{-1} \circ f \circ g_M) = dg_N^{-1} \circ df_x \circ dg_M : \mathbb{R}^m \to \mathbb{R}^n$$

は線形同型になり、定理1.1.7 より $g_N^{-1}(x) \in \mathbb{R}^m$ の開近傍 U' が存在し、

$$(g_N^{-1} \circ f \circ g_M)|_{U'} : U' \to g_N^{-1} \circ f \circ g_M(U')$$

は微分同型になる。したがって、$f|_{g_M(U')}$ は $U = g_M(U')$ から $f(U)$ への微分同型になる。
第1章 準備

定義 1.1.13 $f : M \to N$ を等しい次元を持つ多様体の間の C^∞ 級写像とする。$x \in M$ に対して、$df_x : T_x M \to T_{f(x)} N$ が線形同型になるとき、x を f の正則点と呼ぶ。M の正則点ではない点を間界点と呼ぶ。$y \in N$ に対して、$f(x) = y$ となる f の間界点 x が存在するとき、y を f の間界値と呼ぶ。N の間界値ではない点を正則値と呼ぶ。

命題 1.1.14 $f : M \to N$ を等しい次元を持つ多様体の間の C^∞ 級写像とし、M はコンパクトであると仮定する。このとき、f の正則値 $y \in N$ に対して、$f^{-1}(y)$ は有限集合になる。

証明 $f^{-1}(y)$ はコンパクト多様体 M 内の閉部分集合になるので、$f^{-1}(y)$ もコンパクトになる。定理 1.1.12 より、各 $x \in f^{-1}(y)$ の間近傍 U_x が存在し、f を U_x に制限すると微分同型になる。特に、$U_x \cap f^{-1}(y) = \{x\}$ となり、$f^{-1}(y)$ は離散位相を持つ。したがって、$f^{-1}(y)$ は有限集合になる。

命題 1.1.15 $f : M \to N$ を等しい次元を持つ多様体の間の C^∞ 級写像とし、M はコンパクトであると仮定する。f の正則値 $y \in N$ に $f^{-1}(y)$ の元の個数 $\#f^{-1}(y)$ を対応させる関数は、局所定数になる。

証明 命題 1.1.14 より、f の正則値 y の逆像 $f^{-1}(y)$ は有限集合になるので、

$$f^{-1}(y) = \{x_1, \ldots, x_k\}$$

とおく。定理 1.1.12 より、各 $x_i \in f^{-1}(y)$ の間近傍 U_i が存在し、f を U_i に制限すると微分同型になる。必要なら U_i を小さく取り直すことにより、$i \neq j$ ならば $U_i \cap U_j = \emptyset$ となるようにできる。$V_i = f(U_i)$ とおくと、各 V_i は y の間近傍になる。よって、$V_1 \cap \cdots \cap V_k$ も y の間近傍になる。$M - U_1 - \cdots - U_k$ はコンパクト多様体 M 内の閉部分集合になるので、コンパクトになる。これより、$f(M - (U_1 \cup \cdots \cup U_k))$ もコンパクトになり、N の閉部分集合になる。

$$f^{-1}(y) \subset U_1 \cup \cdots \cup U_k$$

だから、

$$M - f^{-1}(y) \supset M - (U_1 \cup \cdots \cup U_k).$$

$y \not\in f(M - f^{-1}(y))$ だから、

$$y \not\in f(M - (U_1 \cup \cdots \cup U_k)).$$

以上より、$f(M - (U_1 \cup \cdots \cup U_k))$ は y を含まない閉部分集合だから、

$$V = V_1 \cap \cdots \cap V_k - f(M - (U_1 \cup \cdots \cup U_k))$$
はyの開近傍になる。$y' \in V$に対して、Vの定め方より、$f^{-1}(y') \subset U_1 \cup \cdots \cup U_k$が成り立つ。よって、$\#f^{-1}(y') = k = \#f^{-1}(y)$となり、$y \mapsto \#f^{-1}(y)$は局所定数関数である。

上の命題の応用を一つ示す。

定理 1.1.16（代数学の基本定理）定数でない複素多項式は、零点を持つ。

証明 定数でない複素多項式$P(z)$をとる。複素数全体Cを平面R^2と同一視すると、PはR^2からR^2へのC^∞級写像とみなせる。これが2次元球面S^2からS^2へのC^∞級写像を誘導することを以下で示す。

S^2の北極$(0, 0, 1)$に関する立体射影を$h_+: S^2 - \{(0, 0, 1)\} \to R^2$で表す。すなわち、$(x_1, x_2, x_3) \in S^2 - \{(0, 0, 1)\}$に対して

$$(0, 0, 1) + t(x_1, x_2, x_3 - 1) = (tx_1, tx_2, 1 + t(x_3 - 1))$$

の第三成分が0になる点に対応させることになるので、

$$1 + t(x_3 - 1) = 0$$
$$t = \frac{1}{1 - x_3}.$$

よって、

$$h_+(x_1, x_2, x_3) = \left(\frac{x_1}{1 - x_3}, \frac{x_2}{1 - x_3} \right) \quad ((x_1, x_2, x_3) \in S^2 - \{(0, 0, 1)\}).$$

これによって、写像$f: S^2 \to S^2$を

$$f(x) = \begin{cases} h_+^{-1} \circ P \circ h_+(x) & (x \in S^2 - \{(0, 0, 1)\}) \\ (0, 0, 1) & (x = (0, 0, 1)) \end{cases}$$

で定める。fが$S^2 - \{(0, 0, 1)\}$でC^∞級写像になることは、fの定め方からわかる。$(0, 0, 1)$の近傍でもfがC^∞級写像になることを示すために、S^2の南極$(0, 0, -1)$に関する立体射影$h_-: S^2 - \{(0, 0, -1)\} \to R^2$を導入する。すなわち、$(x_1, x_2, x_3) \in S^2 - \{(0, 0, -1)\}$に対して

$$(0, 0, -1) + t(x_1, x_2, x_3 + 1) = (tx_1, tx_2, -1 + t(x_3 + 1))$$

の第三成分が0になる点に対応させることになるので、

$$-1 + t(x_3 + 1) = 0$$
$$t = \frac{1}{1 + x_3}.$$
第1章 準備

よって、

\[h_-(x_1, x_2, x_3) = \left(\frac{x_1}{1 + x_3}, \frac{x_2}{1 + x_3} \right) \quad ((x_1, x_2, x_3) \in S^2 - \{(0, 0, -1)\}). \]

\(z \in C = \mathbb{R}^2 \) に対して

\[h_- \circ f \circ h_-^1(z) = h_- \circ h_+^1 \circ P \circ h_+ \circ h_-^1(z) \]

となるので、まず、\(h_+ \circ h_-^1(z) \) を計算しておく。\(h_-^1(z) \) を求めるためには、直線

\((0, 0, -1) + t(z_1, z_2, 1) = (tz_1, tz_2, -1 + t) \)

と \(S^2 \) との交点を求める必要がある。

\[t^2 z_1^2 + t^2 z_2^2 + 1t^2 - 2t = 1 \]

\[t^2(z_1^2 + z_2^2 + 1) - 2t = 0 \]

\[t = \frac{2}{1 + z_1^2 + z_2^2}. \]

よって

\[h_-^1(z_1, z_2) \]

\[= (0, 0, -1) + \frac{2}{1 + z_1^2 + z_2^2}(z_1, z_2, 1) \]

\[= \frac{1}{1 + z_1^2 + z_2^2}(2z_1, 2z_2, -1 - z_1^2 - z_2^2 + 2) \]

\[= \frac{1}{1 + z_1^2 + z_2^2}(2z_1, 2z_2, 1 - z_1^2 - z_2^2). \]

これより、\(z = z_1 + \sqrt{-1}z_2 = (z_1, z_2) \in C = \mathbb{R}^2 \) に対して、

\[1 - \frac{1 - z_1^2 + z_2^2}{1 + z_1^2 + z_2^2} = \frac{2(z_1^2 + z_2^2)}{1 + z_1^2 + z_2^2} \]

となり,

\[h_+ \circ h_-^1(z) = \frac{1 + z_1^2 + z_2^2}{2(z_1^2 + z_2^2)} \left(\frac{2z_1}{1 + z_1^2 + z_2^2}, \frac{2z_2}{1 + z_1^2 + z_2^2} \right) \]

\[= \frac{1}{z_1^2 + z_2^2} (z_1, z_2) \]

\[= \frac{1}{|z|^2} \]

\[= 1/\bar{z}. \]

これより、\(h_- \circ h_+^1(z) = 1/\bar{z} \) もわかる。

\[P(z) = a_0 z^n + a_1 z^{n-1} + \cdots + a_n \quad (a_0 \neq 0) \]
とおいておくと、

\[
h_- \circ f \circ h_-(z) = h_- \circ h_-^{-1} \circ P \circ h_+ \circ h_-(z)
\]

\[
= h_- \circ h_-^{-1} \circ P(1/\bar{z})
\]

\[
= h_- \circ h_-^{-1}(a_0 \bar{z}^{-n} + a_1 \bar{z}^{-n+1} + \cdots + a_n)
\]

\[
= 1/(a_0 z^{-n} + \bar{a}_1 z^{-n+1} + \cdots + \bar{a}_n)
\]

\[
= z^n/(\bar{a}_0 z^n + \bar{a}_1 z^{n-1} + \cdots + \bar{a}_n).
\]

よって、\(h_- \circ f \circ h_-(z) \) は \(z = 0 \) の近傍で \(C^\infty \) 級になる。以上より、\(f : S^2 \to S^2 \) は \(C^\infty \) 級写像になる。

次に \(P \) の微分について考える。

\[
P(z) = P(z_1, z_2) = (P_1(z_1, z_2), P_2(z_1, z_2))
\]

とおくと、\(P \) は複素正則関数だから、Cauchy-Riemann の方程式より、

\[
\frac{\partial P_1}{\partial z_1} = \frac{\partial P_2}{\partial z_2}, \quad \frac{\partial P_1}{\partial z_2} = -\frac{\partial P_2}{\partial z_1}
\]

が成り立つ。他方、

\[
P' = \frac{\partial P_1}{\partial z_1} + \sqrt{-1} \frac{\partial P_2}{\partial z_1}
\]

となるので、

\[
|P'|^2 = \left(\frac{\partial P_1}{\partial z_1} \right)^2 + \left(\frac{\partial P_2}{\partial z_1} \right)^2 = \det(dP).
\]

したがって、\(P \) の臨界点は \(P'(z) = 0 \) となる点 \(z \) に一致する。ところで、\(P(z) \) は多項式だから、\(P'(z) \) も多項式になり、\(P'(z) = 0 \) となる点 \(z \) は有限個しかない。これより、\(f : S^2 \to S^2 \) の臨界値も有限個になり、正則値の全体は連結になる。よって、\(f \) は \(S^2 \to S^2 \) の関数で定義された局所定数関数 \(y \mapsto \# f^{-1}(y) \) は定数関数になり、特に 0 ではない。つまり、\(f \) は全射になり、\(P \) の零点は存在する。

補題 1.1.17 連結集合上の局所定数関数は定数関数になる。

証明 連結集合 \(C \) 上の局所定数関数 \(\alpha \) について考える。\(x_0 \in C \) をとり、

\[
C_0 = \{ x \in C \mid \alpha(x) = \alpha(x_0) \}, \quad C_1 = \{ x \in C \mid \alpha(x) \neq \alpha(x_0) \}
\]

によって \(C \) の部分集合 \(C_0, C_1 \) を定める。定め方より

\[
C_0 \cap C_1 = \emptyset, \quad C = C_0 \cup C_1
\]

が成り立つ。さらに \(C_0 \) と \(C_1 \) が \(C \) の開集合になることを示す。\(y_0 \in C_0 \) を任意にとると \(\alpha(y_0) = \alpha(x) \) が成り立つ。\(\alpha \) が局所定数であることから \(y_0 \) のある開近傍 \(U_0 \) が
存在し任意の \(y \in U_0 \) に対して \(\alpha(y) = \alpha(y_0) \) が成り立つ。よって、\(\alpha(y) = \alpha(x) \) となり \(y \in C_0 \) を得る。したがって、\(U_0 \subset C_0 \) となり \(C_0 \) は開集合になる。次に \(y_1 \in C_1 \)を任意にとると \(\alpha(y_1) \neq \alpha(x) \) が成り立つ。\(\alpha \) が局所関数であることから \(y_1 \) のある開近傍 \(U_1 \) が存在し任意の \(y \in U_1 \) に対して \(\alpha(y) = \alpha(y_1) \) が成り立つ。よって、\(\alpha(y) \neq \alpha(x) \) となり \(y \in C_1 \) を得る。したがって、\(U_1 \subset C_1 \) となり \(C_1 \) も開集合になる。\(C \) は連結だから、以上のことから \(C_0 \) または \(C_1 \) は空集合になる。\(x \in C_0 \) より \(C_0 \) は空集合ではないので、\(C_1 \) が空集合になる。すなわち、\(\alpha \) は定数関数になる。

注意 1.1.18 多項式に限らず複素変数 \(z = z_1 + \sqrt{-1}z_2 \) の複素正則関数 \(\phi(z) \) を

\[
\phi(z) = (\phi_1(z_1, z_2), \phi_2(z_1, z_2))
\]

と表すと、Cauchy-Riemann の方程式

\[
\frac{\partial \phi_1}{\partial z_1} = \frac{\partial \phi_2}{\partial z_2}, \quad \frac{\partial \phi_1}{\partial z_2} = -\frac{\partial \phi_2}{\partial z_1}
\]

が成り立つ。\(\phi \) は \(C \) の開集合から \(C \) への写像なので、\(R^2 \) の開集合から \(R^2 \) への写像とみなすこともできる。この観点から \(\phi \) の微分を考えると

\[
d\phi = \begin{bmatrix}
\frac{\partial \phi_1}{\partial z_1} & \frac{\partial \phi_1}{\partial z_2} \\
\frac{\partial \phi_2}{\partial z_1} & \frac{\partial \phi_2}{\partial z_2}
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial \phi_1}{\partial z_1} & -\frac{\partial \phi_2}{\partial z_1} \\
\frac{\partial \phi_1}{\partial z_2} & \frac{\partial \phi_2}{\partial z_2}
\end{bmatrix}.
\]

これは \(R^2 \) から \(R^2 \) への一般の線形写像ではなく、特殊な形をしている。複素数 \(\alpha = a + b\sqrt{-1} \) をかけるという \(C \) から \(C \) への複素線形写像 \(\phi_\alpha \) を \(R^2 \) から \(R^2 \) への実線形写像とみなすと、

\[
\phi_\alpha[1, \sqrt{-1}] = [a + b\sqrt{-1} - b + a\sqrt{-1}] = [1, \sqrt{-1}]
\begin{bmatrix}
a & -b \\
b & a
\end{bmatrix}
\]

となり、\(\phi_\alpha \) の表現行列は \(d\phi \) 同じ形の行列になっている。すなわち、Cauchy-Riemann の方程式は複素正則関数を \(C \) の開集合から \(C \) への写像とみなしたときの微分が複素数倍に対応する線形写像になっていることを意味する。複素正則は複素変数に関して微分可能だから、局所的に複素数倍で近似できるということと考え合せるとわかりやすい。

1.2 正則値の逆像

定理 1.2.1 (Sard) \(m \geq 0, n \geq 1 \) としておく。\(U \) を \(R^m \) の開集合とし、\(f : U \to R^n \)を \(C^\infty \) 級写像とする。

\[
C = \{x \in U \mid \text{rank}df_x < n\}
\]

とおくと、\(f(C) \) の Lebesgue 測度は 0 になる。
1.2. 正則値の逆像

定理の証明は次の節で行う。この定理を使うため、臨界点等の定義を拡張する。

定義 1.2.2 $f : M \to N$ を多様体 M から多様体 N への C^∞ 級写像とする。$x \in M$ に対して、$df_x : T_x M \to T_{f(x)} N$ が全射になるとき、x を f の正則点と呼ぶ。M の正則点ではない点を臨界点と呼ぶ。$y \in N$ に対して、$f(x) = y$ となる f の臨界点 x が存在するとき、y を f の臨界値と呼ぶ。N の臨界値ではない点を正則値と呼ぶ。

上の定義において、二つの多様体の次元が等しいときは、定義1.1.13に一致する。

系1.2.3 (Brown) 多様体の間の C^∞ 級写像 $f : M \to N$ の正則値の集合は、N の稠密な部分集合になる。

証明 多様体は可算個の開集合のパラメータ付けで覆われ、各パラメータ付けを持つ開集合においては、定理1.2.1 より、臨界値の集合のLebesgue測度は0になるので、補集合は稠密になる。したがって、f の正則値全体の集合も稠密になる。

補題1.2.4 $f : M \to N$ を多様体の間の C^∞ 級写像とする。$\dim M \geq \dim N$ と仮定する。f の正則値 $y \in N$ に対して、$f^{-1}(y)$ は次元 $\dim M - \dim N$ の多様体になる。

証明 $m = \dim M, n = \dim N$ とおく。$x \in f^{-1}(y)$ をとる。y は正則値だから、

$$V = \{v \in T_x M \mid df_x(v) = 0\}$$

とおくと、V は $T_x M$ の次元 $m - n$ の部分ベクトル空間になる。

$M \subset \mathbb{R}^k$ としておく。$V \subset T_x M \subset \mathbb{R}^k$ に注意しておく。V から \mathbb{R}^{m-n} への線形同型写像を \mathbb{R}^k に拡張した線形写像を $L : \mathbb{R}^k \to \mathbb{R}^{m-n}$ とする。

$$F : M \to N \times \mathbb{R}^{m-n} : p \mapsto (f(p), L(p))$$

によって、C^∞ 級写像 F を定める。F の微分 dF_x は

$$dF_x(v) = (df_x(v), L(v)) \quad (v \in T_x M)$$

で与えられる。L の定め方より、dF_x は線形同型写像になる。したがって、定理1.1.12 より、M 内の x の開近傍 U と $N \times \mathbb{R}^{m-n}$ 内の $(y, L(x))$ の開近傍 V が存在し、F は $U \cap V$ への微分同型写像になる。F の定め方より、F は $f^{-1}(y) \cap U$ を $(\{y\} \times \mathbb{R}^{m-n}) \cap V$ に微分同型に写すので、$f^{-1}(y)$ は $m - n$ 次元多様体になる。

例1.2.5 補題1.2.4の応用例として、例1.1.4で扱った球面が多様体になることの別証明を与える。

C^∞ 級関数 $f : \mathbb{R}^{n+1} \to \mathbb{R}$ を

$$f(x_1, \ldots, x_{n+1}) = x_1^2 + \ldots + x_{n+1}^2 \quad ((x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1})$$
で定める。すると,
\[df_x = [2x_1, \ldots, 2x_{n+1}] \]
となり、\(\mathbb{R}^{n+1} \)の原点0のみが\(f \)の臨界点であることがわかる。よって、0以外の実数は\(f \)の正値になる。特に\(f^{-1}(1) = \mathbb{S}^n \)は、補題1.2.4より、\(n \)次元多様体になる。

定義 1.2.6 多様体\(M' \)が多様体\(M \)に含まれているとする。\(x \in M' \)に対して、\(T_x M' \)は\(T_x M \)の部分ベクトル空間になる。\(T_x M \)内の\(T_x M' \)の直交補空間を\(M \)内の\(M' \)の\(x \)における法ベクトル空間と呼ぶ。

補題 1.2.7 補題1.2.4と同じ仮定のもとで、\(f(x) = y \)となる\(x \in M \)をとる。このとき、
\[\{ v \in T_x M \mid df_x(v) = 0 \} \]
は多様体\(f^{-1}(y) \)の点\(x \)における接ベクトル空間に一致する。\(df_x \)は\(M \)内の\(f^{-1}(y) \)の\(x \)における法ベクトル空間から\(T_y N \)への線形同型を与える。

証明 \(M' = f^{-1}(y) \) とおき,
\[V = \{ v \in T_x M \mid df_x(v) = 0 \} \]
としておく。\(f \)を\(M' \)に制限すると、値\(y \)をとる定値写像になるので、\(df_x|_{T_x M'} = 0 \)。よって、\(T_x M' \subset V \)となるが、どちらの次元も\(\dim M - \dim N \)になるので、\(T_x M' = V \)が成り立つ。

仮定より、線形写像\(df_x : T_x \to T_y N \)は全射になるので、\(M \)内の\(M' \)の\(x \)における法ベクトル空間から\(T_y N \)への線形同型を与える。

定義 1.2.8 半空間\(H^m \)を
\[H^m = \{(x_1, \ldots, x_m) \in \mathbb{R}^m \mid x_m \geq 0 \} \]
で定めると、\(H^m \)の境界は\(\partial H^m = \mathbb{R}^{m-1} \times \{0\} \)になる。部分集合\(X \subset \mathbb{R}^k \)が次の条件を満たすとき、\(X \)を境界付き\(m \)次元多様体と呼ぶ。各点\(x \in X \) は\(\mathbb{R}^k \)内の閉近傍\(W \)を持ち、\(W \cap X \)は\(H^m \)の開集合\(U \)と微分同型になる。\(\partial H^m \)に対応する\(X \)の点全体を\(X \)の境界と呼び、\(\partial X \)で表す。\(X - \partial X \)を\(X \)の内部と呼ぶ。

定理 1.2.9 (1次元多様体の分類) 連続な1次元多様体は円\(S^1 \)または実数のある区間に微分同型になる。

注意 1.2.10 実数の区間は閉区間、半開区間、閉区間のいずれかであり、
\[(0,1), \ (0,1], \ [0,1] \]
のいずれかに微分同型になる。したがって、定理1.2.9の主張は、連続な1次元多様体は円\(S^1 \), \((0,1) \), \((0,1] \), \([0,1] \)のいずれかに微分同型になるということになる。
1.2. 正則値の逆像

定理 1.2.9 の証明をするために、若干の準備をしておく。

定義 1.2.11 I を実数の区間とする。1 次元多様体 M に対して、M のパラメータ付け $f : I \to M$ が M の開集合への微分同型であり、各 $s \in I$ に対して速度ベクトル

$$df_s(1) = \frac{d}{ds}f(s) = f'(s) \in T_{f(s)}M$$

が単位ベクトルになるとき、f を弧長によるパラメータ付けと呼ぶ。

注意 1.2.12 1 次元多様体の各点の近傍には弧長によるパラメータ付けが存在するとは、曲線論の本には必ず書かれていることではあるが、簡単に復習しておこう。M を 1 次元多様体、J を実数の区間とし、$g : J \to M$ をパラメータ付けとする。$t_0 \in J$ を一つとり固定しておく。パラメータ付けであることから、任意の $t \in J$ に対して $g'(t) \neq 0$ が成り立つ。そこで、

$$s(t) = \int_{t_0}^{t} \|g'(t)\| \, dt \quad (t \in J)$$

とおくと、$s(t)$ は J 上定義された単調増加関数になり、$s(J)$ は実数の区間、$s : J \to s(J)$ は微分同型になる。逆関数 $s^{-1} : s(J) \to J$ と $g : J \to M$ との合成

$$f = g \circ s^{-1} : s(J) \to M$$

を考えると

$$f' = g'(s^{-1})' = g' \cdot \frac{1}{s'} = \frac{g'}{\|g\|}$$

となり、f' は単位ベクトルになるので、$f : s(J) \to M$ は弧長によるパラメータ付けになる。

補題 1.2.13 M を 1 次元多様体、I と J を実数の区間とし、$f : I \to M$ と $g : J \to M$ を弧長によるパラメータ付けとする。このとき、$f(I) \cap g(J)$ は高々二つの連結成分を持つ。連結成分が一つの場合、$f(I) \cup g(J)$ 上の弧長によるパラメータ付けに f を拡張できる。連結成分が二つの場合、M は S^1 に微分同型になる。

証明 $f(I) \cap g(J)$ が空集合の場合は言及する必要がないので、$f(I) \cap g(J)$ が空集合ではない場合を考える。写像

$$g^{-1} \circ f : f^{-1}(f(I) \cap g(J)) \to g^{-1}(f(I) \cap g(J))$$

は微分同型になる。さらに f と g はどちらも弧長によるパラメータ付けなので、微分は長さを保つ線形写像になる。よって、命題 1.1.10 より $g^{-1} \circ f$ の微分も長さを保つ線形写像になる。つまり、$g^{-1} \circ f$ は傾き ± 1 の一次関数になる。

$I \times J$ の部分集合

$$\Gamma = \{(s, t) \in I \times J \mid f(s) = g(t)\} \subset I \times J$$
について考える。これは関数 \(g^{-1} \circ f \) のグラフとみなすことができる。さらに上で示したことから \(\Gamma \) は傾き \(\pm 1 \) の線分からなる。さらに \(\Gamma \) の端点は \(I \times J \) の内部にはないことがわかる。もし内部にあるとすると線分をそのまま \(I \times J \) 内で延長できることになるので、延長した部分も \(\Gamma \) に含まれ矛盾する。よって \(\Gamma \) の端点は \(I \times J \) の境界にあることになる。\(g^{-1} \circ f \) が微分同型であることから、\(I \times J \) の各辺にある \(\Gamma \) の端点は高々一つになり、\(I \times J \) の辺の数は 4 だから、\(\Gamma \) の連結成分は高々二つになる。

\[
\Gamma \subset I \times J
\]

上の図のように各点の値を定める。必要ならパラメータを平行移動することにより、\(c = \gamma, d = \delta \) とすることができます。すると、次の不等式が成り立つ。

\[
a < b \leq c = \gamma < d = \delta \leq \alpha < \beta.
\]

\(\Gamma \) の定め方より

\[
\left\{ \begin{array}{ll}
f(t) = g(t) & (c = \gamma \leq t \leq d = \delta) \\
g(t) = f(t - \alpha + a) & (\alpha \leq t \leq \beta)
\end{array} \right.
\]

が成り立つ。そこで、\(S^1 \) のパラメータ \(\theta \) に対して \(\theta = 2\pi t/(\alpha - a) \) によって \(\theta \) と \(t \) を対応させ,

\[
h(\cos \theta, \sin \theta) = \left\{ \begin{array}{ll}
f(t) & (a < t < d) \\
g(t) & (c = \gamma < t < \beta)
\end{array} \right.
\]

によって \(C^\infty \) 級写像 \(h : S^1 \to M \) を定める。\(h \) は局所的に微分同型になるので、像 \(h(S^1) \) は \(M \) の閉集合になる。他方、\(S^1 \) はコンパクトだから \(h(S^1) \) はコンパクトになり、\(M \) において \(h(S^1) \) は閉集合になる。\(M \) は連結だから \(h(S^1) = M \) が成り立つ。さらに、\(h \) の定め方から \(h \) は \(S^1 \) 全体で全単射になるので、\(h \) は微分同型になる。

定理 1.2.9 の証明 で \(M \) を連結な 1 次元多様体とする。\(M \) の任意の弧長によるパラメータ付けを定義域が極大になるように弧長によるパラメータ付け \(f : I \to M \) に拡張することができる。
1.2. 正則値の逆像

M が S^1 に微分同型ではないと仮定する。f が全射になることを示す。これがわ
かられば $f : I \to M$ は微分同型になり、すなわち M は区間に微分同型になる。定義
1.2.11 より $f(I)$ は M の開集合になる。$f(I)$ が M に一致しないと仮定する。する
と、$f(I)$ の極限点であり $M - f(I)$ の点である x が存在する。x の近傍の弧長によ
るバラメータ付けをとると M が S^1 と微分同型ではないことから補題 1.2.13 よ
り f を区間の片方にだけ拡張することができる。これは $f : I \to M$ の極大性に矛
盾する。したがって、f は全射になり証明は完結する。

例 1.2.14 H^m 自身境界付き m 次元多様体になる。その内部 $H^m - \partial H^m$ の \mathbb{R}^m と
微分同型になることが次のようにしてわかる。

$$f : \mathbb{R}^m \to H^m - \partial H^m ; (x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_{m-1}, e^{x_m})$$

は C^∞ 級写像になり、逆写像

$$f^{-1} : H^m - \partial H^m \to \mathbb{R}^m ; (y_1, \ldots, y_m) \mapsto (y_1, \ldots, y_{m-1}, \log y_m)$$

も C^∞ 級写像になる。したがって、f は微分同型になる。

補題 1.2.15 $g : M \to \mathbb{R}$ を多様体 M 上の C^∞ 級関数とし、$0 \in \mathbb{R}$ を g の正則値と
する。このとき,

$$\{x \in M \mid g(x) \geq 0\}$$

は境界 $g^{-1}(0)$ を持つ多様体になる。

証明 $\dim M = m$ とおいておく。問題の集合の部分集合を

$$N_+ = \{x \in M \mid g(x) > 0\}$$

によって定めると、問題の集合は $N_+ \cup g^{-1}(0)$ に一致する。さらに、N_+ は M
の開集合になるので m 次元多様体になる。よって、N_+ の各点は \mathbb{R}^m の開集合と微
分同型になり、例 1.2.14 より H^m の開集合に微分同型になる。

次に $x \in g^{-1}(0)$ について考える。0 は g の正則値だから、$dg_x : T_xM \to T_0\mathbb{R} = \mathbb{R}$
は全射になる。

$$V = \{v \in T_xM \mid dg_x(v) = 0\}$$

とおくと、V は T_xM の次元 $m - 1$ の部分ベクトル空間になる。

$M \subset \mathbb{R}^k$ としておく。$V \subset T_xM \subset \mathbb{R}^k$ に注意しておく。V から \mathbb{R}^{m-1} への線形
同型写像を \mathbb{R}^k に拡張した線形写像を $L : \mathbb{R}^k \to \mathbb{R}^{m-1}$ とする。

$$F : M \to \mathbb{R}^m ; p \mapsto (L(p), g(p))$$

によって、C^∞ 級写像 F を定める。F の微分 dF_x は

$$dF_x(v) = (L(v), dg_x(v)) \ (v \in T_xM)$$
で与えられる。L の定方より、dF_x は線形同型写像になる。したがって、定理 1.1.12 より、M 内の x の開近傍 U と R^m 内の $(L(x), 0)$ の開近傍 V が存在し、F は U から V への微分同型写像になる。F の定方より、F は $(N_+ \cup g^{-1}(0)) \cap U$ を $H^m \cap V$ に微分同型に写すので、$N_+ \cup g^{-1}(0)$ は境界付き $m - 1$ 次元多様体になる。

例 1.2.16 R^m 上の C^∞ 級関数 g を

$$g(x_1, \ldots, x_m) = 1 - \sum_{i=1}^{m} x_i^2$$

によって定めると、例 1.2.5 と同様の計算より、R^m の原点のみが g の臨界点になるので、1 のみが g の臨界値になる。補題 1.2.15 より、

$$D^m = \{ x \in R^m \mid g(x) \geq 0 \}$$

は境界付き多様体になり、境界は $g^{-1}(0) = S^{m-1}$ になる。

補題 1.2.17 $f : X \to N$ を境界付き m 次元多様体 X から n 次元多様体 N への C^∞ 級写像とする。$m > n$ と仮定する。$y \in N$ が f と $f|_{\partial X}$ の両方に関する正則値ならば、$f^{-1}(y)$ は境界付き $(m - n)$ 次元多様体になる。さらに $\partial(f^{-1}(y)) = f^{-1}(y) \cap \partial X$ が成り立つ。

証明 証明すべき性質は、局所座標近傍で考えれば十分なので、$f : H^m \to R^n$ であって、正則値 $y \in R^n$ について考える。$\bar{x} \in f^{-1}(y)$ をとる。

x が X の内部に含まれるときは、\bar{x} の近傍では $f^{-1}(y)$ は $(m - n)$ 次元多様体になる。

次に \bar{x} が X の境界に含まれる場合を考える。$f : X \to R^n$ は C^∞ 級写像なので、R^m 内の \bar{x} の開近傍 U と C^∞ 級写像 $g : U \to R^n$ が存在し、$g|_{\bar{x} \cap H^m} = f|_{\bar{x} \cap H^m}$ となる。y は f の正則値だから、必要なら U を小さくすることにより、y はい臨界点を持たないとしてよい。よって、$g^{-1}(y)$ は $(m - n)$ 次元多様体になる。

R^m の第 m 成分への射影を $g^{-1}(y)$ に制限したものを $\pi : g^{-1}(y) \to R$ で表す。

$$\pi(x_1, \ldots, x_m) = x_m \quad ((x_1, \ldots, x_m) \in g^{-1}(y)).$$

$0 \in R$ がこの写像の正則値であることを示す。補題 1.2.7 より、$x \in g^{-1}(y) \cap \pi^{-1}(0)$ における $g^{-1}(y)$ の接ベクトル空間は

$$dg_x = df_x : R^m \to R^n$$

の核に一致する。y は $f|_{\partial H^m}$ の正則値にもなっているという仮定より、

$$\dim \ker(df_x|_{\partial H^m}) = (m - 1) - n.$$
1.2. 正則値の逆像

これより，
\[
\ker df_x \neq \ker(df_x|_{\partial H^m}) = \ker df_x \cap \mathbb{R}^{m-1} \times \{0\}
\]
となり、特に、\(\ker df_x \) は \(\mathbb{R}^{m-1} \times \{0\} \) に含まれることはない。よって，
\[
d\pi_x : T_x(g^{-1}(y)) \to \mathbb{R}
\]
は 0 にはならない。つまり、全射になり、\(x \) は \(\pi \) の正則点になる。以上より 0 \(\in \mathbb{R} \) は \(\pi : g^{-1}(y) \to \mathbb{R} \) の正則値になる。補題 1.2.15 より，
\[
g^{-1}(y) \cap \partial H^m = \{ x \in g^{-1}(y) | \pi(x) \geq 0 \}
\]
は境界付き多様体になり、境界は
\[
\pi^{-1}(0) = g^{-1}(y) \cap \partial H^m
\]
に一致する。

補題 1.2.18 \(X \) を境界付きコンパクト多様体とする。このとき、\(C^\infty \) 級写像 \(f : X \to \partial X \) で \(f|_{\partial X} = 1_{\partial X} \) を満たすものは存在しない。

証明 \(f|_{\partial X} = 1_{\partial X} \) を満たす \(C^\infty \) 級写像 \(f : X \to \partial X \) が存在すると仮定する。\(y \in \partial X \) を \(f \) の正則値とする。\(f|_{\partial X} = 1_{\partial X} \) より、\(y \) は \(f|_{\partial X} \) の正則値にもなる。補題 1.2.17 より、\(f^{-1}(y) \) は境界付き 1 次元コンパクト多様体になる。さらに
\[
\partial(f^{-1}(y)) = \partial X \cap f^{-1}(y) = \{ y \}
\]
となり、\(f^{-1}(y) \) の境界は一点 \(y \) のみになる。他方、定理 1.2.9 より境界付き 1 次元コンパクト多様体は \(S^1 \) と閉区間の有限個の合体になる。よって、境界の点の個数は偶数個になるので、これは矛盾する。したがって、このような \(C^\infty \) 級写像 \(f : X \to \partial X \) は存在しない。

補題 1.2.19 任意の \(C^\infty \) 級写像 \(g : D^n \to D^n \) は不動点を持つ。

証明 \(g \) は不動点を持たないと仮定する。\(x \in D^n \) に対して、\(x \) と \(g(x) \) を結ぶ直線と \(S^{n-1} \) の交点で \(g(x) \) よりも \(x \) から近い点を \(f(x) \) として定める。特に \(x \in \partial D^n = S^{n-1} \) のときは \(f(x) = x \) が成り立つ。\(f : D^n \to S^{n-1} = \partial D^n \) が \(C^\infty \) 級であることがわからなければ、補題 1.2.18 に矛盾する。したがって、\(g \) は不動点を持つ。

そこで \(f \) が \(C^\infty \) 級であることを示そう。\(g \) は不動点を持たないという仮定から \(x \) と \(g(x) \) を結ぶ直線は必ず定まり
\[
x + t \frac{x - g(x)}{|x - g(x)|} \quad (t \in \mathbb{R})
\]
となる。

\[u = \frac{x - g(x)}{|x - g(x)|} \]

とおく。上の直線と \(S^{n-1} \) との交点での \(t \) は

\[1 = |x + tu|^2 = |x|^2 + 2\langle x, u \rangle t + t^2 \]

を満たす。

\[t^2 + 2\langle x, u \rangle t + |x|^2 - 1 = 0 \]

\[t = -\langle x, u \rangle \pm \sqrt{\langle x, u \rangle^2 - |x|^2 + 1} \]

\(f \) の定め方より、

\[f(x) = x + \left(-\langle x, u \rangle + \sqrt{\langle x, u \rangle^2 - |x|^2 + 1} \right) u \]

となり、\(f \) は \(C^\infty \) 級写像になる。

補題 1.2.19 では \(D^n \) の \(C^\infty \) 級写像が不動点を持つことを示した。さらに、連続写像でも不動点を持つことがわかる。その証明の準備として、連続写像が \(C^\infty \) 級写像で近似できることを示しておく。

定理 1.2.20 (Dini) \(X \) をコンパクト距離空間とする。\(X \) 上定義された単調増加実数値連続関数列 \((f_n) \) が \(X \) 上定義された連続関数 \(g \) に各点収束するとき、\((f_n) \) は \(g \) に一致収束する。

証明 任意に \(\epsilon > 0 \) をとり。各 \(x \in X \) に対してある自然数 \(n(x) \) が存在し

\[m \geq n(x) \Rightarrow g(x) - f_m(x) \leq \frac{\epsilon}{3} \]

が成り立つ。\(g \) と \(f_n(x) \) は連続だから、\(x \) の開近傍 \(U(x) \) と \(V(x) \) が存在し

\[x' \in U(x) \Rightarrow |g(x) - g(x')| \leq \frac{\epsilon}{3} \]
1.2. 正則値の逆像

と

\[x' \in V(x) \Rightarrow |f_{n(x)}(x) - f_{n(x)}(x')| \leq \frac{\varepsilon}{3} \]

が成り立つ。そこで、\(W(x) = U(x) \cap V(x) \) とおくと \(W(x) \) は \(x \) の開近傍になり、

\[x' \in W(x) \Rightarrow |g(x) - g(x')| \leq \frac{\varepsilon}{3}, \quad |f_{n(x)}(x) - f_{n(x)}(x')| \leq \frac{\varepsilon}{3} \]

を得る。以上より \(x' \in W(x) \) のとき

\[g(x') - f_{n(x)}(x') \leq |g(x') - g(x)| + g(x) - f_{n(x)}(x) + |f_{n(x)}(x) - f_{n(x)}(x')| \leq \varepsilon. \]

\(\{W(x) \mid x \in X\} \) は \(X \) の開被覆になり、\(X \) はコンパクトだから有限個の \(x_1, \ldots, x_k \) が存在し \(\{W(x_i) \mid 1 \leq i \leq k\} \) は \(X \) の開被覆になる。

\[n_0 = \max\{n(x_i) \mid 1 \leq i \leq k\} \]

とおくと、\(n \geq n_0 \) のとき、任意の \(x \in X \) に対してある \(x_i \) が存在し \(x \in W(x_i) \) となり

\[g(x) - f_{n(x)}(x) \leq g(x) - f_{n_0(x)}(x) \leq g(x) - f_{n(x_i)}(x) \leq \varepsilon. \]

したがって、\((f_n) \) は \(g \) に一様収束する。

補題 1.2.21 閉区間 \([0,1]\) 上 \(\sqrt{t} \) に単調増加一様収束する実多項式の列 \((u_n) \) が存在する。

証明 \(u_1 = 0 \) とし、\(u_n \) を次式で帰納的に定める。

\[u_{n+1}(t) = u_n(t) + \frac{1}{2}(t - u_n(t)^2) \quad (n \geq 1). \]

定め方より \(u_n(t) \) は \(t \) の実多項式になる。任意の \(n \geq 1 \) について \(u_n(t) \leq \sqrt{t} \) と \(u_n \leq u_{n+1} \) が成り立つことを \(n \) に関する帰納法で証明する。\(n = 1 \) のとき

\[u_1(t) = 0 \leq \sqrt{t} \]

となり、

\[u_2(t) = u_1(t) + \frac{1}{2}(t - u_1(t)^2) \geq u_1(t) \]

を得る。そこで、\(n \) のときに \(u_n(t) \leq \sqrt{t} \) と \(u_n \leq u_{n+1} \) が成り立つと仮定して、\(n+1 \) でも同じ不等式が成り立つことを示す。

\[
\sqrt{t} - u_{n+1}(t) = \sqrt{t} - \left\{ u_n(t) + \frac{1}{2}(t - u_n(t)^2) \right\} \\
= \sqrt{t} - u_n(t) - \frac{1}{2}(\sqrt{t} - u_n(t))(\sqrt{t} + u_n(t)) \\
= (\sqrt{t} - u_n(t)) \left\{ 1 - \frac{1}{2}(\sqrt{t} + u_n(t)) \right\} \quad (*)
\]
なり、\(\sqrt{t} - u_n(t) \geq 0 \) より

\[
\frac{1}{2}(\sqrt{t} + u_n(t)) \leq \frac{1}{2}(\sqrt{t} + \sqrt{t}) = \sqrt{t} \leq 1.
\]

これらの不等式と (*) から \(\sqrt{t} - u_{n+1}(t) \geq 0 \) が成り立つ。さらに、

\[
u_{n+2}(t) = u_{n+1}(t) + \frac{1}{2}(t - u_{n+1}(t)^2) \geq u_{n+1}(t).
\]

以上で任意の \(n \geq 1 \) について \(u_n(t) \leq \sqrt{t} \) と \(u_n \leq u_{n+1} \) が成り立つことがわかった。
これより各点 \(t \in [0, 1] \) において \((u_n(t)) \) は単調増加で、\(u_n(t) \leq \sqrt{t} \) だから上に有界になっている。よって \(u_n(t) \) は収束する。その極限を \(v(t) \) で表す。\(u_n(t) \) を定めた漸化式の両辺の \(n \to \infty \) による極限をとると

\[
v(t) = v(t) + \frac{1}{2}(t - v(t)^2)
\]

が成り立つ。したがって、\(v(t)^2 = t \) となり \(v(t) \geq 0 \) だから \(v(t) = \sqrt{t} \) が成り立つ。
\(u_n(t) \) は単調増加で \(\sqrt{t} \) に各点収束するので、定理 1.2.20 より \(u_n(t) \) は \(\sqrt{t} \) に一致収束する。

定理 1.2.22 (Stone-Weierstrass) \(X \) をコンパクト距離空間とする。\(X \) 上の実数値連続関数全体の成すベクトル空間 \(C(X) \) に

\[
\|f\| = \max\{|f(x)| \mid x \in X\}
\]

によって \(C(X) \) 上のノルム \(\|\| \) を定める。\(C(X) \) の部分ベクトル空間 \(A \) が積に関して閉じていて、定数関数をすべて含み、異なる任意の二点 \(x, y \in X \) に対してある \(f \in A \) が存在し \(f(x) \neq f(y) \) が成り立つと仮定する。このとき \(A \) は \(C(X) \) 内で稠密になる。

証明 いくつかの段階に分けて定理を証明する。

(1) まず \(f \in A \) に対して、\(|f| \) は \(A \) の \(C(X) \) 内の閉包 \(A \) に含まれることを示す。補題 1.2.21 の実多項式 \(u_n(t) \) を利用して \(u_n(f^2/\|f\|^2) \) について考える。\(A \) が積について閉じていることから \(f^2 \in A \) であり、さらに \(A \) は定数関数を含むので \(u_n(f^2/\|f\|^2) \in A \) が成り立つ。\(u_n(t) \) は \(\sqrt{t} \) に一致収束するので、任意の \(\epsilon > 0 \) に対してある \(n_0 \) が存在し

\[
n \geq n_0 \Rightarrow \sqrt{t} - u_n(t) < \epsilon / \|f\|.
\]

\(0 \leq f^2/\|f\|^2 \leq 1 \) であり、\(\sqrt{f^2/\|f\|^2} = |f|/\|f\| \) だから、

\[
n \geq n_0 \Rightarrow |f|/\|f\| - u_n(f^2/\|f\|^2) < \epsilon / \|f\|.
\]
これより、

\[n \geq n_0 \Rightarrow |f| - \|f\| u_n(f^2/\|f\|^2) < \epsilon \]

となり、\(\|f\| u_n(f^2/\|f\|^2) \in A \) は \(|f| \) に一致収束し、\(|f| \in \overline{A} \) を成り立つ。

(2) \(\overline{A} \) の元 \(f, g \) に対して \(\min\{f, g\} \) と \(\max\{f, g\} \) は \(\overline{A} \) に属することを示す。\(A \) は \(C(X) \) の部分ベクトル空間だから、\(\overline{A} \) は \(C(X) \) の部分ベクトル空間になる。さらに \(A \) が積について閉じていることから、\(\overline{A} \) も積について閉じていることがわかる。よって、(1) を \(\overline{A} \) に対応できる。\(f - g \in \overline{A} \) だから、\(|f - g| \in \overline{A} \) が成り立つ。よって、

\[
\min\{f, g\} = \frac{1}{2}(f + g - |f - g|), \quad \max\{f, g\} = \frac{1}{2}(f + g + |f - g|)
\]

は \(\overline{A} \) に含まれる。

(3) 任意の異なる点 \(x, y \in X \) と任意の実数 \(\alpha, \beta \) に対してある \(f \in A \) が存在し、

\(f(x) = \alpha, \ f(y) = \beta \) が成り立つことを示す。定理の仮定よりある \(g \in A \) が存在し \(g(x) \neq g(y) \) が成り立つ。そこで

\[f = \alpha + \frac{\beta - \alpha}{g(y) - g(x)}(g - g(x)) \]

とおくと、\(A \) は定数関数を含むので \(f \in A \) となり、\(f(x) = \alpha, \ f(y) = \beta \) が成り立つ。

(4) 任意の \(f \in C(X) \)、任意の点 \(x \in X \) と任意の \(\epsilon > 0 \) に対して、ある \(g \in \overline{A} \) が存在して \(g(x) = f(x) \) と

\[g(y) \leq f(y) + \epsilon \quad (y \in X) \]

が成り立つことを示す。各 \(z \in X \) に対して \(h_z \in A \) を次のように定める。\(z = x \) のときは \(h_x = f(x) \in A \) (定数関数) とし、\(z \neq x \) のときは(3) より \(h_z(x) = f(x), \ h_z(z) = f(z) \) を満たすように \(h_z \in A \) をとることができる。各 \(h_z \) は \(z \) において連続だから \(z \) のある開近傍 \(U(z) \) が存在し、

\[y \in U(z) \Rightarrow h_z(y) \leq h_z(z) + \frac{\epsilon}{2} = f(z) + \frac{\epsilon}{2} \]

さらに \(f \) も \(z \) において連続だから \(z \) のある開近傍 \(V(z) \) が存在し、

\[y \in V(z) \Rightarrow f(z) - \frac{\epsilon}{2} \leq f(y) \]

そこで \(W(z) = U(z) \cap V(z) \) とおくと、\(W(z) \) は \(z \) の開近傍になり

\[y \in W(z) \Rightarrow h_z(y) \leq f(z) + \frac{\epsilon}{2} \leq f(y) + \epsilon \]

が成り立つ。\(\{W(z) \mid z \in X \} \) は \(X \) の開被覆になり、\(X \) はコンパクトだから有限個の \(z_1, \ldots, z_k \) が存在し \(\{W(z_i) \mid 1 \leq i \leq k \} \) は \(X \) の開被覆になる。

\[g = \min\{h_{z_i} \mid 1 \leq i \leq k \} \]
とおくと、(2) を繰り返し使うことにより $g \in \bar{A}$ となることがわかる。この g が条件を満たしていることが確かめておく。各 h_{z_i} は $h_{z_i}(x) = f(x)$ を満たすので、$g(x) = f(x)$ が成り立つ。任意の $y \in X$ に対してある $1 \leq i \leq k$ が存在して $y \in W(z_i)$ となるので、

$$g(y) \leq h_{z_i}(y) \leq f(y) + \epsilon$$

が成り立ち、g は条件を満たしていることがわかる。

(5) $\bar{A} = C(X)$ を示し、定理の証明が完了する。任意の $f \in C(X)$ と任意の $\epsilon > 0$ をとる。(4) より、各 $x \in X$ に対してある $g_x \in \bar{A}$ が存在して $g_x(x) = f(x)$ と

$$g_x(y) \leq f(y) + \epsilon \quad (y \in X)$$

が成り立つ。f と g_x は連続だから、x の開近傍 $U(x)$ と $V(x)$ が存在し

$$y \in U(x) \Rightarrow |f(x) - f(y)| \leq \frac{\epsilon}{2}$$

と

$$y \in V(x) \Rightarrow |g_x(x) - g_x(y)| \leq \frac{\epsilon}{2}$$

が成り立つ。そこで、$W(x) = U(x) \cap V(x)$ とおくと $W(x)$ は x の開近傍になり、$y \in W(x)$ ならば

$$|f(y) - g_x(y)| \leq |f(y) - f(x)| + |g_x(x) - g_x(y)| \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

を得る。すなわち、

$$y \in W(x) \Rightarrow f(y) - \epsilon \leq g_x(y)$$

が成り立つ。$\{W(x) \mid x \in X\}$ は X の開被覆になり、X はコンパクトだから有限個の x_1, \ldots, x_k が存在し $\{W(x_i) \mid 1 \leq i \leq k\}$ は X の開被覆になる。

$$\phi = \max\{g_{x_i} \mid 1 \leq i \leq k\}$$

とおくと、(2) を繰り返し使うことにより $\phi \in \bar{A}$ となることがわかる。任意の $y \in X$ に対してある $W(x_i)$ が存在し $y \in W(x_i)$ が成り立つので

$$f(y) - \epsilon \leq g_{x_i}(y) \leq \phi(y).$$

よって

$$f(y) - \epsilon \leq \phi(y) \quad (y \in X)$$

が成り立つ。さらにどの x_i についても

$$g_{x_i}(y) \leq f(y) + \epsilon \quad (y \in X)$$

が成り立つので

$$\phi(y) \leq f(y) + \epsilon \quad (y \in X)$$
1.2. 正則値の逆像

が成り立つ。結局

\[f(y) - \epsilon \leq \phi(y) \leq f(y) + \epsilon \quad (y \in X) \]

となり、\(\| f - \phi \| \leq \epsilon \) を得る。したがって、\(f \in \bar{A} \) となり \(\bar{A} = C(X) \) が成り立つ。

定理 1.2.23 (Brouwer の不動点定理) 任意の連続写像 \(g : D^n \rightarrow D^n \) は不動点を持つ。

証明 \(g \) が不動点を持たないと仮定する。任意の \(x \in D^n \) に対して \(g(x) \neq x \) となり、\(D^n \) はコンパクトだから、

\[\min \{ |g(x) - x| \mid x \in D^n \} = \mu > 0. \]

\(0 < \epsilon < \mu/2 \) と置いておく。Weierstrass の近似定理より、ある多項式写像 \(p_1 : \mathbb{R}^n \rightarrow \mathbb{R}^n \) が存在し,

\[|g(x) - p_1(x)| < \epsilon \quad (x \in D^n) \]

となる。\(p = p_1/(1 + \epsilon) \) とおくと、\(x \in D^n \) に対して

\[|p_1(x)| \leq |g(x)| + \epsilon \leq 1 + \epsilon \]

となるので、\(|p(x)| \leq 1, \) よって \(p(x) \in D^n \)。さらに、

\[|g(x) - p(x)| \leq |g(x) - p_1(x)| + |p_1(x) - p(x)| < \epsilon + |p_1(x)| \left| 1 - \frac{1}{1 + \epsilon} \right| \]

\[\leq \epsilon + (1 + \epsilon) \frac{\epsilon}{1 + \epsilon} \leq 2\epsilon = \mu \]

より、

\[|g(x) - p(x)| < \mu. \]

したがって、

\[|g(x) - x| \leq |g(x) - p(x)| + |p(x) - x| \]

より、

\[|p(x) - x| \geq |g(x) - x| - |g(x) - p(x)| > \mu - \mu = 0. \]

これより、\(p : D^n \rightarrow D^n \) は不動点を持たないことになり、補題 1.2.19 に矛盾する。したがって、\(g \) は不動点を持たない。
1.3 Sardの定理の証明

定理 1.3.1 (Sard) \(n \geq 0, \quad p \geq 1 \) のとしておく。\(U \) を \(\mathbb{R}^n \) の開集合とし、\(f : U \to \mathbb{R}^p \) を \(C^\infty \) 級写像とする。

\[
C = \{ x \in U | \text{rank} df_x < p \}
\]

とおくと、\(f(C) \) の Lebesgue 測度は 0 になる。

証明 以下では、次の三段階に分けて主張を証明する。

(1) \(f(C - C_1) \) の Lebesgue 測度は 0 である。

(2) \(f(C_i - C_{i+1}) \) の Lebesgue 測度は 0 である。

(3) 十分大きな \(k \) に対して \(f(C_k) \) の Lebesgue 測度は 0 である。

以上が証明できれば、\(f(C) \) の Lebesgue 測度は 0 になる。

(1) \(p = 1 \) の場合は、

\[
C = \{ x \in U | \text{rank} df_x < 1 \} = \{ x \in U | df_x = 0 \} = C_1.
\]

\(C - C_1 = \emptyset \) となり、\(f(C - C_1) = \emptyset \) の Lebesgue 測度は 0 になる。

\(p \geq 2 \) の場合を考える。\(\bar{x} \in C - C_1 \) をとる。\(\bar{x} \) において、\(f \) のある方向の偏微分は 0 にならないので、座標の順序を変えることにより、\(\partial f_1/\partial x_1(\bar{x}) \neq 0 \) としてよい。

\[
h : U \to \mathbb{R}^n ; x \mapsto (f_1(x), x_2, \ldots, x_n)
\]

によって \(C^\infty \) 級写像 \(h \) を定める。

\[
\det dh_{\bar{x}} = \det \begin{bmatrix}
\frac{\partial h_1}{\partial x_1}(\bar{x}) & \frac{\partial h_1}{\partial x_2}(\bar{x}) & \cdots & \frac{\partial h_1}{\partial x_n}(\bar{x}) \\
0 & 1_{n-1}
\end{bmatrix}
\]

\(= \frac{\partial f_1}{\partial x_1}(\bar{x}) \neq 0 \)
1.3. Sard の定理の証明

だから、dh_x は線形同型になり、$U \subset \mathbb{R}^n$ 内の \bar{x} のある開近傍 V と \mathbb{R}^n の開集合 V' が存在し、$h : V \to V'$ は微分同型になる。

$$g = f \circ h^{-1} : V' \to \mathbb{R}^p$$

とおく。g の臨界点の集合を

$$C' = \{ x \in V' \mid \text{rank} dg_x < p \}$$

すると、h は微分同型だから、$C' = h(V \cap C)_{\text{。}}$ よって、$g(C') = f(V \cap C)_{\text{。}}$

$(t, x_2, \ldots, x_n) \in V'$ に対して、

$$f_1 \circ h^{-1}(t, x_2, \ldots, x_n) = t$$

となるので、

$$g(t, x_2, \ldots, x_n) \in \{ t \} \times \mathbb{R}^{p-1} \quad ((t, x_2, \ldots, x_n) \in V').$$

これより、g は C^∞ 級写像

$$g' : \{ \{ t \} \times \mathbb{R}^n \cap V' \} \to \{ t \} \times \mathbb{R}^{p-1}$$

を誘導する。g の微分は

$$dg = \begin{bmatrix}
1 & 0 \\
\frac{\partial g_1}{\partial t} & \frac{\partial g_1}{\partial x_1}
\end{bmatrix}$$

となるので、

$$\{(t, x_2, \ldots, x_n) \in V' \mid (t, x_2, \ldots, x_n) \text{ は } g \text{ の臨界点 } \}$$

$$= \{(t, x_2, \ldots, x_n) \in V' \mid (t, x_2, \ldots, x_n) \text{ は } g' \text{ の臨界点 } \}$$

が成り立つ。帰納法の仮定より、g' の臨界点全体の像の $p-1$ 次元 Lebesgue 測度は 0 になるので、$g(C') \cap \{ \{ t \} \times \mathbb{R}^{p-1} \}$ の $p-1$ 次元 Lebesgue 測度は 0 になる。他方、C' は閉集合だから、コンパクト集合の可算個の合併になり、$g(C')$ もコンパクト集合の可算個の合併になる。特に、Lebesgue 可測になる。したがって、Fubini の定理から、$g(C') = f(V \cap C)$ の p 次元 Lebesgue 測度は 0 になる。

以上より、各 $\bar{x} \in C \subset C_1$ に対して開近傍 $V_\bar{x}$ が存在し、$f(V_\bar{x} \cap C)$ の p 次元 Lebesgue 測度は 0 になる。$\{V_\bar{x} \}_{\bar{x} \in C \subset C_1}$ は $C \subset C_1$ の開被覆になるので、可算個の開被覆 $\{V_i\}$ をとることができ、

$$f(C \subset C_1) \subset \cup V_i$$

の p 次元 Lebesgue 測度も 0 になる。
(2) \(\bar{x} \in C_k - C_{k+1} \) をとる。\(\bar{x} \)において、\(f \)のある\((k+1)\)階偏微分 \(\partial^{k+1} f_r / \partial x_{s_1} \ldots \partial x_{s_{k+1}}(\bar{x}) \)
は0にならないので、
\[
 w(x) = \partial^k f_r / \partial x_{s_2} \ldots \partial x_{s_{k+1}} \quad (k \text{ 階偏分})
\]
とおくと、\(\partial w / \partial x_{s_1}(\bar{x}) \neq 0 \)。座標の順序を変えることにより、\(\partial w / \partial x_1(\bar{x}) \neq 0 \)としてよい。

\[
h : U \to \mathbb{R}^n ; x \mapsto (w(x), x_2, \ldots, x_n)
\]
によって \(C^\infty \) 級写像 \(h \)を定める。（1）と同様、\(dh_2 \)は線形同型になり、\(U \subset \mathbb{R}^n \)内の\(\bar{x} \)のある開近傍\(V \)と\(\mathbb{R}^n \)の開集合\(V' \)が存在し、\(h : V \to V' \)は微分同型になる。

\[
g = f \circ h^{-1} : V' \to \mathbb{R}^p
\]
とおく。\(h \)の定め方より、\(h(C_k \cap V) \subset \{0\} \times \mathbb{R}^{n-1} \cap V' \)。\(g \)の\(\{0\} \times \mathbb{R}^{n-1} \cap V' \)への制限を

\[
\tilde{g} : \{0\} \times \mathbb{R}^{n-1} \cap V' \to \mathbb{R}^p
\]
とおくと、\(\tilde{g} \)は\(C^\infty \)級写像になり、帰納法の仮定より、\(\tilde{g} \)の臨界点全体の像の\(p \)次元 Lebesgue 測度は0になる。\(h \)は微分同型だから、\(h(C_k \cap V) \)の各点において、\(\tilde{g} \)
の微分は0になり、

\[
\tilde{g}h(C_k \cap V) = f(C_k \cap V)
\]
の\(p \)次元 Lebesgue 測度は0になる。

以上より、各 \(\bar{x} \in C_k - C_{k+1} \)に対して開近傍\(V_2 \)が存在し、\(f(V_2 \cap C) \)の\(p \)次元 Lebesgue 測度は0になる。\(\{V_2 \}_{\bar{x} \in C_k - C_{k+1}} \)は\(C_k - C_{k+1} \)の開被覆になるので、可算個の開被覆 \(\{V_i\} \)をとることができ、

\[
f(C_k - C_{k+1}) \subset \bigcup_i f(V_i \cap C)
\]
の\(p \)次元 Lebesgue 測度も0になる。

(3) \(k > n/p - 1 \)を満たす自然数 \(k \)について、\(f(C_k) \)の\(p \)次元 Lebesgue 測度が
0になることを示す。

一辺の長さが\(\delta \)の\(n \)次元立方体 \(I^n \subset U \)をとる。\(C_k \)内の点では、\(f \)の任意の\(k \)階以下の偏微分が0になるので、\(I^n \)がコンパクトであることと Taylor の定理を使うと、ある定数 \(c > 0 \)が存在し

\[
f(x + h) = f(x) + R(x, h), \quad |R(x, h)| \leq c|h|^{k+1} \quad (x \in C_k \cap I^n, \ x + h \in I^n)
\]
が成り立つことがわかる。\(I^n \)を一辺の長さ \(\delta/r \)の\(r^n \)個の\(n \)次元立方体に分割する。
その一つ \(I_1 \)に \(C_k \)の元 \(x \)が入っているとする。このとき、

\[
I_1 \subset \{ x + h \mid |h| \leq \sqrt{n} \delta / r \}.
\]
1.3. Sard の定理の証明

さらに、$|h| \leq \sqrt{n} \delta / r$ となる h に対して

$$|f(x+h) - f(x)| = |R(x, h)| \leq c|h|^{k+1} \leq c(\sqrt{n}\delta)^{k+1}/r^{k+1}.$$

よって、$f(I_1)$ は辺の長さ $2c(\sqrt{n}\delta)^{k+1}/r^{k+1}$ の p 次元立方体に含まれる。その p 次元立方体の p 次元 Lebesgue 混度は $(2c(\sqrt{n}\delta)^{k+1}/r^{k+1})^p$ となる。したがって、$f(C_k \cap I^n)$ の p 次元 Lebesgue 混度は

$$r^n(2c(\sqrt{n}\delta)^{k+1}/r^{k+1})^p = (2c)^p(\sqrt{n}\delta)^{p(k+1)}r^{n-(k+1)p}.$$

で上から評価される。k は $k > n/p - 1$ を満たすようとっているので、$n - (k+1)p < 0$。よって、$r \to \infty$ すると、$f(C_k \cap I^n)$ の p 次元 Lebesgue 混度はいくらでも小さい正の数で上から評価されることになり、$f(C_k \cap I^n)$ の p 次元 Lebesgue 混度は 0 になる。

C_k は U 内の加算個の n 次元立方体で被覆されるので、$f(C_k)$ の p 次元 Lebesgue 混度も 0 になる。
第2章 多様体のトポロジー

2.1 法2の写像度

定義 2.1.1 部分集合 $X \subset \mathbb{R}^k$ と $Y \subset \mathbb{R}^l$ をとる。二つの C^∞ 級写像 $f, g : X \to Y$ に対して、次の条件を満たす C^∞ 級写像 $F : X \times [0, 1] \to Y$ が存在するとき、$f \sim g$ と書き、f と g は滑らかにホモトピックであるという。

$$F(x, 0) = f(x), \quad F(x, 1) = g(x) \quad (x \in X).$$

ただし、$X \times [0, 1] \subset \mathbb{R}^{k+1}$ とみなす。

補題 2.1.2 部分集合 $X \subset \mathbb{R}^k$ と $Y \subset \mathbb{R}^l$ をとる。X から Y への C^∞ 級写像全体の集合の中の滑らかにホモトピックという関係は同値関係になる。

証明 C^∞ 級写像 $f : X \to Y$ に対して

$$F(x, t) = f(x) \quad ((x, t) \in X \times [0, 1])$$

によって写像 $F : X \times [0, 1] \to Y$ を定めると、F によって $f \sim f$ となる。

C^∞ 級写像 $f, g : X \to Y$ が $f \sim g$ となるとき、

$$F(x, 0) = f(x), \quad F(x, 1) = g(x) \quad (x \in X)$$

を満たす C^∞ 級写像 $F : X \times [0, 1] \to Y$ が存在する。そこで、

$$G(x, t) = F(x, 1 - t) \quad ((x, t) \in X \times [0, 1])$$

によって C^∞ 級写像 $G : X \times [0, 1] \to Y$ を定めると、

$$G(x, 0) = F(x, 1) = g(x), \quad G(x, 1) = F(x, 0) = f(x)$$

となり、$g \sim f$。

C^∞ 級写像 $f, g, h : X \to Y$ が $f \sim g$, $g \sim h$ となるとき、

$$F(x, 0) = f(x), \quad F(x, 1) = g(x) \quad (x \in X)$$

$$G(x, 0) = g(x), \quad G(x, 1) = h(x) \quad (x \in X)$$

などである。
2.1. 法2の写像度

を満たす \(C^\infty \) 級写像 \(F, G : X \times [0,1] \to Y \) が存在する。この証明の後で示す補題2.1.3の(3)より、\(C^\infty \) 級関数 \(\phi : [0,1] \to [0,1] \) であって

\[
\phi(t) = 0 \quad (0 \leq t \leq 1/3) \\
\phi(t) = 1 \quad (2/3 \leq t \leq 1)
\]

を満たすものが存在する。このとき、

\[
H(x, t) = \begin{cases}
F(x, \phi(2t)) & (1 \leq t \leq 1/2) \\
G(x, \phi(2t - 1)) & (1/2 \leq t \leq 1)
\end{cases}
\]

とおくと、\(H : X \times [0,1] \to Y \)は\(C^\infty \)級写像になり、

\[
H(x, 0) = f(x), \quad H(x, 1) = h(x) \quad (x \in X).
\]

よって \(f \sim h \)。

以上より、\(\sim \)は同値関係になる。

補題2.1.3

(1) \(R(t) \)を\(t \)に関する有理関数とすると

\[
\lim_{t \to +0} R(t)e^{-1/t} = 0
\]

が成り立つ。

(2) 関数\(a(t) \)を

\[
a(t) = \begin{cases}
0 & (t \leq 0) \\
e^{-1/t} & (t > 0)
\end{cases}
\]

によって定めると、\(a(t) \)は\(C^\infty \)級関数になる。

(3) (2)で定めた\(a(t) \)を使って

\[
\phi(t) = \frac{a(t - \frac{1}{3})}{a(t - \frac{1}{3}) + a(\frac{2}{3} - t)}
\]

によって関数\(\phi(t) \)を定めると、\(\phi(t) \)は

\[
\phi(t) = 0 \quad (t \leq 1/3) \\
0 < \phi(t) < 1 \quad (1/3 < t < 2/3) \\
\phi(t) = 1 \quad (2/3 \leq t)
\]

を満たす \(C^\infty \)級関数になる。
証明 (1) \(t > 0 \) に対して \(s = 1/t \) とおくと

\[
R(t) e^{-1/t} = \frac{R(t)}{e^{1/t}} = \frac{R(1/s)}{e^s}
\]

となる。\(R(1/s) \) は \(s \) に関する有理関数になる。\(P(s)/Q(s) \) を \(R(1/s) \) の既約な表示とし \((P(s), Q(s) \) は \(s \) に関する多項式)、\(P(s), Q(s) \) の次数をそれぞれ \(m, n \) とする。
指数関数の級数展開

\[
e^s = \sum_{k=0}^{\infty} \frac{s^k}{k!}
\]

より、どんな自然数 \(k \) に対しても \(0 < s \) のとき \(e^s > s^k/k! \) が成り立つ。よって、
\(N > \max\{m, n\} \) に対して、

\[
0 \leq \left| \frac{R(1/s)}{e^s} \right| = \frac{|P(s)|}{Q(s)e^s} \leq (N-n)! \frac{|P(s)|}{|Q(s)| s^{N-n}} = (N-n)! \frac{s^m |P(s)/s^m|}{s^n |Q(s)/s^n|}.
\]

ここで

\[
\lim_{s \to +\infty} \frac{s^m |P(s)/s^m|}{s^n |Q(s)/s^n|} = 0
\]

だから,

\[
\lim_{s \to +\infty} \left| \frac{R(1/s)}{e^s} \right| = 0
\]

となって、

\[
\lim_{t \to 0} R(t) e^{-1/t} = 0
\]

がわかる。

(2) \(0 \) 以上のすべての整数 \(n \) に対して正の実数全体で定義された \(t \) に関する有理関数 \(R_n(t) \) が存在して、次の (式 \(n \))

\[
\frac{d^n a}{dt^n} (t) = \begin{cases} 0 & (t \leq 0) \\ R_n(t)e^{-1/t} & (t > 0) \end{cases}
\]

が成り立つことを \(n \) に関する帰納法で証明する。これがならば \(a \) は \(C^\infty \) 級関数になる。

\(R_0(t) = 1 \) とおけば (式 \(0 \)) は \(a \) の定義そのものである。

次に (式 \(n \)) が成り立つと仮定して (式 \(n+1 \)) が成り立つことを証明しよう。まず
\[
\frac{d^n a}{dt^n} \text{ が } t = 0 \text{ で微分可能で微分係数が } 0 \text{ になることを示そう。} \text{ (式 } n \text{) より}
\]

\[
\lim_{t \to 0} \frac{1}{t} \frac{d^n a}{dt^n} (t) = 0
\]

\[
\lim_{t \to 0} \frac{1}{t} \frac{d^n a}{dt^n} (t) = \lim_{t \to 0} \frac{1}{t} R_n(t)e^{-1/t} = 0. \text{ (1) より)}
\]
2.1. 法 2 の写像度

したがって \(\frac{d^n a}{dt^n} \) は 0 で微分可能で微分係数が 0 になる。さらに (式 n) より

\[
\begin{align*}
\frac{d^{n+1} a}{dt^{n+1}}(t) &= \frac{d}{dt} \frac{d^n a}{dt^n}(t) = 0 \quad (t < 0), \\
\frac{d^{n+1} a}{dt^{n+1}}(t) &= \frac{d}{dt} \frac{d^n a}{dt^n}(t) = \left(\frac{d}{dt} R_n(t) + R_n(t) \frac{1}{1^2} \right) e^{-1/t} \quad (t > 0)
\end{align*}
\]

が成り立つので

\[
R_{n+1}(t) = \frac{d}{dt} R_n(t) + R_n(t) \frac{1}{1^2}
\]

とおくと \(R_{n+1}(t) \) 正の実数全体で定義された t に関する有理関数になり (式 n+1) が成り立つ。

（3）1/3 < t のとき \(a(t - \frac{1}{3}) \) > 0 であり、t < 2/3 のとき \(a(\frac{2}{3} - t) \) > 0 だから、
\(\phi(t) \) の定義式の分母はすべての実数 t について

\[
a \left(t - \frac{1}{3} \right) + a \left(\frac{2}{3} - t \right) > 0
\]

を満たす。よって、\(\phi(t) \) は実数全体で定義された \(C^\infty \) 級関数になる。t \leq 1/3 のとき \(a(t - \frac{1}{3}) = 0 \) だから \(\phi(t) = 0 \) になる。1/3 < t < 2/3 のとき

\[
0 < a \left(t - \frac{1}{3} \right) < a \left(t - \frac{1}{3} \right) + a \left(\frac{2}{3} - t \right)
\]

となるので 0 < \(\phi(t) < 1 \) が成り立つ。2/3 \leq t のとき \(a(\frac{2}{3} - t) = 0 \) だから \(\phi(t) = 1 \) になる。

定義 2.1.4 部分集合 \(X \subset \mathbb{R}^k \) と \(Y \subset \mathbb{R}^l \) をとる。二つの微分同型 \(f, g : X \to Y \) に対して、\(f \) と \(g \) が \(C^\infty \) 級写像 \(F : X \times [0, 1] \to Y \) によって滑らかにホモトピックになり、各 \(t \in [0, 1] \) について

\[
X \to Y ; x \mapsto F(x, t)
\]

が微分同型になるとき、\(f \) は \(g \) に滑らかにイソトピックであるという。

補題 2.1.5 \(f, g : M \to N \) を等しい次元を持つ多様体の間の滑らかにホモトピックな \(C^\infty \) 級写像とし、\(M \) は境界がなくコンパクトであると仮定する。\(N \) は境界を持っているとよい。\(f \) と \(g \) の共通の正則値 \(y \in N \) に対して

\[
\# f^{-1}(y) \equiv \# g^{-1}(y) \quad (\text{mod} 2)
\]

が成り立つ。
証明 C^∞ 級写像 $F : M \times [0,1] \to N$ によって、f と g が滑らかにホモトピックになるとする。$M \times [0,1]$ は境界付き多様体になり、その境界は

$$\partial(M \times [0,1]) = M \times \{0\} \cup M \times \{1\}$$

となる。まず、$y \in N$ が F の正則値にもなっている場合を考える。このとき、補題 1.2.17 より、$F^{-1}(y)$ は境界付き 1 次元多様体になり、境界 $\partial F^{-1}(y)$ は

$$F^{-1}(y) \cap (M \times \{0\} \cup M \times \{1\})$$

$$= \{ (x,0) \mid x \in M, F(x,0) = y \} \cup \{ (x,0) \mid x \in M, F(x,1) = y \}$$

$$= \{ (x,0) \mid x \in M, f(x) = y \} \cup \{ (x,0) \mid x \in M, g(x) = y \}$$

$$= f^{-1}(y) \times \{0\} \cup g^{-1}(y) \times \{1\}$$

に一致する。M はコンパクトだから、$F^{-1}(y)$ はコンパクト境界付き 1 次元多様体になる。よって $F^{-1}(y)$ の境界の元の個数は偶数になる。

$$\#f^{-1}(y) + \#g^{-1}(y) \equiv 0 \pmod{2}$$

となり、

$$\#f^{-1}(y) \equiv \#g^{-1}(y) \pmod{2}$$

が成り立つ。

次に y が F の正則値ではない場合を考える。命題 1.1.15 より、y の開近傍 $V_1 \subset N$ が存在し $y' \in V_1$ に対して $\#f^{-1}(y')$ は定数になり、特に $\#f^{-1}(y)$ に一致する。g に関しても同様に、y の開近傍 $V_2 \subset N$ が存在し $y' \in V_1$ に対して $\#g^{-1}(y')$ は定数になり、特に $\#g^{-1}(y)$ に一致する。そこで、F の正則値 $z \in V_1 \cap V_2$ をとると、すでに示したことより、

$$\#f^{-1}(y) = \#f^{-1}(z) \equiv \#g^{-1}(z) = \#g^{-1}(y) \pmod{2}.$$

したがって、

$$\#f^{-1}(y) \equiv \#g^{-1}(y) \pmod{2}$$

が成り立つ。

補題 2.1.6 $y, z \in N$ を連結多様体 N の任意の内点とする。このとき、N の恒等写像と滑らかにイソトピックな微分同型 $h : N \to N$ であって、$h(y) = z$ を満たすものが存在する。ただし、N は境界を持っていてもよい。

証明 まず、$|y| < 1$ となる $y \in \mathbb{R}^n$ に対して、滑らかイソトピー F_t で

$$F_0(x) = x \quad (x \in \mathbb{R}^n)$$

$$F_1(0) = y$$

$$F_t(x) = x \quad (|x| \geq 1)$$
2.1 法 2 の写像度

を満たすものを構成する。補題 2.1.3 の (3) と同様にして、下の条件を満たす C^∞ 級関数 $\phi : \mathbb{R} \to \mathbb{R}$ を構成できる。

$$
\phi(t) = 1 \quad (t \leq |y|) \\
0 < \phi(t) < 1 \quad (|y| < t < 1) \\
\phi(t) = 0 \quad (1 \leq t)
$$

この C^∞ 級関数 ϕ を使った常微分方程式

$$
\frac{dx}{dt} = \phi(|x|)y, \quad x(0) = \bar{x}
$$

の解を $F_t(\bar{x})$ で表すと、$x \mapsto \phi(|x|)y$ の台は原点中心半径 $|y|$ の球体に含まれ、特にコンパクトになる。よって、任意の $\bar{x} \in \mathbb{R}^n$ と任意の $t \in \mathbb{R}$ に対して $F_t(\bar{x})$ は定まる。F_0 は \mathbb{R}^n の恒等写像になり、$|x| \geq 1$ のときは $\phi(|x|) = 0$ となるので、$F_t(x) = x$ となる。ここで

$$
|F_t(0)| \leq |y| \quad (0 \leq t \leq 1)
$$

が成り立つことを示しておく。$0 \leq t \leq 1$ に対して

$$
|F_t(0)| = |F_t(0) - F_0(0)| = \left| \int_0^t \frac{d}{ds}F_s(0)ds \right| = \left| \int_0^t \phi(|F_s(0)|)yds \right| \\
\leq \left| \int_0^t |\phi(|F_s(0)|)y|ds \right| \leq \int_0^t |y|ds = t|y| \leq |y|.
$$

これと $\phi(t)$ の定め方より

$$
\phi(|F_t(0)|) = 1 \quad (0 \leq t \leq 1)
$$

が成り立つ。したがって、

$$
F_t(0) - F_0(0) = \int_0^1 \frac{d}{dt}F_t(0)dt = \int_0^1 \phi(|F_t(0)|)ydt = y
$$

となるので、F_t は望む滑らかなイソトピーになる。

次に一般の連結多様体 N の任意の内点 y, z について考える。N の恒等写像と滑らかにイソトピックな微分同型 $h : N \to N$ であって、$h(x) = x'$ を満たすものが存在するとき、x と x' はイソトピックであるということにする。補題 2.1.2 の証明と同様にして、イソトピーは N の内点の同値関係になることがわかる。さらに上で示したことから、N の内点の各点 x のある開近傍の元は、x とイソトピックになり、各同値類は開集合になる。N は連結だからその内点全体も連結になり、N の内点全体は y とイソトピックな元の全体に一致する。
定理 2.1.7 \(f : M \to N \) を等しい次元を持つ多様体の間の \(C^\infty \) 級写像とし、\(N \) は境界がなくコンパクトであると仮定する。\(N \) は連結であるとし、境界は持っていてもよい。このとき、\(f \) の正則値 \(y, z \) に対して
\[
\#f^{-1}(y) \equiv \#f^{-1}(z) \pmod{2}
\]
が成り立つ。さらに、この法 2 の剰余類は \(f \) に滑らかにホモトピックな \(C^\infty \) 級写像に対して等しくなる。

証明 補題 2.1.6 より、\(N \) の恒等写像と滑らかにイソトピックな微分同型 \(h : N \to N \) であって、\(h(y) = z \) を満たすものが存在する。このとき、\(z \) は \(h \circ f \) の正則値にもなっている。\(f \) と \(h \circ f \) は滑らかにホモトピックになり、補題 2.1.5 より、
\[
\#f^{-1}(z) \equiv \#(h \circ f)^{-1}(z) \pmod{2}
\]
が成り立つ。他方
\[
(h \circ f)^{-1}(z) = f^{-1}(h^{-1}(z)) = f^{-1}(y)
\]
となるので、
\[
\#f^{-1}(y) \equiv \#f^{-1}(z) \pmod{2}
\]
が成り立つ。

次に、\(f, g : M \to N \) が滑らかにホモトピックであると仮定する。Sard の定理より、\(f \) と \(g \) の両方に共通の正則値 \(y \in N \) が存在する。このとき、補題 2.1.5 より、
\[
\#f^{-1}(y) \equiv \#g^{-1}(y) \pmod{2}
\]
となる。

定義 2.1.8 \(f : M \to N \) を等しい次元を持つ多様体の間の \(C^\infty \) 級写像とし、\(M \) は境界がなくコンパクトであると仮定する。\(N \) は連結であるとし、境界は持っていてもよい。このとき、定理 2.1.7 より、\(f \) の正則値 \(y \) に対して法 2 の剰余類 \(\#f^{-1}(y) \pmod{2} \) は \(y \) の選び方に依存しない。この剰余類を \(f \) の法 2 の写像度と呼び、\(\deg_2 f \) で表す。これは \(C^\infty \) 級写像の滑らかにホモトピックな類にのみ依存する。

系 2.1.9 多様体 \(M \) は境界がなくコンパクトであると仮定する。このとき、\(M \) の恒等写像と定値写像は滑らかにホモトピックにはならない。

証明 恒等写像の法 2 の写像度は 1 であり、定値写像の法 2 の写像度は 0 だから、定理 2.1.7 より、両者は滑らかにホモトピックにはならない。

定理 2.1.10 \(f : X \to Y \) を境界付きコンパクト \((n+1)\) 次元多様体 \(X \) から連結 \(n \) 次元多様体 \(Y \) への \(C^\infty \) 級写像とする。このとき、\(\deg_2 (f|_{\partial X} : \partial X \to Y) = 0 \) が成り立つ。
2.2. 向きの付いた多様体

証明 Sard の定理より、$f : X \to Y$ と $f|_{\partial X} : \partial X \to Y$ の両方に共通の正則値 $y \in Y$ が存在する。補題 1.2.17 より、$f^{-1}(y)$ は境界付き 1 次元コンパクト多様体になる。さらに

$$\partial(f^{-1}(y)) = \partial X \cap f^{-1}(y) = (f|_{\partial X})^{-1}(y)$$

となる。定理 1.2.9 より境界付き 1 次元コンパクト多様体は S^1 と閉区間の有限個の合併になる。よって、境界の点の個数は偶数個になるので次の等式を得る。

$$\deg_2(f|_{\partial X} : \partial X \to Y) \equiv \#((f|_{\partial X})^{-1}(y)) \pmod{2}$$

$$\equiv 0 \pmod{2}.$$

2.2 向きの付いた多様体

定義 2.2.1 有限次元実ベクトル空間 V の基底の全体に次の同値関係を導入する。V の基底 (b_1, \ldots, b_n) と (b'_1, \ldots, b'_n) に対して、基底変換 $b'_j = \sum a^j_i b_i$ の定める行列 $[a^j_i]$ の行列式 $\det[a^j_i]$ が正になるとき、二つの基底 (b_1, \ldots, b_n) と (b'_1, \ldots, b'_n) は同値であるという。単位行列の行列式は 1 だから特に正になり、上の基底の関係は対称律を満たすことがわかる。逆行列の行列式は元の行列の行列式の逆数になるので、上の基底の関係は反射律を満たすことがわかる。さらに、行列の積の行列式はそれぞれの行列式の積になるので、上の基底の関係は推移律を満たすことがわかる。これらよりこの基底の関係は同値関係になる。この同値関係の同値類を V の向きと呼ぶ。ベクトル空間の基底を一つとり、その基底に正の行列式を持つ変換行列を作用させて得られる基底と負の行列式を持つ変換行列を作用させて得られる基底を考えることにより、基底の全体は二つの同値類に分割されることがわかる。すなわち、ベクトル空間の向きは二つあることになる。R^n の基底 $(1, 0, \ldots, 0), (0, 1, 0, \ldots, 0), (0, 0, 0, \ldots, 1)$ の定める向きを R^n の標準的な向きと呼ぶ。0 次元ベクトル空間 {0} の向きは、+1 と −1 を考えることにする。

多様体 M の各接ベクトル空間に次の条件を満たす向きが定まっているとき、M を向きの付いた多様体と呼ぶ。M の各点に対して開近傍 U と、U から R^m の開集合への微分同型 h が存在し、各 $x \in U$ に対して、$dh_x : T_x M \to R^m$ は向きを保つ。ここで、R^m の向きは標準的な向きを考えている。向きの存在する多様体を向き付け可能多様体と呼ぶ。0 次元多様体の向きは、各点に +1 または −1 をつけたものとする。

定義 2.2.2 向きの付いた境界付き多様体 M の境界 ∂M に向きを定めるために、まず ∂M で接ベクトルを次に三つに分類する。$x \in \partial M$ をとる。$m = \dim M$ としておく。

(1) $(m - 1)$ 次元部分空間 $T_x(\partial M) \subset T_x M$.

(2) M の内部を向く接ベクトルを内向きベクトルと呼ぶ。
(3) 内向きベクトルの \(-1\) 倍を外向きベクトルと呼ぶ。

\(m \geq 2 \) のとき、\(T_x M \) の基底 \((v_1, \ldots, v_m) \) を \(M \) の正の向きになるようとする。さらに、\(v_2, \ldots, v_m \) が \(\partial M \) に着し、\(v_1 \) が外向きベクトルになるようにする。このとき、
\((v_2, \ldots, v_m) \) が \((m-1) \) 次元多様体 \(\partial M \) の向きを定める。\(M \) の次元が 1 のときは、
\(x \in \partial M \) に対して、\(T_x M \) の正の向きのベクトルが外向きのとき、\(x \) の向きを +1 と
定め、\(T_x M \) の正の向きのベクトルが内向きのとき、\(x \) の向きを -1 と定める。

\[
\text{定義 2.2.3} \ M \text{ と } N \text{ をともに向きの付いた } n \text{ 次元多様体とし、どちらも境界を持たないとする。さらに、} M \text{ はコンパクトであり、} N \text{ は連結であると仮定する。} f \text{ の正則点 } x \in M \text{ に対して、線形同型写像 } df_x : T_x M \to T_{f(x)} N \text{ が向きを保つとき}
\]
\(df_x \) の符号を +1 と定め、\(df_x : T_x M \to T_{f(x)} N \) が向きを逆にするとき \(df_x \) の符号を
-1 と定める。\(df_x \) の符号を \(\text{sign}_{df_x} \) で表す。\(f \) の正則値 \(y \in N \) に対して

\[
\text{deg}(f; y) = \sum_{x \in f^{-1}(y)} \text{sign}_{df_x}
\]

によって \(\text{deg}(f; y) \) を定める。

\(\text{補題 2.2.4} \text{ 定義 2.2.3 と同じ仮定のもとで、} f \text{ の正則値 } y \in N \text{ に } \text{deg}(f; y) \text{ を対応させる関数は、局所定数になる。} \)

\(\text{証明 } f \text{ の正則値 } y \in N \text{ に対して、命題 1.1.15 の証明中に示したように、各}
\]
\(x \in f^{-1}(y) \) の開近傍 \(U_x \) と \(y \) の開近傍 \(V \) が存在し、\(f|_{U_x} : U_x \to V \) は微分同型になり、\(z \in V \) の逆像 \(f^{-1}(z) \) と各 \(U_x \) は一点で交わる。\(f|_{U_x} : U_x \to V \) が微分同型であることから、\(x' \in U_x \) における \(df_{x'} \) の符号は \(df_x \) の符号に一致するので、\(z \in V \) に対して

\[
\text{deg}(f; y) = \sum_{x \in f^{-1}(y)} \text{sign}_{df_x} = \sum_{x' \in f^{-1}(z)} \text{sign}_{df_{x'}} = \text{deg}(f; z)
\]

が成り立ち、局所定数であることがわかる。
定理 2.2.5 定義 2.2.3 と同じ仮定のもとで、\(f \) の正則値 \(y \in N \) に対する \(\deg(f; y) \) は、正則値 \(y \) の選び方に依存しない。さらに、この値は \(f \) に滑らかにホモトピックな \(C^\infty \) 級写像に対して等しくなる。

定理の証明に必要になる補題をいくつか準備しておく。

補題 2.2.6 \(X \) を向きの付いた境界付きコンパクト多様体とし、\(\partial X \) は \(X \) の向きから定まる向きを入れておく。\(N \) を \(\partial X \) と同次元を持つ境界のない向きの付いた連結多様体とする。\(C^\infty \) 級写像 \(F : X \to N \) の制限 \(f = F|_{\partial X} : \partial X \to N \) の正則値 \(y \in N \) に対して、\(\deg(f; y) = 0 \) が成り立つ。

証明 まず \(y \) が \(F \) の正則値にもなっている場合を考える。補題 1.2.17 より、\(F^{-1}(y) \) は境界付き 1 次元多様体になり、

\[
\partial(F^{-1}(y)) = F^{-1}(y) \cap \partial X = f^{-1}(y)
\]

が成り立つ。\(F^{-1}(y) \) は境界付きコンパクト 1 次元多様体になるので、有限個の \(S^1 \) と弧の合体になる。特に弧の両端点の全体が \(\partial(F^{-1}(y)) \) に一致する。一つの弧 \(A \) をとり \(\partial A = \{a\} \cup \{b\} \) とおく。以下で

\[
\text{sign}df_a + \text{sign}df_b = 0
\]

を示す。

\(x \in A \) をとる。\((v_1, \ldots, v_{n+1}) \) を \(T_xX \) の正の向きの基底であって、\(v_1 \) は \(A \) に接しているとする。\((dF_x(v_2), \ldots, dF_x(v_{n+1})) \) が \(T_{F(x)}N \) の正の向きの基底になるとき、\(v_1 \) を \(T_xA \) の正の向きの基底と定めることにより、\(A \) の向きが確定する。各 \(x \in A \) について \(v_1(x) \) を \(T_xA \) の正の向きの基底とし、\(x \) について \(v_1(x) \) が \(C^\infty \) 級になるようにとることができる。このとき、\(A \) の端点の片方で \(v_1(x) \) が外向きならば、他方の端点では内向きになる。そこで、\(a \) で \(v_1(a) \) は内向きであり、\(b \) で \(v_1(b) \) は外向きであるとする。\(T_aX \) の基底 \((v_1(a), v_2, \ldots, v_{n+1}) \) を \(T_xX \) の正の向きにとり、さらに、\(v_2, \ldots, v_{n+1} \) は \(\partial X \) に接するようにすると、\(v_1(a) \) は内向きだから、\(\partial X \) の向きの定め方より、\(T_a(\partial X) \) の負の向きの基底になる。したがって、\(df_a : T_a(\partial X) \to T_{f(a)}N \) の符号は \(-1 \) になる。

\[
\text{sign}df_a = -1.
\]

点 \(b \) では \(v_1(b) \) は外向きなので、同様の考察から

\[
\text{sign}df_b = +1.
\]

これらより、

\[
\text{sign}df_a + \text{sign}df_b = 0
\]

を得る。
\(f^{-1}(y) \) は \(\partial(F^{-1}(y)) \) に一致し、\(F^{-1}(y) \) の弧の両端点の全体だから、二点ずつが一つの弧の両端点として組になって現れ、二端点での \(df \) の符号の和が 0 になるので、

\[
\deg(f; y) = \sum_{x \in f^{-1}(y)} \text{sign} df_x = 0
\]

が成り立つ。

\(f \) の任意の正則値 \(y \in N \) について考える。補題 2.2.4 より、\(y \) のある開近傍 \(V \) が存在し、\(y' \in V \) に対して

\[
\deg(f; y') = \deg(f; y)
\]

となる。Sard の定理より、\(V \) 内に \(F \) の正則値にもなる点 \(z \) が存在し、先に示したことより,

\[
\deg(f; y) = \deg(f; z) = 0
\]

が成り立つ。

補題 2.2.7 \(M \) と \(N \) が定義 2.2.3 と同じ仮定を満たしているとする。\(C^\infty \) 級写像 \(f, g : M \to N \) を滑らかなホモトピー \(F : [0, 1] \times M \to N \) によって滑らかなホモトピーになっていると仮定すると、\(f \) と \(g \) の共通の正則値 \(y \in N \) に対して

\[
\deg(f; y) = \deg(g; y)
\]

が成り立つ。

証明 \([0, 1] \times M \) は境界付き多様体になり、\([0, 1] \) の正の向きの接ベクトル \(v_1 \) と \(M \) の正の向きの接ベクトルの基底 \(v_2, \ldots, v_{n+1} \) を並べて、\((v_1, v_2, \ldots, v_{n+1}) \) を正の向きの基底にすることにより、\([0, 1] \times M \) は向きの付いた多様体になる。\([0, 1] \times M \) の境界は

\[
\partial([0, 1] \times M) = \{0\} \times M \cup \{1\} \times M
\]

になることに注意しておく。このとき、\(\{1\} \times M \) において \(v_1 \) は外向きになるので、\(\{1\} \times M \) の境界としての向きは、もとの \(M \) の向きに一致する。\(\{0\} \times M \) において \(v_1 \) は内向きになるので、\(\{0\} \times M \) の境界としての向きは、もとの \(M \) の向きと逆になる。したがって、

\[
\deg(F|_{\partial([0, 1] \times M)}; y) = \deg(g; y) - \deg(f; y).
\]

他方、補題 2.2.6 より、

\[
\deg(F|_{\partial([0, 1] \times M)}; y) = 0
\]

だから、

\[
\deg(f; y) = \deg(g; y)
\]

が成り立つ。
2.2. 向きの付いた多様体

定理 2.2.5 の証明 $y, z \in N$ を f の正則値とする。補題 2.1.6 より、N の恒等写像と滑らかにイソトピックな微分同型 $h : N \to N$ であって、$h(y) = z$ を満たすものが存在する。このとき、z は $h \circ f$ の正則値にもなっている。f と $h \circ f$ は滑らかにホモトピックになり、補題 2.2.7 より、

$$\deg(h \circ f; z) = \deg(f; z)$$

が成り立つ。また、h は N の恒等写像と滑らかにイソトピックな微分同型だから、N の向きを保存する。

$$(h \circ f)^{-1}(z) = f^{-1}(h^{-1}(z)) = f^{-1}(y)$$

となり、各 $x \in f^{-1}(y)$ について

$$\text{sign}df_x = \text{sign}(h \circ f)_x.$$

よって、

$$\deg(f; y) = \sum_{x \in f^{-1}(y)} \text{sign}df_x = \sum_{x \in (h \circ f)^{-1}(z)} \text{sign}(h \circ f)_x = \deg(h \circ f; z).$$

したがって、

$$\deg(f; y) = \deg(f; z)$$

が成り立つ。

次に $f, g : M \to N$ が滑らかにホモトピックであると仮定する。Sard の定理より、f と g の両方に関する正則値 $y \in N$ が存在する。このとき、補題 2.2.7 より、

$$\deg(f; y) = \deg(g; y)$$

となる。

定義 2.2.8 定義 2.2.3 と同じ仮定のもとで、定理 2.2.5 より、f の正則値 y に対して $\deg(f; y)$ は y の選び方に依存しない。この値を f の写像度と呼び、$\deg f$ で表す。これは C^∞ 級写像の滑らかにホモトピックな類にのみ依存する。

例 2.2.9 複素平面 \mathbb{C} と \mathbb{R}^2 を同一視すると、絶対値 1 の複素数全体は S^1 と同一視される。そこで、整数 k に対して

$$f_k : S^1 \to S^1 ; z \mapsto z^k$$

によって、C^∞ 級写像 f_k を定めると、$\deg f_k = k$ となる。

例 2.2.10 定義 2.2.3 と同じ仮定のもとで、さらに f が定値写像であるとすると、$\deg f = 0$ となる。
例 2.2.11 M, N をともにコンパクトで向きの付いた同じ次元の連続な多様体とする。このとき、向きを保つ微分同型写像 $f : M \to N$ に対して、$\deg f = +1$ となり、向きを逆にする微分同型写像 $f : M \to N$ に対して、$\deg f = -1$ となる。特に、向きを保つ微分同型写像と向きを逆にする微分同型写像とは、滑らかにホモトピックにはならない。

例 2.2.12 n 次元球面の微分同型写像 $r_i (1 \leq i \leq n + 1)$ を

$$r_i : S^n \to S^n ; (x_1, \ldots, x_{n+1}) \mapsto (x_1, \ldots, -x_i, \ldots, x_{n+1})$$

によって定めると、r_i は S^n の向きを逆にする。原点中心の点対称写像

$$r : S^n \to S^n ; x \mapsto -x$$

は $r = r_1 \circ \cdots \circ r_{n+1}$ と表せ、$n + 1$ が偶数のときは向きを保ち、$n + 1$ が奇数のときは向きを逆にする。したがって、$\deg r = (-1)^{n+1}$ が成り立つ。特に、n が偶数のときは r は恒等写像と滑らかにホモトピックにはならない。

定義 2.2.13 多様体 $M \subset \mathbb{R}^k$ 上定義された C^∞ 級写像 $v : M \to \mathbb{R}^k$ が、M の各点 x で $v(x) \in T_x M$ を満たすとき、v を M 上の C^∞ 級ベクトル場と呼ぶ。

定理 2.2.14 n 次元球面 S^n 上に各点で 0 にならない C^∞ 級ベクトル場が存在するための必要十分条件は、n が奇数になることがある。

証明 n が奇数であると仮定する。$n = 2k - 1$ とおく。

$$v(x_1, \ldots, x_{2k}) = (x_2, -x_1, x_4, -x_3, \ldots, x_{2k}, -x_{2k-1})$$

によって、S^{2k-1} 上の C^∞ 級ベクトル場 v を定める。各 $x \in S^{2k-1}$ に対して

$$\langle v(x), x \rangle = x_2x_1 - x_1x_2 + \cdots + x_{2k}x_{2k-1} - x_{2k-1}x_{2k} = 0$$

が成り立つので、$v(x) \in T_x S^{2k-1}$ となっている。さらに、$v(x)$ は任意の $x \in S^{2k-1}$ に対して 0 にはならない。

逆に S^n 上に各点で 0 にならない C^∞ 級ベクトル場 v が存在すると仮定する。$v(x)/|v(x)|$ を考えることにより、ベクトル場はすべての点で単位ベクトルになっているとしてよい。$v(x) \in T_x S^n$ より、

$$\langle v(x), x \rangle = 0 \quad (x \in S^n)$$

が成り立ち、単位ベクトルであることから

$$\langle v(x), v(x) \rangle = 1 \quad (x \in S^n)$$
2.3. 線形群の連続性

が成り立つ。

\[F : S^n \times [0, \pi] \to S^n ; (x, \theta) \mapsto x \cos \theta + v(x) \sin \theta \]

とおく。

\[
\langle F(x, \theta), F(x, \theta) \rangle = \langle x \cos \theta + v(x) \sin \theta, x \cos \theta + v(x) \sin \theta \rangle \\
= \langle x, x \rangle \cos^2 \theta + \langle v(x), v(x) \rangle \sin^2 \theta \\
= \cos^2 \theta + \sin^2 \theta \\
= 1.
\]

よって、\(F(x, \theta) \in S^n \) となる。さらに、

\[F(x, 0) = x, \quad F(x, \pi) = -x \]

となる。これより、原点中心の点対称写像 \(r \) は \(S^n \) の恒等写像と滑らかにホモトピックになる。例 2.2.12 より、\(n \) は偶数にはならない。したがって、\(n \) は奇数になる。

注意 2.2.15 定理 2.2.14 の証明中から、\(n \) が奇数のとき、\(S^n \) の原点中心の点対称 \(r \) は恒等写像と滑らかにホモトピックになることがわかる。

2.3 線形群の連続性

この節では次の線形群の弧状連続性に関する結果を説明する。ただし、\(n \) 次複素正方行列全体を \(M_n(C) \) で表し、\(n \) 次実正方行列全体を \(M_n(R) \) で表すこととする。

\[
GL(n, C) = \{ g \in M_n(C) \mid \det(g) \neq 0 \}, \\
U(n) = \{ u \in M_n(C) \mid uu^* = 1 \}, \\
GL(n, R) = \{ g \in M_n(R) \mid \det(g) \neq 0 \}, \\
O(n) = \{ u \in M_n(R) \mid uu^* = 1 \}, \\
SO(n) = \{ u \in M_n(R) \mid uu^* = 1, \det(u) = 1 \}.
\]

\(GL(n, C) \) を複素一般線形群、\(U(n) \) をユニタリ群、\(GL(n, R) \) を実一般線形群、\(O(n) \)を直交群、\(SO(n) \) を回転群と呼ぶ。このうちで、\(GL(n, R) \) の弧状連続成分に関する結果が次の節で必要になる。

定理 2.3.1 ユニタリ群 \(U(n) \) は弧状連続である。
証明 $U(n)$ の任意の元 u は $u^* u = u u^*$ を満たし正規行列になる。Toeplitz の定理より u はユニタリ行列によって対角化可能である。つまり、ある $g \in U(n)$ と $a_1, \ldots, a_n \in \mathbb{C}$ が存在して

$$g^{-1} u g = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

となる。$g^{-1} u g \in U(n)$ だから $|a_1| = \cdots = |a_n| = 1$。よって $\theta_1, \ldots, \theta_n \in \mathbb{R}$ が存在して $a_i = e^{\sqrt{-1} \theta_i} \ (1 \leq i \leq n)$ となる。

$$u = g \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \quad g^{-1} = g \begin{bmatrix} e^{\sqrt{-1} \theta_1} \\ \vdots \\ e^{\sqrt{-1} \theta_n} \end{bmatrix}$$

そこで

$$\gamma(t) = g \begin{bmatrix} e^{\sqrt{-1} \theta_1 t} \\ \vdots \\ e^{\sqrt{-1} \theta_n t} \end{bmatrix} g^{-1}$$

によって $\gamma(t)$ を定めると、γ は \mathbb{R} から $U(n)$ への C^∞ 級写像になる。さらに、$\gamma_{|[0,1]}$ は $U(n)$ の単位元と u を結ぶ曲線になり、$U(n)$ は弧状連結になることがわかる。

注意 2.3.2

$$T^n = \left\{ \begin{bmatrix} e^{\sqrt{-1} \theta_1} & & \\ & \ddots & \\ & & e^{\sqrt{-1} \theta_n} \end{bmatrix} \ \bigg| \ t_1, \ldots, t_n \in \mathbb{R} \right\}$$

とおくと、T^n はトーラス $(U(1)$ の積) になり、定理 2.3.1 の証明中に示したことより、等式

$$U(n) = \bigcup_{g \in U(n)} g T^n g^{-1}$$

が成り立つ。これはコンパクト Lie 群の極大トーラスの共役性をユニタリ群の場合に示したことになっている。

定理 2.3.3 回転群 $SO(n)$ は弧状連結である。

証明 $SO(n) \subset U(n)$ だから定理 2.3.1 の証明と同様に $SO(n)$ の任意の元 u に対して、ある $g \in U(n)$ と $\theta_1, \ldots, \theta_n \in \mathbb{R}$ が存在して

$$u = g \begin{bmatrix} e^{\sqrt{-1} \theta_1} \\ \vdots \\ e^{\sqrt{-1} \theta_n} \end{bmatrix} g^{-1}.$$
2.3. 線形群の連結性

\(u \) の固有多項式は実係数だから \(u \) の固有値の共役複素数も \(u \) の固有値になる。これより、\(g \) の縦ベクトルの順序を適当にかえて

\[
(*) \quad u = g \begin{bmatrix}
 e^{\sqrt{-1} \theta_i} & & & \\
 & e^{-\sqrt{-1} \theta_i} & & \\
 & & \ddots & \\
 & & & e^{\sqrt{-1} \theta_k}
\end{bmatrix} g^{-1}
\]

とできる。ただし \(\theta_i \notin \pi \mathbb{Z} \) (1 \leq i \leq k), \(\varepsilon_j = \pm 1 \) (2k + 1 \leq j \leq n) である。\(g = [g_1 \ldots g_n] \) と表すと、(\(* \) は

\[
u[g_1 \ldots g_n] = [g_1 \ldots g_n]
\begin{bmatrix}
 e^{\sqrt{-1} \theta_1} & & & \\
 & e^{-\sqrt{-1} \theta_1} & & \\
 & & \ddots & \\
 & & & e^{\sqrt{-1} \theta_k}
\end{bmatrix}
\begin{bmatrix}
 \varepsilon_{2k+1} \\
 \varepsilon_n
\end{bmatrix}
\]

となるので、\(u g_{2i-1} = e^{\sqrt{-1} \theta_i} g_{2i-1} \) (1 \leq i \leq k) が成り立つ。\(u \) は実行列だから

\(u g_{2i-1} = e^{\sqrt{-1} \theta_i} g_{2i-1} \) (1 \leq i \leq k) を得る。そこで \(g_{2i} \) を \(g_{2i-1} \) に置き換えても

\(g \in U(n) \) となり (\(* \)) は成り立つ。また 2k + 1 \leq j \leq n に対して \(\varepsilon_j \in \mathbb{R} \) だから

\(g_j \in \mathbb{R}^n \) が成ることできる。さらに \(\det u = 1 \) だから \(\varepsilon_j = -1 \) となる \(\varepsilon_j \) の個数は偶数。よって \(g \) の縦ベクトルの順序を適当にかえて \(\varepsilon_{2k+1} = \cdots = \varepsilon_{2l} = -1, \varepsilon_{2l+1} = \cdots = \varepsilon_n = 1 \) とできる。1 \leq i \leq k に対して

\[
h_{2i-1} = \frac{1}{\sqrt{2}} (g_{2i-1} + \bar{g}_{2i-1}), \quad h_{2i} = \frac{1}{\sqrt{2}} (g_{2i-1} - \bar{g}_{2i-1})
\]

とおき \(h_j = g_j \) (2k + 1 \leq j \leq n) とすると \(h = [h_1 \ldots h_n] \in U(n) \) で \(h \) は実行列になる。したがって \(h \in O(n) \) を得る。1 \leq i \leq k に対して

\[
u h_{2i-1} = \frac{1}{\sqrt{2}} (e^{\sqrt{-1} \theta_i} g_{2i-1} + e^{-\sqrt{-1} \theta_i} \bar{g}_{2i-1})
\]

\[
= \frac{1}{\sqrt{2}} \left\{ (\cos \theta_i + \sqrt{-1} \sin \theta_i) g_{2i-1} + (\cos \theta_i - \sqrt{-1} \sin \theta_i) \bar{g}_{2i-1} \right\}
\]

\[
= \frac{\cos \theta_i}{\sqrt{2}} (g_{2i-1} + \bar{g}_{2i-1}) + \frac{\sqrt{-1} \sin \theta_i}{\sqrt{2}} (g_{2i-1} - \bar{g}_{2i-1})
\]
\[\begin{align*}
\cos \theta_i h_{2i-1} &= \sin \theta_i h_{2i} \\
u h_{2i} &= \frac{1}{\sqrt{-2}} \left(e^{-\sqrt{-1} \theta_i} g_{2i-1} - e^{\sqrt{-1} \theta_i} \tilde{g}_{2i-1} \right)
\end{align*} \]

となるので

\[\theta_i = \pi \quad (k + 1 \leq i \leq l) \]

\[R(\theta_i) = \begin{bmatrix} \cos \theta_i & \sin \theta_i \\ -\sin \theta_i & \cos \theta_i \end{bmatrix} \quad (1 \leq i \leq l) \]

とおくと

\[u = h \begin{bmatrix} R(\theta_1) & & \\
& \ddots & \vdots & \\
& & R(\theta_l) & 1 \\
& & & \ddots & 1 \end{bmatrix} h^{-1}. \]

そこで

\[\gamma(t) = h \begin{bmatrix} R(\theta_1 t) & & \\
& \ddots & \vdots & \\
& & R(\theta_l t) & 1 \\
& & & \ddots & 1 \end{bmatrix} h^{-1}. \]

によって \(\gamma(t) \) を定めると、\(\gamma \) は \(R \) から \(SO(n) \) への \(C^\infty \) の写像になる。さらに、\(\gamma|_{[0,1]} \) は \(SO(n) \) の単位元と \(u \) を結ぶ曲線になり、\(SO(n) \) は弧状連続になることがわかる。

系 2.3.4 直交群 \(O(n) \) の弧状連続成分は、\(SO(n) \) と \(\{g \in O(n)|\det g = -1\} \) の二つである。

証明 定理 2.3.3 より \(SO(n) \) は弧状連続で、\(\det h = -1 \) となる \(h \in O(n) \) をとると

\[\{g \in O(n)|\det g = -1\} = hSO(n) \]

となりこれも弧状連続。したがって \(SO(n) \) と \(hSO(n) \) はどちらも \(O(n) \) の弧状連続成分になり \(O(n) = SO(n) \cup hSO(n) \) は \(O(n) \) の弧状連続成分への分解になっている。
2.3. 線形群の連結性

定理 2.3.5 $GL(n, C)$ は弧状連結である。

証明 $X \in M_n(C)$ の (i, j) 成分を X_{ij} で表すことにする。

$$T(n, C) = \{ X \in M_n(C) \mid X_{ii} > 0 \ (1 \leq i \leq n) , \ X_{ij} = 0 \ (i > j) \}$$

とおくと，$T(n, C)$ は $M_n(C)$ の凸部分集合になる。特に $T(n, C)$ は弧状連結である。さらに，$X \in T(n, C)$ に対して $\det X = \prod_{i=1}^{n} X_{ii} > 0$ だから $X \in GL(n, C)$。したがって $T(n, C) \subset GL(n, C)$。さらに $T(n, C)$ は $GL(n, C)$ の部分群になる。

$$P : U(n) \times T(n, C) \to GL(n, C) ; (a, X) \mapsto aX$$

とおくと P は連続になる。さらに P が全射になることを示そう。任意の $g \in GL(n, C)$ に対して $g = [g_1 \ldots g_n]$ と縦ベクトル $g_i \in C^n$ を使って表す。g_1, \ldots, g_n は C^n の基底になる。C^n の標準的な Hermite 内積に関して g_1, \ldots, g_n に Gram-Schmidt の直交化を行う。$b_1 = g_1, a_1 = \frac{1}{|b_1|}b_1$ とし、$b_k, a_k (k \geq 2)$ を次のように帰納的に定める。

$$b_k = g_k - \sum_{i=1}^{k-1} \langle g_k, a_i \rangle a_i, \quad a_k = \frac{1}{|b_k|} b_k.$$

すると a_1, \ldots, a_n は C^n の正規直交基底になる。各 a_k は g_1, \ldots, g_k の線形結合になっていて、その線形結合の g_k の係数は $1/|b_k| > 0$ である。そこで基底の変換を

$$(*): [a_1 \ldots a_n] = [g_1 \ldots g_n] X$$

で表すと $X \in T(n, C)$ となる。$a = [a_1 \ldots a_n]$ とおくと $a \in U(n)$ で $a = gX$。$g = aX^{-1}$ になり $X^{-1} \in T(n, C)$ だから $g = P(a, X^{-1})$。したがって P は全射である。定理 2.3.1 より $U(n)$ は弧状連結で $T(n, C)$ も弧状連結だから $GL(n, C)$ は弧状連結である。

定理 2.3.6 $GL(n, R)$ の弧状連結成分は、

$$GL^+(n, R) = \{ g \in GL(n, R) \mid \det g > 0 \}, \quad \{ g \in GL(n, R) \mid \det g < 0 \}$$

の二つである。

証明 定理 2.3.5 の証明で使った記号を使うことにする。

$$T(n, R) = M_n(R) \cap T(n, C)$$

とおくと，$T(n, R)$ は $M_n(R)$ の凸部分集合になる。特に $T(n, R)$ は弧状連結である。さらに $T(n, R) = GL^+(n, R)$ の部分群になる。以下で $P(SO(n) \times T(n, R)) = GL^+(n, R)$ を示そう。定理 2.3.5 の証明と同様にすると、任意の $g \in GL^+(n, R)$ に対してある $a \in O(n)$ と $X \in T(n, R)$ が存在し $a = gX$ となる。$\det g > 0, \det X > 0$
だから $\det = 1$ になり $a \in SO(n)$ で $g = aX^{-1}$ になり $X^{-1} \in T(n, \mathbb{R})$。したがって $P(SO(n) \times T(n, \mathbb{R})) = GL^+(n, \mathbb{R})$ である。定理 12.3 より $SO(n)$ は弧状連結で $T(n, \mathbb{R})$ も弧状連結だから、$GL^+(n, \mathbb{R})$ は弧状連結である。

$$
\det^{-1} \{ t \in \mathbb{R} \mid t > 0 \} = GL^+(n, \mathbb{R}), \\
\det^{-1} \{ t \in \mathbb{R} \mid t < 0 \} = \{ g \in GL(n, \mathbb{R}) \mid \det g < 0 \}
$$

はどちらも $GL(n, \mathbb{R})$ の開かつ閉の弧状連結部分集合になる。したがってこれ 2 つが $GL(n, \mathbb{R})$ の弧状連結成分である。

2.4 ベクトル場と Euler 数

定義 2.4.1 $U \subset \mathbb{R}^m$ を開集合とし、$v : U \to \mathbb{R}^m$ を孤立零点 $z \in U$ を持つ C^∞ 級ベクトル場とする。

$$
\{ u \in \mathbb{R}^m \mid |u - z| \leq r \} \subset U
$$

を満たし、この集合内に z 以外の v の零点がないような $r > 0$ に対して

$$
S^{m-1}(r) = \{ u \in U \mid |u - z| = r \}
$$

と定める。

$$
\bar{v}(x) = v(x)/|v(x)| \quad (x \in S^{m-1}(r))
$$

で定まる C^∞ 級写像 $\bar{v} : S^{m-1}(r) \to S^{m-1}$ の写像度を、v の z における指数と呼ぶ。

注意 2.4.2 定義 2.4.1 において、$z = 0$ と仮定する。$0 < r' < r$ となる r' に対して

$$
\bar{v}'(x) = v(x)/|v(x)| \quad (x \in S^{m-1}(r'))
$$

とおく。

$$
h_{r'}^r : S^{m-1}(r) \to S^{m-1}(r') ; x \mapsto \frac{r'}{r} x
$$

は向きを保つ微分同型になり、

$$
F(x, t) = v(tv)/|v(tv)| \quad ((x, t) \in S^{m-1}(r) \times [r'/r, 1])
$$

は、\bar{v} と $\bar{v}' \circ h_{r'}^r$ の間の滑らかなホモトピーを与える。補題 2.2.7 より、

$$
\deg(\bar{v}) = \deg(\bar{v}' \circ h_{r'}^r) = \deg(\bar{v}').
$$

以上より、C^∞ 級ベクトル場の零点の指数の定義は $r > 0$ のとり方に依存しない。

\mathbb{R}^m の開集合上定義された C^∞ 級ベクトル場だけでなく、多様体上の C^∞ 級ベクトル場の孤立零点の指数を定義するためには、指数の定義が微分同型で不変になることを示しておく必要がある。そのための準備をいくつかしておく。
2.4. ベクトル場とEuler数

定義 2.4.3 $f : M \to N$ を多様体間の微分同型とする。v と v' をそれぞれ M と N 上の C^∞ 級ベクトル場とする。各 $x \in M$ について $df_x(v(x)) = v'(f(x))$ が成り立つとき、v と v' は f によって対応しているという。言い換えると

$$v' = df \circ v \circ f^{-1}$$

が成り立つ。

補題 2.4.4 $f : U \to U'$ を \mathbb{R}^m の開集合間の微分同型とする。U 上の C^∞ 級ベクトル場 v が、U' 上の C^∞ 級ベクトル場 v' と f によって対応していると仮定する。このとき、v の孤立零点 z における指数は、v' の $f(z)$ における指数に一致する。

この補題を証明するために、次の補題を示しておく。

補題 2.4.5 \mathbb{R}^m の向きを保つ微分同型は、恒等写像に滑らかにイソトピックになる。

証明 f を \mathbb{R}^m の向きを保つ微分同型とする。平行移動により、f は原点 0 を 0 に写す微分同型と滑らかにイソトピックになる。そこで、$f(0) = 0$ と初めから仮定してよい。

以下で f がその 0 における微分写像

$$df_0(x) = \lim_{t \to 0} \frac{f(tx)}{t} \quad (x \in \mathbb{R}^m)$$

に滑らかにイソトピックになることを示す。

$$F(x, t) = f(tx)/t \quad (0 < t \leq 1)$$

$$F(x, 0) = df_0(x)$$

によって

$$F : \mathbb{R}^m \times [0, 1] \to \mathbb{R}^m$$

を定める。F が C^∞ 級になることを示すためには、$t = 0$ での C^∞ 級性が問題になる。$f(0) = 0$ だから、$x \in \mathbb{R}^m$ に対して

$$f(x) = \int_0^1 \frac{df(tx)}{dt} dt = \int_0^1 \sum_{i=1}^m \frac{\partial f}{\partial x_i}(tx)x_i dt = \sum_{i=1}^m x_i \left(\int_0^1 \frac{\partial f}{\partial x_i}(tx) dt \right).$$

そこで、$g_i(x) = \int_0^1 \frac{\partial f}{\partial x_i}(tx) dt$ とおけば、

$$f(x) = \sum_{i=1}^m x_i g_i(x) \quad (x = (x_1, \ldots, x_m) \in \mathbb{R}^m)$$

$$g_i(0) = \frac{\partial f}{\partial x_i}(0)$$
が成り立つ。これより、$0 < t \leq 1$ のとき

$$F(x, t) = \frac{f(tx)}{t} = \sum_{i=1}^{m} x_i g_i(tx)$$

となり、さらに、

$$F(x, 0) = df_0(x) = \sum_{i=1}^{m} x_i \frac{\partial f}{\partial x_i}(0) = \sum_{i=1}^{m} x_i g_i(0).$$

したがって、すべての $(x, t) \in \mathbb{R}^m \times [0, 1]$ について

$$F(x, t) = \sum_{i=1}^{m} x_i g_i(tx)$$

が成り立つ。特に、F は $\mathbb{R}^m \times [0, 1]$ において C^∞ 級になる。すなわち、f は df_0 に滑らかにイソトピックになる。

f は \mathbb{R}^m の向きを保つので、df_0 も \mathbb{R}^m の向きを保つ。これは df_0 の行列式が正になることに他ならない。

定理 2.3.6 より $GL^+(m, \mathbb{R})$ は弧状連結になるので、$df_0 \in GL^+(m, \mathbb{R})$ は \mathbb{R}^m の恒等写像 1 に滑らかにイソトピックになる。したがって、f は \mathbb{R}^m の恒等写像に滑らかにイソトピックになる。

補題 2.4.4 の証明　一般性を失うことなく、$z = f(z) = 0$ と U が凸であることを仮定できる。

まず、f が向きを保つ場合を考える。補題 2.4.5 の証明と同様に、

$$F(x, t) = f(tx)/t \quad (x \in U, \ 0 < t \leq 1)$$

$$F(x, 0) = df_0(x) \quad (x \in U)$$

によって C^∞ 級写像

$$F : U \times [0, 1] \to \mathbb{R}^m$$

を定める。$F(\cdot, 1) = f$ であり、$F(\cdot, 0) = df_0$ となっている。定め方より、$F(0, t) = 0$ も成り立つ。さらに、df_0 と \mathbb{R}^m の恒等写像の間の滑らかなイソトピーを F と合せることにより、C^∞ 級写像

$$G : U \times [0, 1] \to \mathbb{R}^m$$

であって、$G(\cdot, 1) = f, \ G(\cdot, 0) = 1$ を満たし、$G(0, t) = 0$ が成り立つものを得る。

$$f_t = G(\cdot, t) : U \to \mathbb{R}^m$$

とおく。$f_0 = f, \ f_1 = 1$ と $f_t(0) = 0$ が成り立つ。f_t はすべて向きを保つ微分同型になる。U 上の C^∞ 級ベクトル場 v は、微分同型 f_t によって $f_t(U)$ 上の C^∞ 級ベクトル場

$$v_{f_t} = \sum_{i=1}^{m} x_i v_{f_t}^i \quad (x \in U)$$

であり、$v_{f_t}(0) = 0$ と成り立つ。
2.4. ベクトル場と Euler 数

クトル場 \(df_t \circ v \circ f_t^{-1} \) と対応する。補題 2.2.7 より、\(df_0 \circ v \circ f_0^{-1} = df \circ v \circ f^{-1} \) の零点 0 における指数は、\(df_0 \circ v \circ f_0^{-1} = v \circ 0 \) における指数に一致する。

\(f \) が向きを逆にする場合は、向きを保つ場合と同様にして \(f \) を滑らかに \(df_0 \) に変形することができる。さらに、\(df_0 \) の行列式は負になるので、

\[
\rho(x_1, \ldots, x_m) = (-x_1, x_2, \ldots, x_m)
\]

で定まる \(\rho \) に滑らかに変形できる。よって、\(v \) と \(dp_0 \circ v \circ \rho^{-1} \) の零点 0 における指数が一致することを示せばよい。つまり \(v' = dp_0 \circ v \circ \rho^{-1} \) の場合を考えればよい。\(\rho \) は線形写像だから、\(dp_0 = \rho \) となるので、\(v' = \rho \circ v \circ \rho^{-1} \) が成り立つ。

\[
\bar{v}(x) = v(x)/|v(x)|, \quad \bar{v}'(x) = v'(x)/|v'(x)| \quad (x \in S^{m-1}(r))
\]

とおくと、\(\bar{v}' = \rho \circ \bar{v} \circ \rho^{-1} \) が成り立つ。

\[
\deg(\bar{v}') = \deg(\rho \circ \bar{v} \circ \rho^{-1}) = (-1)\deg(\bar{v})(-1) = \deg(\bar{v}).
\]

したがって、\(v \) と \(v' \) の零点 0 における指数は一致する。

定義 2.4.6 \(M \) を多様体とし、\(v \) を \(M \) 上の \(C^{\infty} \) 級ベクトル場とする。\(z \in M \) を \(v \) の孤立零点とすると、\(z \) の近傍のパラメータ付け \(g : U \to M \) をとり、\(g \) によって対応する \(U \) 上の \(C^{\infty} \) 級ベクトル場 \(dg^{-1} \circ v \circ g \) の孤立零点 \(g^{-1}(z) \) における指数を \(v \) の \(z \) における指数として定義する。補題 2.4.4 より、この定義はパラメータ付け \(g : U \to M \) のとり方に依存しない。

定理 2.4.7 (Poincaré-Hopf) \(M \) をコンパクト多様体とする。\(v \) は \(M \) 上の \(C^{\infty} \) 級ベクトル場であって、零点はすべて孤立していると仮定する。\(M \) が境界を持つ場合は、さらに、\(M \) の境界上のすべての点で \(v \) は外向きであると仮定する。このとき、\(v \) の指数の和は \(M \) の Euler 数に一致する。特に、指数の和はベクトル場に依存せず、\(M \) の位相不変量になる。

証明 まず、特殊な場合の \(C^{\infty} \) 級ベクトル場の指数の和を考察する。

補題 2.4.8 (Hopf) \(X \subset \mathbb{R}^m \) を境界を持つコンパクト \(m \) 次元多様体とする。Gauss

写像

\[
g : \partial X \to S^{m-1}
\]

を各 \(x \in \partial X \) に外向きの単位法ベクトル \(g(x) \) を対応させることによって定める。

\(v : X \to \mathbb{R}^m \) は \(X \) 上の \(C^{\infty} \) 級ベクトル場であって、零点はすべて孤立していて \(X \) の内点であると仮定する。\(C^{\infty} \) 級写像 \(\bar{v} : \partial X \to S^{m-1} \) を

\[
\bar{v}(x) = v(x)/|v(x)| \quad (x \in \partial X)
\]

で定めると、\(v \) の零点の指数の和は、\(\bar{v} \) の写像度に一致する。さらに、\(X \) の境界上のすべての点で \(v \) は外向きであると仮定する。このとき、\(v \) の零点の指数の和は Gauss 写像 \(g : \partial X \to S^{m-1} \) の写像度に一致する。特に、この場合は、\(X \) 上の \(C^{\infty} \) 級ベクトル場の零点の指数の和は、ベクトル場のとり方に依存しない。
証明　\(X \) はコンパクトで、\(v \) の零点は孤立しているので有限個になる。それらを \(z_1, \ldots, z_k \) とする。\(\varepsilon > 0 \) を十分小さくとると、

\[
B^m(z_i, \varepsilon) = \{ x \in \mathbb{R}^m \mid |x - z_i| \leq \varepsilon \} \subset X - \partial X
\]

と

\[
i \neq j \Rightarrow B^m(z_i, \varepsilon) \cap B^m(z_j, \varepsilon) = \emptyset
\]

が成り立つ。

\[
Y = X - \bigcup_{i=1}^k (B^m(z_i, \varepsilon) - \partial B^m(z_i, \varepsilon))
\]

とおくと、\(Y \) も境界を持つ \(m \) 次元多様体になる。\(Y \) には \(v \) の零点が存在しないので、

\[
\bar{v}(x) = v(x)/|v(x)| \quad (x \in Y)
\]

を考えることができる。

\[
\bar{v} : Y \to S^{m-1}
\]

は \(C^\infty \) 級写像だから、補題 2.2.6 より、

\[
\deg(\bar{v}|_{\partial Y}) = 0.
\]

ここで、

\[
\partial Y = \partial X \cup B^m(z_1, \varepsilon) \cup \cdots \cup B^m(z_k, \varepsilon)
\]

だから、それぞれの部分で \(\bar{v} \) を考える。各 \(z_i \) について、\(C^\infty \) 級ベクトル場 \(v \) の零点の指数を定める際に使った \(\partial B^m(z_i, \varepsilon) \) の向きと \(\partial Y \) の境界の一部とみなしたときの向きは、逆向きになる。したがって、

\[
0 = \deg(\bar{v}|_{\partial Y}) = \deg(\bar{v}|_{\partial X}) - \sum_{i=1}^k (v \text{ の } z_i \text{ における指数})
\]

となり、\(v \) の零点の指数の和は、\(\bar{v}|_{\partial X} \) の写像度 \(\deg(\bar{v}|_{\partial X}) \) に一致する。

ここで、Gauss 写像 \(g : \partial X \to S^{m-1} \) が \(C^\infty \) 級写像になることを示しておく。定義 1.2.8 より任意の \(x \in \partial X \) に対して、\(\mathbb{R}^m \) 内の \(x \) を含む開集合 \(W \)、半空間

\[
H^m = \{ (x_1, \ldots, x_m) \in \mathbb{R}^m \mid x_m \geq 0 \}
\]

の開集合 \(U \) と微分同型写像 \(p : U \to W \cap X \) が存在する。

\[
e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \quad (1 \leq i \leq m)
\]

とおくと、\(dp(e_i) \) \((1 \leq i \leq m - 1)\) は \(\partial X \) の接ベクトル空間の基底になり、\(dp(e_m) \) は内向きベクトルになる。各 \(dp(e_i) \) は \(W \cap \partial X \) 上で \(\mathbb{R}^m \) に値をとる \(C^\infty \) 級写像に
なら。\mathbb{R}^mの標準的な内積に関して $dp(e_1), \ldots, dp(e_m)$ に Gram-Schmidt の直交化を行う。$b_1 = p(e_1), a_1 = \frac{1}{|p(e_1)|}p(e_1)$ とし、$b_k, a_k (k \geq 2)$ を次のように帰納的に定める。

$$b_k = g_k - \sum_{i=1}^{k-1} \langle g_k, a_i \rangle a_i, \quad a_k = \frac{1}{|b_k|} b_k.$$ すると a_1, \ldots, a_m は \mathbb{R}^m の正規直交基底になる。各 a_k は $dp(e_1), \ldots, dp(e_k)$ の線形結合になっており、その線形結合の g_k の係数は $1/|b_k| > 0$ である。よって、b_1, \ldots, b_{m-1} は ∂X の接ベクトル空間の正規直交基底になり、a_m は ∂X の内向きの単位法ベクトルになる。これにより $W \cap \partial X$ において $g = -a_m$ が成り立つ。b_k, a_k の定め方より、これらも $W \cap \partial X$ 上で \mathbb{R}^m に値をとる C^∞ 級写像になる。したがって、g は $W \cap \partial X$ 上 C^∞ 級になり、∂X 全体でも C^∞ 級になることがわかる。

さらに、X の境界上のすべての点で v は外向きであると仮定する。$\tilde{v}|_{\partial X}$ と Gauss 写像 g はともに境界 ∂X 上で外向きの C^∞ 級ベクトル場である。さらにどちらも各点で単位ベクトルに値をしているので、$x \in \partial X$ について

$$0 < \langle g(x), \tilde{v}(x) \rangle \leq 1.$$ そこで、

$$u(x, t) = tg(x) + (1-t)\tilde{v}(x) \quad ((x, t) \in \partial X \times [0, 1])$$ とおくと、$(x, t) \in \partial X \times [0, 1]$ に対して

$$\langle g(x), u(x, t) \rangle = t + (1-t)\langle g(x), \tilde{v}(x) \rangle > 0.$$ よって、$u(x, t)$ は 0 ではない外向きのベクトルになる。

$$F(x, t) = \frac{u(x, t)}{|u(x, t)|} \quad ((x, t) \in \partial X \times [0, 1])$$ によって C^∞ 級写像

$$F : \partial X \times [0, 1] \to S^{m-1}$$ を定めると、$F(x, 0) = \tilde{v}(x), F(x, 1) = g(x)$ となるので、\tilde{v} と g は滑らかにホモトピックになる。補題 2.2.7 より、

$$\deg(\tilde{v}|_{\partial X}) = \deg(g).$$ したがって、先に得た結果より、v の零点の指数の和は、$\deg(g)$ に一致する。

定義 2.4.9 開集合 $U \subset \mathbb{R}^m$ 上の C^∞ 級ベクトル場 v に対して、$z \in U$ における微分 $dv_z : \mathbb{R}^m \to \mathbb{R}^m$ が線形同型写像になるとき、v は z において非退化であるという。v の零点において非退化のとき、その零点を非退化零点と呼ぶ。

注意 2.4.10 逆写像定理より、C^∞ 級ベクトル場の非退化零点は孤立する。
補題 2.4.11 C^∞ 級ベクトル場 v の非退化零点 z における指数は、$\det dv_z > 0$ のとき $+1$ になり、$\det dv_z < 0$ のとき -1 になる。

証明 $v : U \to \mathbb{R}^m$ を C^∞ 級ベクトル場とし、$z \in U$ を v の非退化零点とする。逆写像定理より、z のある凸閉近傍 U_0 で v は微分同型になる。一般性を失うことなく $z = 0$ としてもよい。$\det dv_0 > 0$ のとき、補題 2.4.4 の証明中に示したように、$v : U_0 \to \mathbb{R}^m$ を恒等写像 1 に滑らかに変形できる。よって、v の 0 における指数は $+1$ になる。また、$\det dv_0 < 0$ のときは、$v : U_0 \to \mathbb{R}^m$ を

$$\rho(x_1, \ldots, x_m) = (-x_1, x_2, \ldots, x_m)$$

に滑らかに変形できる。よって、v の 0 における指数は -1 になる。

補題 2.4.12 v を多様体 $M \subset \mathbb{R}^k$ 上の C^∞ 級ベクトル場とする。$z \in M$ を v の零点とすると、$v : M \to \mathbb{R}^k$ の z における微分 $dv_z : T_z M \to \mathbb{R}^k$ の像は $T_z M \subset \mathbb{R}^k$ に含まれる。そこで、$dv_z : T_z M \to T_z M$ とみなしてその行列式を $\det dv_z$ で表す。$\det dv_z \neq 0$ のとき、z は v の孤立零点になり、v の z における指数は、$\det dv_z > 0$ のとき $+1$ になり、$\det dv_z < 0$ のとき -1 になる。

証明 M の z の近傍のパラメータ付け $h : U \to M$ をとる。$U \subset \mathbb{R}^m$ だから、\mathbb{R}^m の標準的な基底 e_1, \ldots, e_m は自然に U 上の C^∞ 級ベクトル場とみなせる。

$$t_i = dh_u(e_i) = \frac{\partial h}{\partial u_i}(u) \quad (u \in U)$$

とおくと、各 t_i は $h(U) \subset M$ 上の C^∞ 級ベクトル場になる。さらに、各点 $h(u) \in h(U)$ において、t_1, \ldots, t_m は $T_{h(u)} M$ の基底になる。v の微分

$$dv_{h(u)}(t_i) = dv_{h(u)} \circ dh_u(e_i) = \frac{\partial(v \circ h)}{\partial u_i}(u)$$

を計算するために、

$$v(h(u)) = \sum_{j=1}^m v_j t_j$$

とおく。

$$dv_{h(u)}(t_i) = \frac{\partial(v \circ h)}{\partial u_i} = \sum_{j=1}^m \left(\frac{\partial v_j}{\partial u_i} t_j + v_j \frac{\partial t_j}{\partial u_i} \right)$$

となり、$v_j(z) = 0$ だから、

$$dv_z(t_i) = \sum_{j=1}^m \frac{\partial v_j}{\partial u_i} t_j \in T_z M$$
となる。よって、\(dv_z(T_x M) \subset T_x M\) が成り立ち、

\[
\det dv_z = \det \left(\frac{\partial v_j}{\partial u_i} \right).
\]

\(h\) によって \(v\) に対応する \(U\) 上の \(C^\infty\) 級ベクトル場 \(v'\) は、

\[
v'(u) = dh^{-1}_u(v(h(u))) = dh^{-1}_u \left(\sum_{j=1}^m v_j t_j \right) = \sum_{j=1}^m v_j e_j
\]

と表される。\(v'\) の零点は \(h\) によって \(v\) の零点に対応する。\(\det dv_z \neq 0\) すると \(h^{-1}(z) \in U\) は \(V'\) の非退化零点になり、注意 2.4.10 より \(h^{-1}(z)\) は \(v'\) の孤立零点になる。したがって、\(z\) は \(v\) の孤立零点になる。

補題 2.4.11 より、

\[
\det dv_z = \det \left(\frac{\partial v_j}{\partial u_i} \right) > 0
\]

のとき、\(v'\) の零点 \(h^{-1}(z)\) における指数は +1 になり、\(\det dv_z < 0\) のとき、\(v'\) の零点 \(h^{-1}(z)\) における指数は −1 になる。補題 2.4.4 より、それぞれの場合、\(v\) の零点 \(z\) における指数は +1, −1 になる。

注意 2.4.13 多様体 \(M \subset \mathbb{R}^k\) 上の \(C^\infty\) 級ベクトル場 \(v\) に対して、一般の点 \(x \in M\) については微分 \(dv_x : T_x M \rightarrow \mathbb{R}^k\) の像は \(T_x M\) に含まれるとは限らない。

命題 2.4.14 \(M \subset \mathbb{R}^k\) を境界を持たない \(m\) 次元多様体とする。定義 1.2.6 で定めた \(x \in M\) における \(\mathbb{R}^k\) 内の \(M\) の法ベクトル空間を \(T_x^\perp M\) で表す。

\[
TM = \{(x, v) \in \mathbb{R}^k \times \mathbb{R}^k \mid x \in M, v \in T_x M\},
\]

\[
T_x^\perp M = \{(x, v) \in \mathbb{R}^k \times \mathbb{R}^k \mid x \in M, v \in T_x^\perp M\}
\]

とおくと、\(TM\) は \(2m\) 次元多様体になり、\(T_x^\perp M\) は \(k\) 次元多様体になる。

定義 2.4.15 命題 2.4.14 の \(TM\) を \(M\) の接ベクトル束と呼び、\(T_x^\perp M\) を \(M\) の法ベクトル束と呼ぶ。

命題 2.4.14 の証明 \(M \subset \mathbb{R}^k\) が \(m\) 次元多様体であることから、各点 \(x \in M\) は \(\mathbb{R}^k\) 内の開近傍 \(W\) を持ち、\(\mathbb{R}^m\) の間集合 \(U\) から \(W \cap M\) への微分同型 \(g : U \rightarrow W \cap M\) が存在する。\(\mathbb{R}^m\) の標準的な基底を \(e_i (1 \leq i \leq m)\) で表す。各 \(z \in U\) について \(dg_z(e_i) (1 \leq i \leq m)\) は接ベクトル空間 \(T_g(z) M\) の基底になる。\(T_x M\) は \(\mathbb{R}^k\) の部分ベクトル空間だから、\(\mathbb{R}^k\) の標準的な基底 \(\bar{e}_j (1 \leq j \leq k)\) から \(k - m\) 個を \(dg_{g^{-1}(z)}(e_i) (1 \leq i \leq m)\) に付け加えて \(\mathbb{R}^k\) の基底にすることができる。必要なら \(\bar{e}_j\) の順序を変えることで

\[
dg_{g^{-1}(z)}(e_1), \ldots, dg_{g^{-1}(z)}(e_m), \bar{e}_1, \ldots, \bar{e}_{k-m}
\]
第２章 多様体のトポロジー

を \(\mathbb{R}^k \) の基底にすることができる。点 \(x \) においてこれが \(\mathbb{R}^k \) の基底になるので、\(x \) の \(\mathbb{R}^k \) におけるある開近傍 \(W' \subset W \) が存在し、各 \(y \in W' \cap M \) に対して

\[
dg_{y^{-1}(y)}(e_1), \ldots, dg_{y^{-1}(y)}(e_m), \tilde{e}_1, \ldots, \tilde{e}_{k-m}
\]

は \(\mathbb{R}^k \) の基底になる。\(U' = g^{-1}(W' \cap M) \) とおくと \(U' \) は \(\mathbb{R}^m \) の開集合になり、\(z \in U' \) に対して

\[
dg_z(e_1), \ldots, dg_z(e_m), \tilde{e}_1, \ldots, \tilde{e}_{k-m}
\]

は \(\mathbb{R}^k \) の基底になる。さらにこれらは \(z \) に対して \(C^\infty \) 級に対応している。そこで、

\[
h_1(z) = dg_z(e_1), \ldots, h_m(z) = dg_z(e_m), h_{m+1}(z) = \tilde{e}_1, \ldots, h_k(z) = \tilde{e}_{k-m}
\]

とおいて、\(\mathbb{R}^k \) の標準的な内積に関してこれらに Gram-Schmidt の直交化を行う。

\[
b_i(z) = h_i(z), a_1(z) = \frac{1}{|b_1(z)|}b_1(z) \quad \text{とし、} \quad b_i(z), a_i(z) (i \geq 2)
\]

を次のように帰納的に定める。

\[
b_i(z) = h_i(z) - \sum_{j=1}^{k-1} \langle h_i(z), a_j(z) \rangle a_j(z), \quad a_i(z) = \frac{1}{|b_i(z)|} b_i(z).
\]

すると \(a_1(z), \ldots, a_k(z) \) は \(\mathbb{R}^k \) の正規直交基底になる。定め方より \(a_i(z) \) は \(i \) 以下の番号の \(h_1(z), \ldots, h_i(z) \) の線形結合になっている。特に、\(a_1(z), \ldots, a_m(z) \) は接ベクトル空間 \(T_{g(z)}M \) の正規直交基底になり、\(a_{m+1}(z), \ldots, a_k(z) \) は直交補空間 \(T_{g(z)}^{\perp}M \) の正規直交基底になる。そこで、

\[
\tilde{g} : U' \times \mathbb{R}^m \to TM ; \quad (z, \xi_1, \ldots, \xi_m) \mapsto \left(z, \sum_{i=1}^{m} \xi_i a_i(z) \right)
\]

\[
g^{\perp} : U' \times \mathbb{R}^{k-m} \to T^{\perp}M ; \quad (z, \eta_{m+1}, \ldots, \eta_k) \mapsto \left(z, \sum_{j=1}^{k-m} \eta_{m+j} a_{m+j}(z) \right)
\]

によって写像 \(\tilde{g} \) と \(g^{\perp} \) を定めると、

\[
\sum_{i=1}^{m} \xi_i a_i(z) \in T_{g(z)}M, \quad \sum_{j=1}^{k-m} \eta_{m+j} a_{m+j}(z) \in T_{g(z)}^{\perp}M
\]

となるので、\(\tilde{g}(z, \xi_i) \in TM, g^{\perp}(z, \eta_j) \in T^{\perp}M \) であることがわかり、\(\tilde{g} \) と \(g^{\perp} \) も \(C^\infty \) 級写像になる。\(\tilde{g} \) の定義域 \(U' \times \mathbb{R}^m \subset \mathbb{R}^m \times \mathbb{R}^m = \mathbb{R}^{2m} \) と \(g^{\perp} \) の定義域 \(U' \times \mathbb{R}^{k-m} \subset \mathbb{R}^m \times \mathbb{R}^{k-m} = \mathbb{R}^k \) はどちらも開集合になる。

\[
(W' \times \mathbb{R}^k) \cap TM = \{(z, v) \in (W' \cap M) \times \mathbb{R}^k \mid v \in T_zM\}
\]

は \(\tilde{g} \) の像に一致し、

\[
(W' \times \mathbb{R}^k) \cap T^{\perp}M = \{(z, v) \in (W' \cap M) \times \mathbb{R}^k \mid v \in T_z^{\perp}M\}
\]
は \(g^\perp \) の像に一致する。各 \(z \in U \) について

\[
\mathbb{R}^m \to T_{g(z)}M \ ; \ (\xi_1, \ldots, \xi_m) \mapsto \sum_{i=1}^m \xi_i a_i(z)
\]

\[
\mathbb{R}^{k-m} \to T_{g(z)}M \ ; \ (\eta_{m+1}, \ldots, \eta_k) \mapsto \sum_{j=1}^{k-m} \eta_{m+j} a_{m+j}(z)
\]

はどちらも線形同型写像になるので、

\[
\tilde{g} : U' \times \mathbb{R}^m \to (W' \times \mathbb{R}^k) \cap TM,
\]

\[
\tilde{g} : U' \times \mathbb{R}^{k-m} \to (W' \times \mathbb{R}^k) \cap T^\perp M
\]

は全単射になる。

これらが微分同型写像になることを以下で証明する。\(g : U' \to W' \cap M \) は微分同型写像だから、\(g^{-1} : W' \cap M' \to U \) も微分同型写像になる。

\[
\tilde{g}^{-1}(y,v) = (g^{-1}(y), (v, a_1(g^{-1}(y))), \ldots, (v, a_m(g^{-1}(y))))
\]

\(\tilde{g}^{-1}(y,v) \in (W' \times \mathbb{R}^k) \cap TM \)

\[
(g^{-1})^{-1}(y,v) = (g^{-1}(y), (v, a_{m+1}(g^{-1}(y))), \ldots, (v, a_k(g^{-1}(y))))
\]

\((g^{-1})^{-1}(y,v) \in (W' \times \mathbb{R}^k) \cap T^\perp M \)

となり、\(\tilde{g}^{-1} \) と \((g^{-1})^{-1} \) はどちらも \(C^\infty \) 級になることがわかる。したがって、

\[
\tilde{g} : U' \times \mathbb{R}^m \to (W' \times \mathbb{R}^k) \cap TM
\]

\[
g^\perp : U' \times \mathbb{R}^{k-m} \to (W' \times \mathbb{R}^k) \cap T^\perp M
\]

はどちらも微分同型写像になる。以上より、\(TM \) は \(2m \) 次元多様体になり、\(T^\perp M \) は \(k \) 次元多様体になる。

定理 2.4.16 \(M \subset \mathbb{R}^k \) を境界を持たないコンパクト多様体とする。

\[
\nu : T^\perp M \to \mathbb{R}^k \ ; \ (x,v) \mapsto x + v
\]

によって \(C^\infty \) 級写像 \(\nu \) を定める。このとき、ある \(\epsilon > 0 \) が存在して

\[
T^\perp_e(M) = \{ (x,v) \in T^\perp M \mid |v| < \epsilon \}
\]

とおくと、\(T^\perp_e(M) \) は \(T^\perp M \) 内の \(M \times \{0\} \) の開近傍、\(\nu(T^\perp_e(M)) \) は \(\mathbb{R}^k \) 内の \(M \) の開近傍になり、\(\nu \) は \(T^\perp_e(M) \) と \(\nu(T^\perp_e(M)) \) の間の微分同型を誘導する。

証明 が任意にとる。\((z,0) \in M \times \{0\} \subset T^\perp M \) における \(T^\perp M \) の接ベクトル空間 \(T_{(z,0)}(T^\perp M) \) と \(\nu \) の微分写像

\[
d\nu_{(z,0)} : T_{(z,0)}(T^\perp M) \to \mathbb{R}^k
\]
を求める。$u \in T_zM$に対してMの曲線$c : (-a, a) \to M$を

$$c(0) = z, \quad \left. \frac{d}{dt} \right|_{t=0} c(t) = u$$

を満たすようにとる。すると$(c(t), 0)$はT_z^1Mの曲線になり、

$$(c(0), 0) = (z, 0), \quad \left. \frac{d}{dt} \right|_{t=0} (c(t), 0) = (u, 0)$$

となるので、

$$T_zM \times \{0\} \subset T_{(z, 0)}(T_z^1M)$$

が成り立つ。$v \in T_zM$に対して$v(t) = (z, tv)$とおくと、$v(t)$はT_z^1Mの曲線になり、

$$v(0) = (z, 0), \quad \left. \frac{d}{dt} \right|_{t=0} v(t) = (0, v)$$

となるので、

$$\{0\} \times T_z^1M \subset T_{(z, 0)}(T_z^1M)$$

が成り立つ。

$$T_zM \times T_z^1M = T_zM \times \{0\} + \{0\} \times T_z^1M$$

は直和分解になり、それぞれの次元はmと$k - m$だから$T_zM \times T_z^1M$の次元はkになる。$T_{(z, 0)}(T_z^1M)$の次元もkなので、

$$T_{(z, 0)}(T_z^1M) = T_zM \times T_z^1M$$

が成り立つ。上で$T_{(z, 0)}(T_z^1M)$を求めるために利用した曲線を使って、微分写像$dv_{(z, 0)}$を求めよう。

$$dv_{(z, 0)}(u, 0) = dv_{(z, 0)} \left(\left. \frac{d}{dt} \right|_{t=0} (c(t), 0) \right) = \left. \frac{d}{dt} \right|_{t=0} \nu(c(t), 0) = \left. \frac{d}{dt} \right|_{t=0} c(t) = u,$$

$$dv_{(z, 0)}(0, v) = dv_{(z, 0)} \left(\left. \frac{d}{dt} \right|_{t=0} (z, tv) \right) = \left. \frac{d}{dt} \right|_{t=0} \nu(z, tv) = \left. \frac{d}{dt} \right|_{t=0} (z + tv) = v$$

より、次の等式を得る。

$$dv_{(z, 0)}(u, v) = u + v \quad ((u, v) \in T_zM \times T_z^1M).$$

これより

$$dv_{(z, 0)} : T_{(z, 0)}(T_z^1M) \to R^k$$
2.4. ベクトル場と Euler 数

は線形同型写像であることがわかる。定理 1.1.12 より ν は局所的に微分同型写像になる。すなわち、各 $z \in M$ に対して z の開近傍 U_z と $\epsilon_z > 0$ が存在して、

$$T_{\epsilon_z}^\perp(U_z) = \{ (x, v) \in T^\perp M \mid x \in U_z, |v| < \epsilon_z \}$$

とおくと、$T_{\epsilon_z}^\perp(U_z)$ は $T^\perp M$ の開集合、$\nu (T_{\epsilon_z}^\perp(U_z))$ は \mathbb{R}^k の開集合になり、

$$\nu : T_{\epsilon_z}^\perp(U_z) \to \nu (T_{\epsilon_z}^\perp(U_z))$$

は微分同型写像になる。そこで、

$$U = \bigcup_{z \in M} T_{\epsilon_z}^\perp(U_z) \subset T^\perp M, \quad V = \bigcup_{z \in M} \nu (T_{\epsilon_z}^\perp(U_z)) \subset \mathbb{R}^k$$

とおくと、U は $T^\perp M$ の開集合になり、V は \mathbb{R}^k の開集合になる。ここまでの議論では、M がコンパクトであるという仮定は必要なかったが、ここからこの仮定が必要になる。

$$\{U_z \mid z \in M\}$$

は M の開被覆になり、M はコンパクトだから、有限個の U_z で M を覆うことができる。すなわち、ある $z_1, \ldots, z_p \in M$ が存在して

$$M = U_{z_1} \cup \cdots \cup U_{z_p}$$

が成り立つ。そこで

$$\epsilon = \min\{\epsilon_{z_1}, \ldots, \epsilon_{z_p}\} > 0$$

とおく。

$$T_{\epsilon}^\perp(M) \subset T_{\epsilon_{z_1}}^\perp(U_{z_1}) \cup \cdots \cup T_{\epsilon_{z_p}}^\perp(U_{z_p})$$

が成り立ち、$T_{\epsilon}^\perp(M)$ は $T^\perp M$ 内の $M \times \{0\}$ の開近傍になる。さらに、$\nu(T_{\epsilon}^\perp(M))$ は \mathbb{R}^k 内の M の開近傍になる。

さらに、$\epsilon > 0$ を十分に小さくとれば $\nu : T_{\epsilon}^\perp(M) \to \nu(T_{\epsilon}^\perp(M))$ は微分同型写像になることを示す。ν が局所的には微分同型になることはすでに示したので、そのためには、$\epsilon > 0$ を十分に小さくとれば $\nu(T_{\epsilon}^\perp(M) \to \nu(T_{\epsilon}^\perp(M))$ は単射になることを示せば十分である。もしそうならないと仮定すると、任意の自然数 i について

$$(x_i, u_i) \neq (x'_i, u'_i), \quad \nu(x_i, u_i) = \nu(x'_i, u'_i)$$

を満たす $(x_i, u_i), (x'_i, u'_i) \in T_{\epsilon}^\perp(M)$ が存在する。M はコンパクトだから M の点列 \{ x_i \} は収束部分列 \{ x_{i_j} \} を持つ。その極限を $x_0 \in M$ とする。さらに M の点列 \{ x'_{i_j} \} は収束部分列 \{ $x'_{i_{j_l}}$ \} を持つ。その極限を $x'_0 \in M$ とする。任意の l について

$$\nu(x_{i_{j_l}}, u_{i_{j_l}}) = \nu(x'_{i_{j_l}}, u'_{i_{j_l}})$$
が成り立つので、ここで ν は微分同型であることに矛盾する。したがって、$\epsilon > 0$ を十分に小さくとれば $\nu : T_\epsilon^+(M) \to \nu(T_\epsilon^+(M))$ は単射になり、さらに微分同型写像になることがわかった。

定理 2.4.17 $M \subset R^k$ を境界を持たないコンパクト多様体とする。$\epsilon > 0$ に対して

$$M_\epsilon = \{ x \in R^k \mid d(x, M) \leq \epsilon \}$$

とおくと、十分小さな ϵ に対して M_ϵ は境界を持つコンパクト k 次元多様体になる。v を M 上の C^∞ 級ベクトル場とし、零点はすべて非退化であると仮定する。このとき、v の零点の指数の和は、∂M_ϵ の Gauss 写像

$$g : \partial M_\epsilon \to S^{k-1}$$

の写像度に一致する。特に、M 上の C^∞ 級ベクトル場の零点の指数の和は、ベクトル場のとり方に依存しない。

証明 R^k 上の関数を

$$d(x, M) = \inf\{|x - y| \mid y \in M\} \quad (x \in R^k)$$

によって定める。$x \in R^k$ に対して

$$M \to R ; y \to |x - y|$$

は連続関数になり、M はコンパクトだから、ある $y \in M$ で最小値をとる。この y に対して $d(x, M) = |x - y|$ が成り立つ。このとき、$x - y$ は y において M に直交することを示そう。任意の接ベクトル $X \in T_yM$ に対して y を通る M の曲線 $c(t)$ を

$$c(0) = y, \quad \frac{d}{dt}\bigg|_{t=0} c(t) = X$$

を満たすようにとることができる。このとき、関数

$$t \mapsto |x - c(t)|^2$$
2.4. ベクトル場と Euler 数

は \(t = 0 \) で最小値をとるので、微分は 0 になる。よって

\[
0 = \frac{d}{dt} \bigg|_{t=0} |x - c(t)|^2 = -2 \langle x - y, X \rangle
\]

となり、\(x - y \) は \(X \) と直交する。すなわち、\(x - y \) は \(y \) において \(M \) に直交する。

定理 2.4.16 の \(\epsilon \) よりも小さい \(\epsilon > 0 \) をとると、任意の \(x \in M_\epsilon \) に対して、\(d(x, M) = |x - y| \) となる \(y \in M \) がただ一つ存在することを示しておく。このような \(y \in M \) が存在し、\(x - y \) が \(T_y M \) と直交することを上で示した。これより

\[
x - y \in T_y M, \quad |x - y| = d(x, M) < \epsilon
\]

となるので、\((y, x - y) \in T_y^\perp \) が成り立つ。さらに、

\[
\nu(y, x - y) = y + (x - y) = x.
\]

もし他の \(y_1 \in M \) で \(d(x, M) = |x - y_1| \) を満たすとすると、\(\nu(y_1, x - y_1) = x \) となり、\(\nu \) が \(T_y^\perp \) において单射であることに矛盾する。したがって、\(d(x, M) = |x - y| \) となる \(y \in M \) は、\(x \) に対してただ一つである。この \(y \) を \(r(x) \) とおく。

\[
\nu^{-1}(x) = (r(x), x - r(x)) \quad (x \in M_\epsilon)
\]

となるので、\(r : M_\epsilon \to M \) は \(C^\infty \) 対になる。

\(M_\epsilon \) 上の \(C^\infty \) 級関数 \(\phi \) を

\[
\phi(x) = |x - r(x)|^2 = \langle x - r(x), x - r(x) \rangle
\]

で定める。\(M_\epsilon \) の接ベクトル \(u \) に対して \(dr(u) \) は \(M \) の接ベクトルになるので、

\[
d\phi(u) = \frac{d}{dt} \bigg|_{t=0} \phi(x + tu) = \frac{d}{dt} \bigg|_{t=0} \langle x + tu - r(x + tu), x + tu - r(x + tu) \rangle
\]

\[
= 2 \langle u - dr(u), x - r(x) \rangle = 2 \langle u, x - r(x) \rangle - 2 \langle dr(u), x - r(x) \rangle
\]

\[
= 2 \langle u, x - r(x) \rangle.
\]

\(\partial M_\epsilon = \phi^{-1}(\epsilon^2) \) の \(x \) における接ベクトル \(u \in T_x(\partial M_\epsilon) \) に対して、

\[
0 = d\phi(u) = 2 \langle u, x - r(x) \rangle.
\]

よって、\(x - r(x) \) は \(\partial M_\epsilon \) にも直交する。さらに、\(x - r(x) \) は \(M_\epsilon \) の境界 \(\partial M_\epsilon \) において外向きになるので、\(\partial M_\epsilon \) の Gauss 写像 \(g \) は

\[
g(x) = \frac{x - r(x)}{|x - r(x)|} = \frac{1}{\epsilon}(x - r(x)) \quad (x \in \partial M_\epsilon)
\]

で与えられる。
次に零点はすべて非退化である M 上の C^∞ 級ベクトル場 v に対して、$M\epsilon$ 上の C^∞ 級ベクトル場 w を

$$w(x) = (x - r(x)) + v(r(x)) \quad (x \in M\epsilon)$$

で定める。$x \in M$ のときは $x = r(x)$ だから、$w(x) = v(x)$ となる。よって、w は M 上の C^∞ 級ベクトル場 v の $M\epsilon$ への拡張になっている。さらに $x - r(x)$ と $v(r(x))$ は直交しているので、$w(x) = 0$ となるための必要十分条件は $x - r(x) = 0$ かつ $v(r(x)) = 0$ が成り立つことである。よって、w の零点は M 上の v の零点に一致する。零点における指数を比較するために、w と v の零点 $z \in M$ における微分を計算する。z を通る曲線 $c(t)$ を M に含まれるようにとると、

$$dw_z(c'(0)) = \left. \frac{d}{dt} \right|_{t=0} w(c(t)) = \left. \frac{d}{dt} \right|_{t=0} \{(c(t) - r(c(t))) + v(r(c(t)))\} = \left. \frac{d}{dt} \right|_{t=0} v(c(t)) = dv_z(c'(0)).$$

これより、

$$dw_z(u) = dv_z(u) \quad (u \in T_zM)$$

を得る。次に $u \in T^1_2 M$ に対して $|t| < \epsilon$ のとき $r(z + tu) = z$ だから、

$$w(z + tu) = (z + tu) - r(z + tu) + v(r(z + tu)) = tu$$

となり、

$$dw_z(u) = \left. \frac{d}{dt} \right|_{t=0} w(z + tu) = \left. \frac{d}{dt} \right|_{t=0} tu = u.$$
によって M 上の C^∞ 級関数 f_u を定める。さらに、$x \in M$ に対して u を $T_x M$ に直交射影したベクトルを $v_u(x)$ と表すことにより、M 上の C^∞ 級ベクトル場 v_u を定める。ほとんどすべての u について v_u は非退化零点のみを持つ C^∞ 級ベクトル場であることがわかる。そこで、そのような u について f_u に Morse 理論を適用すると、v_u の指数の和は M の Euler 数 $\chi(M)$ に一致することがわかる。Morse 理論は多様体の胞体分割をその多様体上の関数の挙動を利用して記述する理論であり、多様体のトポロジーに関する幅広い応用がある。Morse 理論については、ホームページに公開している 1998 年度の講義ノート

数理工学研究科：微分幾何学 I, II (Morse 理論とその部分多様体への応用)
の第 1 章、または Morse 理論に関する書籍を参照すること。

第二段階 退化零点を持つ C^∞ 級ベクトル場に対しても定理の結論が成り立つことを示す。まず、R^m の開集合 U 上の C^∞ 級ベクトル場 v が $z \in U$ を孤立零点として持つ場合を考える。 z が v の零点として孤立していることから、

$$N = \{x \in R^m \mid |x - z| \leq r \} \subset U$$

内の v の零点が z だけになるように $r > 0$ をとることができる。このとき、v の z における指数は、

$$\tilde{v}(x) = v(x)/|v(x)| \quad (x \in \partial N)$$

で定まる C^∞ 級写像 $\tilde{v} : \partial N \to S^{m-1}$ の写像度 $\deg(\tilde{v})$ になる。

$$\delta = \min\{|v(x)| \mid r/2 \leq |x - z| \leq r\}$$

とおくと、N 内の v の零点は z だけだから $\delta > 0$ となる。Sard の定理より、$|y| < \delta$ を満たす v の正則値 $y \in R^m$ をとることができる。そこで、

$$\{x \in R^m \mid |x - z| < r/2\}$$

上恒等的に 1 で台が N に含まれる C^∞ 級関数

$$\lambda : U \to [0, 1]$$

を補題 2.1.3 を利用して構成する。補題 2.1.3(2) の関数 $a(t)$ を使って

$$b(t) = \frac{a(r^2 - t)}{a(r^2 - t) + a(t - r^2/4)} \quad (t \in R)$$

によって関数 $b(t)$ を定めると、$b(t)$ は

$$b(t) = 1 \quad (t \leq r^2/4)$$

$$0 < b(t) < 1 \quad (r^2/4 < t < r^2)$$

$$b(t) = 0 \quad (r^2 \leq t)$$
を満たす C^∞ 級関数になる。
\[\lambda(x) = b(|x - z|^2) \quad (x \in U) \]
とおくと $\lambda(x)$ は望む条件を満たす C^∞ 級関数になる。
\[v'(x) = v(x) - \lambda(x)y \quad (x \in U) \]
によって U 上の C^∞ 級ベクトル場 v' を定める。v' の N 内の零点 x_0 をとると、
$v(x_0) = \lambda(x_0)y$ となるので、
\[|v(x_0)| = |\lambda(x_0)y| \leq |y| < \delta. \]
あって、δ の定め方から、$|x_0 - z| < r/2$ となる。λ の定め方から、x_0 のある開近傍で $\lambda = 1$ となり、
$v'(x) = v(x) - y$ が成り立つ。あって、$dv'_{x_0} = dv_{x_0}$ となる。さらに、
\[0 = v'(x_0) = v(x_0) - y \]
より、$y = v(x_0)$ となり、y は v の正則値だから、x_0 は v' の正則点になる。あって、
dv'_{x_0} は線形同型写像になる。すなわち、x_0 は v' の非退化零点になる。以上より、
v' の N 内の零点はすべて非退化になる。v' は ∂N で v に一致する。補題 2.4.8 より、
v' の N 内の零点の指数の和は、$\nu : \partial N \to S^{m-1}$ の写像度に一致し、v の z における指数に一致する。
以上より、C^∞ 級ベクトル場の孤立零点の近傍で、非退化零点のみを持つ C^∞ 級ベクトル場であって、零点の指数の和がもとのベクトル場の孤立零点の指数に一致するものをとることができの。
一般の境界を持たないコンパクト多様体 M 上の C^∞ 級ベクトル場の場合は孤立零点の近傍で、非退化特異点のみを持つ C^∞ 級ベクトル場に置き換えて、しかも零点の指数の和を変えないようにすることができる。非退化零点のみを持つ C^∞ 級ベクトル場の零点の指数の和は、第一段階より、$\chi(M)$ に一致する。
第三段階 M が境界を持つ多様体の場合。$M \subset \mathbb{R}^k$ において、M 上の C^∞ 級ベクトル場 v を M_0 上に拡張すると、∂M の近傍では、v を拡張したベクトル場は連続ベクトル場になってしまう。しかし、今までと同様の議論から、v の零点の指数の和は $\chi(M)$ に一致することがわかる。

例 2.4.18 m 次元球面 S^m の北極を $p = (0, \ldots, 0, 1)$ で表す。
\[v(x) = p - \langle p, x \rangle x \quad (x \in S^m) \]
で S^m 上の C^∞ 級ベクトル場 v を定める。これは p を x の接ベクトル空間 $T_x S^m$ に直交射影したものである。各 $x \in S^m$ について
\[\langle v(x), x \rangle = \langle p - \langle p, x \rangle x, x \rangle = \langle p, x \rangle - \langle p, x \rangle = 0 \]
となるので、\(v(x) \in T_x S^m \) が成り立ち、\(v \) は \(S^m \) の \(C^\infty \) 級ベクトル場になっている。\(v(x) \) の定め方より、\(v \) の零点は \(\pm p \) のみである。\(v \) の零点における指数を計算する。

\[u \in T_p S^m \] に対して、

\[
dv_p(u) = \left. \frac{d}{dt} \right|_{t=0} v(t p + s u)
= \left. \frac{d}{dt} \right|_{t=0} (p - \langle p, t p + s u \rangle) (\cos tp + \sin tu) = -\langle p, u \rangle p - \langle p, p \rangle u = -u.
\]

よって、\(\det dv_p = (-1)^m \) となり、補題 2.4.12 より、\(v \) の零点 \(p \) における指数も \((-1)^m \) になる。次に \(u \in T_{-p} S^m \) に対して、

\[
dv_{-p}(u) = \left. \frac{d}{dt} \right|_{t=0} v(t (-p) + s u)
= \left. \frac{d}{dt} \right|_{t=0} (p - \langle p, t (-p) + s u \rangle) (\cos(-p) + \sin tu) = -\langle p, u \rangle (-p) - \langle p, -p \rangle u = u.
\]

よって、\(\det dv_{-p} = +1 \) となり、補題 2.4.12 より、\(v \) の零点 \(p \) における指数も \(+1 \) になる。以上より、\(v \) の零点の指数の和は、\(1 + (-1)^m \) になる。すなわち、\(m \) が奇数のときは \(0 \) であり、\(m \) が偶数のときは \(2 \) になる。定理 2.4.17 より、偶数次元球面上の任意の \(C^\infty \) 級ベクトル場は零点を持つことがわかる。

例 2.4.19 奇数次元球面には \(S^{2n+1} \) には零点を持たない \(C^\infty \) 級ベクトル場を構成できる。

\[
v(x_1, x_2, \ldots, x_{2n+1}, x_{2n+2}) = (-x_2, x_1, \ldots, -x_{2n+2}, x_{2n+1})
= ((x_1, x_2, \ldots, x_{2n+1}, x_{2n+2}) \in S^{2n+1})
\]

によって、\(S^{2n+1} \) 上の \(C^\infty \) 級ベクトル場 \(v \) を定める。\(S^{2n+1} \) の元に対して奇数番の成分を番号に 1 を加えた偶数番の成分にし、偶数番の成分を -1 倍して番号から 1 引いた奇数番の成分にしている。任意の \(x \in S^{2n+1} \) に対して

\[
\langle v(x), x \rangle = -x_1 x_2 + x_2 x_1 - \cdots - x_{2n+1} x_{2n+2} + x_{2n+2} x_{2n+1} = 0
\]

が成り立つので、\(v(x) \in T_x S^{2n+1} \) となり、確かに \(v \) は \(S^{2n+1} \) 上のベクトル場になっている。定め方から \(v \) は零点を持たない。特に \(v \) の零点の指数の和は 0 になる。

偶数次元の球面の Euler 数は 2 になり、Poincaré-Hopf の定理 (定理 2.4.7) より零点を持たない \(C^\infty \) 級ベクトル場は偶数次元球面上には存在しない。
例 2.4.20 M を境界を持たない奇数次元コンパクト多様体とし、v を M 上の任意の C^∞ 級ベクトル場とする。$-v$ の零点 z における指数は、v の z における指数の -1 倍になる。よって、零点の指数の和も逆符号になるが、定理 2.4.17 より、それらは一致するので、0 になる。
第3章 フレーム付きコボルディズム

3.1 フレーム付きコボルディズム

コンパクト多様体 M から M' への C^∞ 級写像の写像度は、M と M' に向かが付いていて等しい次元を持っているときだけ定義することができる。この節では、コンパクトで境界のない多様体 M から球面への C^∞ 級写像

$$f : M \to S^p$$

に対して Pontryagin によって定義された、写像度のある一般化を扱う。

定義 3.1.1 M をコンパクト m 次元多様体とし、N と N' を M 内のコンパクト n 次元部分多様体とする。M, N, N' はすべて境界を持たないと仮定する。$m - n$ を N の余次元と呼ぶ。M 内で N が N' にコボルダントであるとは、ある $0 < \epsilon < 1/2$ が存在し、$M \times [0, 1]$ の部分集合

$$N \times [0, \epsilon) \cup N \times (1 - \epsilon, 1]$$

がコンパクト多様体

$$X \subset M \times [0, 1]$$

に拡張され、

$$\partial X = N \times \{0\} \cup N' \times \{1\}$$

であり、X は ∂X 以外の点で $M \times \{0\} \cup M \times \{1\}$ と交わらないことである。X を M と N' の間のコボルディズムと呼ぶ。

注意 3.1.2 上の定義のコボルダントは一つのコンパクト多様体内のコンパクト部分多様体の間の同値関係になる。

定義 3.1.3 多様体 M の部分多様体 N のフレームとは、各 $x \in N$ に対して N の x における法ベクトル空間 $T^\perp_x N \subset T_x M$ の基底

$$v(x) = (v^1(x), \ldots, v^{m-n}(x))$$

を対応させる C^∞ 級写像のことである。部分多様体 N と N のフレーム v の組 (N, v) をフレーム付き部分多様体と呼ぶ。二つのフレーム付き部分多様体 (N, v) と (N', v)
がフレーム付きコボルダントであるとは、N と N' の間のコボルディズム $X \subset M \times [0, 1]$ と X のフレーム u が存在し、

$$
u^i(x, t) = (v^i(x), 0) \quad ((x, t) \in N \times [0, \varepsilon))$$

$$
u^i(x, t) = (w^i(x), 1) \quad ((x, t) \in N' \times (1 - \varepsilon, 1])$$

が成り立つことである。

注意 3.1.4 上の定義のフレーム付きコボルダントはフレーム付きコンパクト部分多様体の間の同値関係になる。

M を境界のないコンパクト多様体とし、$\dim M \geq p$ となる p をとる。$f : M \to S^p$ を C^∞級写像とする。f の正則値 $y \in S^p$ をとる。以下で f が部分多様体 $f^{-1}(y) \subset M$ のフレームを誘導することを示す。接ベクトル空間 $T_y S^p$ の正の向きの基底 $v = (v^1, \ldots, v^p)$ をとる。各 $x \in f^{-1}(y)$ に対して

$$df_x : T_x M \to T_y S^p$$

は $T_x(f^{-1}(y))$ を 0 に写し、法ベクトル空間 $T_x^\perp(f^{-1}(y))$ を $T_y S^p$ に線形同型に写す。したがって、$df_x(v^i(x)) = w^i$ を満たす

$$w^i(x) \in T_x^\perp(f^{-1}(y)) \subset T_x M$$

が唯一つ定まる。これによって、部分多様体 $f^{-1}(y) \subset M$ のフレーム $w = (w^1(x), \ldots, w^p(x))$ が定まる。w を f^*v で表す。

定義 3.1.5 上で定めたフレーム付き部分多様体 $(f^{-1}(y), f^*v)$ を写像 f に付随する Pontryagin 多様体と呼ぶ。

f に付随する Pontryagin 多様体は、f の正則値 $y \in S^p$ と $T_y S^p$ の正の向きの基底 v の取方に依存するが、同じフレーム付きコボルディズム類を定めることができる。

定理 3.1.6 $y, y' \in S^p$ を f の正則値とし、v, v' をそれぞれ $T_y S^p$ と $T_{y'} S^p$ の正の向きの基底とする。このとき、フレーム付き部分多様体 $(f^{-1}(y'), f^*v')$ は $(f^{-1}(y), f^*v)$ にフレーム付きコボルダントになる。

定理 3.1.7 M から S^p への二つの C^∞級写像が滑らかにホモトピックになるための必要十分条件は、対応する Pontryagin 多様体がフレーム付きコボルダントになることである。

定理 3.1.8 M 内の任意の余次元 p のフレーム付きコンパクト部分多様体 (N, w) に対して、ある C^∞級写像 $f : M \to S^p$ が存在し、f に付随する Pontryagin 多様体が (N, w) に一致する。
3.1. フレーム付きコボルディズム

以上の定理より、M から S^p への C^∞ 級写像の滑らかなホモトピー類と、M 内の余次元 p のフレーム付きコンパクト部分多様体のフレーム付きコボルディズム類とが一対一に対応することがわかる。

定理 3.1.6 を証明するため、次の三つの補題を準備する。

補題 3.1.9 v と v' を f の正則値 $y \in S^p$ における接ベクトル空間 $T_y S^p$ の二つの正の向きの基底とする。このとき、Pontryagin 多様体 $(f^{-1}(y), f^*v)$ と $(f^{-1}(y), f^*v')$ はフレーム付きコボルディグメントになる。

証明 v と v' は共に $T_y S^p$ の正の向きの基底だから、一般線形群 $GL(p, \mathbb{R})$ 内の行列式正の元全体の成す部分群 $GL^+(p, \mathbb{R})$ の元 g によって、$v' = gv$ と変換される。定理 2.3.6 より $GL^+(p, \mathbb{R})$ は弧状連結だから、$g(0) = 1, g(1) = g$ なる $GL^+(p, \mathbb{R})$ の C^∞ 級曲線 $g(t) (0 \leq t \leq 1)$ が存在する。そこで、部分多様体 $f^{-1}(y) \times [0, 1] \subset M \times [0, 1]$ のフレーム w を

$$w(x, t) = (f^*(g(t)v))(x, t) \quad ((x, t) \in f^{-1}(y) \times [0, 1])$$

によって定めると、$(f^{-1}(y), f^*v)$ と $(f^{-1}(y), f^*v')$ はフレーム付きコボルディグメントになることがわかる。

注意 3.1.10 補題 3.1.9 より、Pontryagin 多様体 $(f^{-1}(y), f^*v)$ のフレーム付きコボルディズム類を考える限り、$T_y S^p$ の v の取り方を明記する必要がないので、単にフレーム付き部分多様体 $f^{-1}(y)$ と言うことができる。

補題 3.1.11 $y \in S^p$ を f の正則値とすると、y のある開近傍 U が存在し、任意の $z \in U$ に対して、フレーム付き部分多様体 $f^{-1}(z)$ は $f^{-1}(y)$ にフレーム付きコボルディグメントになる。

証明 $C \subset M$ を f の臨界点の全体とすると、C は M の閉集合になるので、特に、コンパクトになる。よって、$f(C)$ も S^p 内のコンパクト部分集合になり、特に、閉集合になる。これより f の正則値全体は $f(C)$ の補集合だから S^p の開集合になり、ある $\epsilon > 0$ をとると、

$$\{z \in S^p \mid |z - y| < \epsilon\}$$

は f の正則値全体に含まれる。このとき、$\epsilon < 2$ としても差し支えない。$|z - y| < \epsilon$ となる $z \in S^p$ をとる。すると z と y を通る S^p の大円はただ一つ定まる。この大円の回転変換であって z から y に向かう方向の角度を θ で表したものを $R(\theta) \in SO(p+1)$ とする。θ を 0 から正の方向に向かすと、$R(\theta)(y)$ は y から z に向かって大円の上を動いている。$R(\theta)(y)$ が最初に z に到達するときの θ の値を θ_0 で表すことにす
る。すなわち \(R(\theta_0)(y) = z \) となる。補題 2.1.3(3) で定めた \(C^\infty \) 級関数 \(\phi(t) \) とると、
\[
\begin{align*}
\phi(t) &= 0 \quad (t \leq 1/3) \\
0 < \phi(t) < 1 \quad (1/3 < t < 2/3) \\
\phi(t) &= 1 \quad (2/3 \leq t)
\end{align*}
\]
を満たす。そこで、\(r_t = R(\theta_0 \phi(t)) \) とおくと、\(r_t \) は \(SO(p + 1) \) の \(C^\infty \) 級曲線になり次の条件を満たす。

(1) \(0 \leq t < 1/3 \) に対して \(r_t = 1 \)。

(2) \(2/3 < t \leq 1 \) に対して \(r_t = r_1 \) で、\(r_1(y) = z \)。

(3) 各 \(0 \leq t \leq 1 \) について \(r_t^{-1}(z) \) は \(y \) と \(z \) を通る \(S_p \) の大円上にある。

\(r_t \) を使って、
\[
F(x, t) = r_t f(x) \quad ((x, t) \in \mathbb{M} \times [0, 1])
\]
によって \(C^\infty \) 級写像
\[
F : \mathbb{M} \times [0, 1] \to S_p
\]
を定める。各 \(0 \leq t \leq 1 \) について \(r_t^{-1}(z) \) は \(y \) と \(z \) を通る大円の \(y \) と \(z \) の間の点になり、それらは \(f \) の正則値だから、\(z \) は
\[
r_1 \circ f : \mathbb{M} \to S_p
\]
の正則値になる。よって、補題 1.2.17 より、\(F^{-1}(z) \) は \(\mathbb{M} \times [0, 1] \) 内の境界付き部分多様体になり、

\[
\partial(F^{-1}(z)) = F^{-1}(z) \cap (\mathbb{M} \times \{0\} \cup \mathbb{M} \times \{1\})
= ((r_0 \circ f)^{-1}(z) \times \{0\}) \cup ((r_1 \circ f)^{-1}(z) \times \{1\}).
\]

ここで、
\[
(r_0 \circ f)^{-1}(z) = f^{-1}(z)
\]
であり、
\[
(r_1 \circ f)^{-1}(z) = f^{-1}(r_1^{-1}(z)) = f^{-1}(y)
\]
となるので、\(F^{-1}(z) \) は \(\mathbb{M} \) の部分多様体 \(f^{-1}(z) \) と \(f^{-1}(y) \) の間のコボルディズムを与える。さらに、\(T_z S_p \) の正の向きの基底 \(v \) をとると、\((F^{-1}(z), F^* v) \) は \(\mathbb{M} \) のフレーム付き部分多様体 \(f^{-1}(z) \) と \(f^{-1}(y) \) の間のフレーム付きコボルディズムを与える。したがって、フレーム付き部分多様体 \(f^{-1}(z) \) は \(f^{-1}(y) \) にフレーム付きコボルディズムになる。

補題 3.1.12 \(f, g : \mathbb{M} \to S_p \) を滑らかにホモトピックな \(C^\infty \) 級写像とする。\(f \) と \(g \)
の共通の正則値 \(y \in S_p \) に対して、フレーム付き部分多様体 \(f^{-1}(y) \) は \(g^{-1}(y) \) にフレーム付きコボルディズムになる。
3.1. フレーム付きコボルディズム

証明 補題 3.1.11 より、y の開近傍 U が存在し、任意の z ∈ U に対してフレーム付き部分多様体 f^{-1}(z) は f^{-1}(y) にフレーム付きコボルダントになる。同様に、y の開近傍 V が存在し、任意の z ∈ V に対してフレーム付き部分多様体 g^{-1}(z) は g^{-1}(y) にフレーム付きコボルダントになる。

f と g の間の滑らかなホモトピーを補題 2.1.2 の証明中に示したように
\[F(x, t) = f(x) \quad (0 \leq t \leq 1/3) \]
\[F(x, t) = g(x) \quad (2/3 \leq t \leq 1) \]
となるようにとりなおすことができる。Sard の定理から、F の正則値 z を U∩V 内からとることができる。このとき、T_z, S^p の正の向きの基底 v をとると、(F^{-1}(z), F^*v) はフレーム付き部分多様体 f^{-1}(z) と g^{-1}(z) の間のフレーム付きコボルディズムを与える。よって、f^{-1}(z) と g^{-1}(z) はフレーム付きコボルダントになり、先に示したことと合わせると、f^{-1}(y) と g^{-1}(y) はフレーム付きコボルダントになる。

定理 3.1.6 の証明 y, z ∈ S^p を f の正則値とする。SO(p + 1) の C^∞ 級曲線 r_1 を r_0 = 1 と r_1(y) = z を満たすようにとる。すると、f は r_1 ∘ f に滑らかにホモトピーックになる。z は f と r_1 ∘ f の共通の正則値になり、補題 3.1.12 より、フレーム付き部分多様体 f^{-1}(z) は
\[(r_1 ∘ f)^{-1}(z) = f^{-1}(r_1^{-1}(z)) = f^{-1}(y) \]
にフレーム付きコボルダントになる。以上で定理 3.1.6 の証明が完結する。

定理 3.1.8 を証明するため、次の定理を準備する。

定理 3.1.13 M を境界のない多様体とし、(N, ν) を M の余次元 p のフレーム付きコンパクト部分多様体で、境界を持たないと仮定する。このとき、M 内の N の開近傍であって、N × R^p と微分同型になるものが存在する。さらに、この微分同型は各 x ∈ N を (x, 0) ∈ N × R^p に写し、ν(x) を R^p の標準基底に写すようにとることができる。

証明の概要 M の各点の接ベクトル空間は R^k の部分ベクトル空間になり、R^k の標準の内積は M の各点の接ベクトル空間の内積を誘導する。これによって、M は Riemann 多様体になる。この後、議論では Riemann 幾何学の知識を若干利用する。Euclid 空間内の多様体の場合と同様に M 内の N の法ベクトル束を定義でき、N の法ベクトル束の法数写像を使って N の開近傍をつくると、同様に法ベクトル束の 0 断面のある一定半径の開近傍と M 内の N の開近傍との間に微分同型写像を構成できる。N にフレームがあることから、N の法ベクトル束は自明になり、ν(x) を R^p の標準基底に写すように微分同型を構成することできる。
定理 3.1.8 の証明 定理 3.1.13 より，M 内の N の開近傍 V と微分同型写像

\[g : N \times \mathbb{R}^p \rightarrow V \]

が存在する。これより $\pi(g(x,v)) = v$ を満たす C^∞ 写像

\[\pi : V \rightarrow \mathbb{R}^p \]

が一意的に定まる。すなわち，g の逆写像の \mathbb{R}^p 成分が π である。法指数写像の性質を定理 3.1.13 の写像に適用すると $0 \in \mathbb{R}^p$ は π の正則値になることがわかる。\mathbb{R}^p の標準基底をとることにより，$\pi^{-1}(0)$ はフレーム付き部分多様体になり，(N,\mathfrak{m}) に一致する。

一点 $s_0 \in S^p$ を固定し，

\[\{ x \in \mathbb{R}^p \mid |x| < 1 \} \]

を $S^p - \{ s_0 \}$ に微分同型に写し，

\[\phi\{ x \in \mathbb{R}^p \mid |x| \geq 1 \} = \{ s_0 \} \]

となる C^∞ 級写像 $\phi : \mathbb{R}^p \rightarrow S^p$ を構成する。$s_0 = (0, \ldots, 0, 1)$ としても一般性は失われない。

これを使って

\[f(x) = \begin{cases}
\phi(\pi(x)) & (x \in V) \\
 s_0 & (x \notin V)
\end{cases} \]

によって C^∞ 級写像 $f : M \rightarrow S^p$ を定める。$\phi(0) \in S^p$ は f の正則値になり，

\[f^{-1}(\phi(0)) = \pi^{-1}(0) = N \]

になり，f に付随する Pontryagin 多様体は (N,\mathfrak{m}) に一致する。

補題 3.1.14 M を境界を持たないコンパクト多様体とする。$f, g : M \rightarrow S^p$ を二つの C^∞ 級写像とし，$y \in S^p$ を f, g 共通の正則値とする。$T_y S^p$ の正の向きの基底 v についてフレーム付き部分多様体 $(f^{-1}(y), f^*v)$ と $(g^{-1}(y), g^*v)$ が等しいならば，f, g は滑らかにホモトピックになる。

証明 $N = f^{-1}(y) = g^{-1}(y)$ とおく。$f^*v = g^*v$ より，任意の $x \in N$ について $f^*v(x) = g^*v(x)$ となり，$df_x|_{T_xN} = dg_x|_{T_xN}$。また，$df_x|_{T_xN} = dg_x|_{T_xN} = 0$ だから，df_x と dg_x は $T_xM = T_xN + T^\perp_xN$ で等しくなり，$df_x = dg_x$ が成り立つ。

まず f と g が N のある近傍 V 上で一致している場合を考える。

\[h : S^p - \{ y \} \rightarrow \mathbb{R}^p \]
3.1. フレーム付きコボルディズム

を立体射影とする。

\[H(x, t) = \begin{cases}
 f(x) & (x \in V) \\
 h^{-1}(th(f(x)) + (1-t)h(g(x))) & (x \in M - N)
\end{cases} \]

とおく。\(x \in V \cap (M - N) = V - N \) のとき \(f(x) = g(x) \) となるので、上の \(H(x, t) \) の定義の二つの場合分けの共通部分において二つの定義は一致する。さらに \(H(x, t) \) は \(C^\infty \) 級になり、\(f \) と \(g \) は滑らかにホモトピックになる。

上で示したことより、補題を証明するには \(f \) を \(N \) のある近傍で \(g \) に一致するように、\(y \) の逆像 \(N \) を変化させずに、滑らかに変形できればよいことになる。定理 3.1.13 より、\(N \times \mathbb{R}^p \) から \(M \) 内の \(N \) の開近傍 \(V \) への微分同型

\[N \times \mathbb{R}^p \to V \subset M \]

が存在する。\(N = f^{-1}(y) \) であり \(N \) はコンパクトだから、\(V \) を十分小さくとり、\(f(V), g(V) \subset \mathbb{R}^p \) が \(-y \in \mathbb{R}^p \) を含まないようにすることができる。\(V \) と \(N \times \mathbb{R}^p \) を上の微分同型で同一視し、\(\mathbb{R}^p - \{ -y \} \) を微分同型によって \(\mathbb{R}^p \) と同一視すると、

\(f, g \) に対応する写像

\[F, G : N \times \mathbb{R}^p \to \mathbb{R}^p \]

を得る。\(F, G \) は

\[F^{-1}(0) = G^{-1}(0) = N \times \{ 0 \} \]

と

\[dF_{(x, 0)} = dG_{(x, 0)} = \mathbb{R}^p \] への射影

\((x \in N) \)

を満たす。

\(F, G \) の \(N \times \{ 0 \} \) における微分の性質より、ある \(c > 0 \) が存在し、\(x \in N, \ u \in \mathbb{R}^p, \ 0 < |u| < c \) のとき、

\[\langle F(x, u), u \rangle > 0, \ \langle G(x, u), u \rangle > 0 \]

が成り立つことを示す。

\(F \) は

\[F(x, 0) = 0, \ dF_{(x, 0)}(X, u) = u \]

を満たしているので、Taylor の定理より、ある定数 \(c_1, c_2 > 0 \) が存在し、

\[|F(x, u) - u| \leq c_1 |u|^2 \quad (|u| \leq c_2) \]

が成り立つ。\(N \) はコンパクトだから、\(c_1, c_2 \) はすべての \(x \in N \) について共通にとることができる。Cauchy-Schwarz の不等式より、

\[|\langle F(x, u), u \rangle - |u|^2| = |\langle F(x, u) - u, u \rangle| \leq |\langle F(x, u) - u, u \rangle| \cdot |u| \leq c_1 |u|^3. \]
第3章 フレーム付きコボルディズム

よって、

\[-c_1 |u|^3 \leq \langle F(x, u), u \rangle - |u|^2\]

となり、

\[|u|^2 - c_1 |u|^3 \leq \langle F(x, u), u \rangle\]

を得る。そこで、\(c = \min\{c_1^{-1}, c_2\}\) とおくと、\(0 < |u| < c\) に対して

\[0 < |u|^2(1 - c_1 |u|) \leq \langle F(x, u), u \rangle\]

が成り立つ。\(G\) についても同様にできる。

これより、\(F(x, u), G(x, u)\) は \(R^p\) 内の半空間

\[\{v \in R^p \mid \langle v, u \rangle > 0\}\]

内にある。そこで、\(x \in N, u \in R^p, |u| < c\) と \(0 \leq t \leq 1\) に対して

\[H_t(x, u) = (1 - t)F(x, u) + tG(x, u)\]

によって \(H_t\) を定める。\(0 < |u| < c\) のとき各 \(0 \leq t \leq 1\) について \(H_t(x, u) \neq 0\) だから、

\[H_t^{-1}(0) = N \times \{0\}\]

が成り立つ。

滑らかなホモトピーを全体で定義するために、\(C^\infty\) 級関数 \(\lambda : R^p \to [0, 1]\) を

\[\lambda(u) = \begin{cases}
1 & (|u| \leq c/2) \\
0 & (c \leq |u|)
\end{cases}\]

となるようにとる。

\[F_t(x, u) = (1 - \lambda(u)t)F(x, u) + \lambda(u)tG(x, u)\]

によって滑らかなホモトピー \(F_t\) を定めると、\(F_0 = F\) と \(F_1 = G (|u| \leq c/2)\) を満たし、さらに各 \(0 \leq t \leq 1\) について \(F_t^{-1}(0) = N \times \{0\}\) が成り立つ。

対応する元の \(f\) の滑らかな変形は望むものになり、補題の証明が完結する。

定理 3.1.7 の証明 \(f, g\) が滑らかにホモトピックであると仮定すると、補題 3.1.12 より、Pontryagin 多様体 \(f^{-1}(y)\) と \(g^{-1}(y)\) はフレーム付きコボルダントになる。

逆に Pontryagin 多様体 \(f^{-1}(y)\) と \(g^{-1}(y)\) の間のフレーム付きコボルディズム \((X, \nu)\) があると仮定する。フレーム付き部分多様体 \((X, \nu) \subset M \times [0, 1]\) に対して、定理 3.1.8 の証明と同様にして、\(C^\infty\) 級写像

\[F : M \times [0, 1] \to S^p\]
であって、\((F^{-1}(y), F^* v) = (X, w)\)を満たすものを構成することができる。\(F_t(x) = F(x, t)\)とおく。\(F_0, f : M \to S^n\)は同じ Pontryagin 多様体を定めているので、補題 3.1.14 より、\(F_0\) と \(f\) は滑らかにホモトピックになる。同様にして、\(F_1\) は \(g\) は滑らかにホモトピックになる。したがって、\(f\) と \(g\) も滑らかにホモトピックになる。

定理 3.1.15 (Hopf) \(M\) を境界を持たない向きの付いたコンパクト連結 \(m\) 次元多様体とする。\(M\) から \(S^m\) への二つの \(C^\infty\) 級写像が滑らかにホモトピックになるための必要十分条件は、二つの \(C^\infty\) 級写像が等しい写像度を持つことである。

証明 滑らかにホモトピックになる二つの \(C^\infty\) 級写像の写像度が等しいことは、定理 2.2.5 ですでに証明されている。

\(M\) 内の余次元 \(m\) のフレーム付き部分多様体とは、\(M\) の有限部分集合の各点に接ベクトル空間の基底を指定することに他ならない。\(M\) から \(S^m\) への \(C^\infty\) 級写像 \(f : M \to S^m\) について、正則値 \(y \in S^m\) について

\[
deg(f) = \sum_{x \in f^{-1}(y)} \text{sign} df_x
\]

となる。\(M\) から \(S^m\) へのもう一つの \(C^\infty\) 級写像 \(g : M \to S^m\) が \(f\) 同じ写像度を持つと仮定する。\(f\) と \(g\) の共通の正則値 \(y \in S^m\) をとると、

\[
\sum_{x \in f^{-1}(y)} \text{sign} df_x = \sum_{x \in g^{-1}(y)} \text{sign} dg_x
\]

が成り立つ。\(f^{-1}(y)\) の点 \(x_0, x_1\) であって、\(\text{sign} df_{x_0} = -\text{sign} df_{x_1}\) となる点の組に対して、\(M \times [0, 1]\) 内の曲線 \(c : [0, 1] \to M \times [0, 1]\) で二点を結び、\(c\) が \(M \times [0, 1]\) の境界に直交するようにする。\(T_{x_0} M\) の正の向きの基底を \(c\) の \(c(0)\) における法ベクトル空間の基底とみなして、\(c\) に沿って滑らかに移動すると、\(c(1)\) では \(T_{x_1} M\) の逆向きの基底になる。\(g^{-1}(y)\) についても同様の操作を行う。残った \(f^{-1}(y)\) と \(g^{-1}(y)\) の点はすべて同符号で、個数はどちらも \(|\deg(f)| = |\deg(g)|\) に一致する。これら \(f^{-1}(y)\) の点と \(g^{-1}(y)\) の点を組にして \(M \times [0, 1]\) 内の曲線で結び、構成したすべての曲線の合併に法ベクトル場の基底を合わせて考えると、Pontryagin 多様体 \(f^{-1}(y)\) と \(g^{-1}(y)\) の間のフレーム付きコボルディズムになる。したがって、定理 3.1.7 より、\(f\) と \(g\) は滑らかにホモトピックになる。

定理 3.1.16 \(M\) を境界を持たない向き付け可能ではかないコンパクト連結 \(m\) 次元多様体とする。\(M\) から \(S^m\) への二つの \(C^\infty\) 級写像が滑らかにホモトピックになるための必要十分条件は、二つの \(C^\infty\) 級写像が等しい写像度を持つことである。

証明 滑らかにホモトピックになる二つの \(C^\infty\) 級写像の写像度が等しいことは、定理 2.1.7 ですでに証明されている。
第3章 フレーム付きコボリディズム

M から S^n への二つの C^∞ 級写像 $f, g : M \to S^n$ が同じ法 2 の写像度を持つとき、

$$\#f^{-1}(y) = \#g^{-1}(y)$$

が成り立つ。$f^{-1}(y)$ の点 x_0, x_1 に対して、$M \times [0, 1]$ 内の曲線 $c : [0, 1] \to M \times [0, 1]$ で二点を結び、c が $M \times [0, 1]$ の境界に直交するようにする。$T_{x_0}M$ の基底 $df^*_{x_0}v$ を
c の $c(0)$ における法ベクトル空間の基底とみなし、c に沿って滑らかに移動すると、$c(1)$ では $T_{x_1}M$ の基底になる。これが $df^*_{x_0}v$ と同じ向きのときは c をそのままにし、逆向きのときは、M が向き付け可能でないことから、$M \times [0, 1]$ も向き付け可能ではないので、c のホモトピー類をとりかえることにより、同じ向きになるようにすることができる。

$g^{-1}(y)$ についても同様の操作を行う。残った $f^{-1}(y)$ と $g^{-1}(y)$ の点の個数はどちらも 0 になるかまたは 1 になる。1 のときは、これら $f^{-1}(y)$ の点と $g^{-1}(y)$ の点を組にして $M \times [0, 1]$ 内の曲線で結び、構成したすべての曲線の合併に法ベクトル場の基底を合わせて考えると、Pontryagin 多様体 $\beta^{-1}(y)$ と $\gamma^{-1}(y)$ の間のフレーム付きコボリディズムになる。したがって、定理 3.1.7 より、f と g は滑らかにホモトピーになる。

例 3.1.17 例 2.2.12 で原点中心の点対称写像

$$r : S^n \to S^n ; x \mapsto -x$$

の写像度は $\deg r = (-1)^{n+1}$ となることを示し、特に n が偶数のときは r は恒等写像と滑らかにホモトピーにはならないことを示した。さらに、定理 2.2.14 の証明中に n が奇数のときは S^n 上に各点で 0 にならない C^∞ 級ベクトル場が存在することを示し、そのとき、r は恒等写像と滑らかにホモトピーになることを示した。この結果は定理 3.1.15 からも次のように簡単にわかる。n が奇数のときは、$\deg r = (-1)^{n+1} = 1 = \deg 1$ となり、定理 3.1.15 から r は 1 と滑らかにホモトピーになる。

例 3.1.18 例 2.2.9 では

$$f_k : S^1 \to S^1 ; z \mapsto z^k$$

の写像度が k になることを述べた。定理 3.1.15 より任意の C^∞ 級写像 $f : S^1 \to S^1$ は $f_{\deg f}$ に滑らかにホモトピーになる。したがって、

$$\{ f : S^1 \to S^1 : C^\infty\text{級写像} \mid \deg f = k \}$$

は滑らかにホモトピーな C^∞ 級写像の同値類になり、f_k が代表元になる。
3.2 まつわり数

この節の主題まつわり数の定義では球面の向きを使うので、まず球面の向きを復習しておく。有限次元実ベクトル空間の向きと多様体の向きは、定義2.2.1で定義した。特に \(\mathbb{R}^n \) には標準的な向きが定まっている。その向きから \(\mathbb{R}^n \) 内の \(n \) 次元多様体にも自然に向きが定まる。特に

\[
D^n = \{ x \in \mathbb{R}^n \mid |x| \leq 1 \}
\]

にも自然に向きが定まる。定義2.2.2 では向きの付いた境界付き多様体の境界に向かを定めた。これに従って \(D^n \) の境界である球面の向きを定める。下図は \(S^1 \) と \(S^2 \) の向きを示している。どちらも \(v_1 \) が外向きのベクトルである。

\[
\begin{align*}
S^1 & \quad \text{図} \\
S^2 & \quad \text{図}
\end{align*}
\]

\(S^1 \) の場合は \(v_2 \) が向きを定め、\(S^2 \) の場合は \(v_2, v_3 \) が向きを定めている。一般の場合、

\[
p = (1, 0, \ldots, 0) \in S^n \text{における接ベクトル空間は}
\]

\[
T_p S^n = \{ (0, x_2, \ldots, x_{n+1}) \mid x_1 \in \mathbb{R} \}
\]

となり、

\[
(0, 1, 0, \ldots, 0), (0, 0, 1, 0, \ldots, 0), \ldots, (0, 0, \ldots, 0, 1)
\]

が \(S^n \) の向きを定める。

定義 3.2.1 共通部分のない多様体 \(M, N \subset \mathbb{R}^{k+1} \) に対して、まつわり写像

\[
\lambda : M \times N \to S^k
\]

を \(\lambda(x, y) = (x - y)/|x - y| \) によって定める。\(M \) と \(N \) が境界なしで向きの付いたコンパクト多様体であって、\(\dim M + \dim N = k \) を満たすとする。\(M \) の接ベクトル空間の正の向きの基底と \(N \) の接ベクトル空間の正の向きの基底を順に並べ、\(M \times N \) の接ベクトル空間の向きを定めると、\(M \times N \) の向きが定まる。このとき、\(\lambda \) の写像度を \(M \) と \(N \) のまつわり数と呼び、\(l(M, N) \) で表す。
定理 3.2.2 $M, N \subset \mathbb{R}^{k+1}$ は共通部分がなく、さらに境界なしで向きの付いたコンパクト多様体であって、$\dim M + \dim N = k$ を満たすとする。N と共通部分を持たない向きの付いた境界付きコンパクト多様体 $X \subset \mathbb{R}^{k+1}$ が存在し、$M = \partial X$ となるとき、$l(M, N) = 0$ が成り立つ。

証明 $m = \dim M, n = \dim N$ とおく。すると、$\dim X = m + 1$ となり、X の各点は半空間 H^{m+1} の開集合と微分同型になる開近傍を持つ。N の各点は \mathbb{R}^n の開集合と微分同型になる開近傍を持つので、$X \times N$ の各点は

$$H^{m+1} \times \mathbb{R}^n = H^{m+n+1} = H^{k+1}$$

の開集合と微分同型になる開近傍を持つ。したがって、$X \times N$ は向きの付いた境界付きコンパクト $(k + 1)$ 次元多様体になり、

$$\partial (X \times N) = \partial X \times N = M \times N$$

が成り立つ。X は N と共通部分を持たないことから、

$$\Lambda : X \times N \to S^k$$

を $\Lambda(x, y) = (x - y)/|x - y|$ によって定めることができる。$\Lambda|_{\partial(X \times N)} = \lambda$ だから、補題 2.2.6 より $\deg \lambda = 0$ を得る。したがって、$l(M, N) = \deg \lambda = 0$ が成り立つ。

例 3.2.3 \mathbb{R}^3 内の二つの閉曲線のまつわり数の例を挙げておく。

$$\mu(s) = (\cos s, \sin s, 0), \quad \nu(t) = (0, 1 + \cos t, \sin t) \quad (s, t \in \mathbb{R})$$

によって $\mu(s), \nu(t)$ を定め、

$$M = \{ \mu(s) \mid s \in \mathbb{R} \}, \quad N = \{ \nu(t) \mid t \in \mathbb{R} \}$$

によって \mathbb{R}^3 内の二つの閉曲線 M, N を定める。これらは、コンパクト 1 次元多様体になり、パラメータ s, t によって向きがついている。M と N は共通部分を持たないこととは直感的には明らかだが、定義式から次のように示すことができる。$(x_1, x_2, x_3) \in M \cap N$ すると $x_1 = x_3 = 0$ となる。これを M の点とみなすと可能性は $(0, \pm 1, 0)$ であり、N の点とみなすと可能性は $(0, 1 \pm 1, 0) = (0, 0, 0), (0, 2, 0)$ である。これらは一致しないので $M \cap N = \emptyset$ になる。これによって $M, N \subset \mathbb{R}^3$ のまつわり数を考えるための設定が整っていることがわかる。

まつわり写像

$$\Lambda : M \times N \to S^2 ; (x, y) \mapsto \frac{x - y}{|x - y|}$$

の写像度を求めるため $z = (1, 0, 0) \in S^2$ について考える。$\mu(s), \nu(t) \in \Lambda^{-1}(z)$ すると

$$\frac{\mu(s) - \nu(t)}{\mu(s) - \nu(t)} = z = (1, 0, 0)$$
3.2. まつわり数

が成り立つ。
\[\mu(s) - \nu(t) = (\cos s, \sin s - 1 - \cos t, -\sin t) \]
となるので、\(\sin t = 0 \)となり\(\cos t = \pm 1 \)を得る。これより
\[\mu(s) - \nu(t) = (\cos s, \sin s - 2, 0), (\cos s, \sin s, 0) \]
となる。\(\sin s - 2 = 0 \)となることはないので、
\[\mu(s) - \nu(t) = (\cos s, \sin s, 0). \]
さらに\(\sin s = 0 \)となり\(\cos s = 1 \)が成り立つ。したがって、
\[\lambda^{-1}(z) = \{(\mu(0), \nu(\pi))\} \]
となり、\(z \)の逆像は一点\((\mu(0), \nu(\pi)) \)のみからなる。そこで、\((\mu(0), \nu(\pi)) \)における\(\lambda \)の微分写像を調べる。
\[
\frac{d\lambda(\mu(0), \nu(\pi))}{d\mu(0)} \left(\frac{d\mu(0)}{ds}, 0 \right) = \frac{d\mu(0)}{ds} = (0, 1, 0),
\]
\[
\frac{d\lambda(\mu(0), \nu(\pi))}{d\nu(\pi)} \left(0, \frac{d\nu(\pi)}{ds} \right) = \frac{d}{dt} \left| \begin{array}{c}
\text{at } t = \pi \\
(-1, -1 - \cos t, -\sin t) \\
\end{array} \right| \]
\[
= \frac{d}{dt} \left| \begin{array}{c}
\text{at } t = \pi \\
(-1, -1 - \cos t, -\sin t) \\
\end{array} \right| \]
\[
= \frac{1}{3 + 2 \cos t} \left\{ (0, \sin t, -\cos t)(3 + 2 \cos t)^{1/2} \\
-(-1, -1 - \cos t, -\sin t) \frac{1}{2}(3 + 2 \cos t)^{-1/2}(-2 \sin t) \right\} \bigg|_{t = \pi}
= (0, 0, 1).
\]
これより
\[d\lambda(\mu(0), \nu(\pi)) : T_{(\mu(0), \nu(\pi))}(M \times N) \rightarrow T_zS^2 \]
は向きを保つ線形同型写像であることがわかる。よって、\((\mu(0), \nu(\pi)) \in M \times N \)は\(\lambda \)の正則点になり、\(z \in S^2 \)は\(\lambda \)の正則值になり、\(\text{sign} d\lambda(\mu(0), \nu(\pi)) = 1 \)も成り立つ。以上より
\[\text{deg} \lambda = \sum_{x \in \lambda^{-1}(z)} \text{sign} d\lambda_x = \text{sign} d\lambda(\mu(0), \nu(\pi)) = 1 \]
となり、\(l(M, N) = 1 \)を得る。
次に
\[\nu_1(t) = (0, 3 + \cos t, \sin t) \quad (t \in \mathbb{R}) \]
によって\(\nu_1(t) \)を定め、
\[N_1 = \{ \nu_1(t) \mid t \in \mathbb{R} \} \]
によって \mathbf{R}^3 内の閉曲線 N_1 を定める。これは、コンパクト 1 次元多様体になり、
パラメタ t によって向きがついている。M と N_1 は共通部分を持たないことは
直感的には明らかだが、定義式から次のように示すことができる。M の第二成分
の動く範囲は $[-1, 1]$ であるのに対して、N_1 の第二成分の動く範囲は $[2, 4]$ だから、
$M \cap N_1 = \emptyset$ になる。これによって $M, N_1 \subset \mathbf{R}^3$ のまつわり数を考えるための設定
が整っていることがわかる。

まつわり写像

$$\lambda_1 : M \times N_1 \to S^2 ; \ (x, y) \mapsto \frac{x - y}{|x - y|}$$

の写像度を求める。

$$\mu(s) - \nu_1(t) = (\cos s, \sin s - 3 - \cos t, \sin t)$$

の第二成分は

$$\sin s - 3 - \cos t < 2 - 3 < 0$$

となるので、まつわり写像 λ_1 の像は

$$\{(x_1, x_2, x_3) \in S^2 \mid x_2 < 0\}$$

に含まれ、特に λ_1 は全射ではない。したがって、λ_1 の写像度は 0 になり、
$l(M, N_1) = 0$ を得る。

上の $l(M, N_1) = 0$ は定理 3.2.2 を使って、次のように示すこともできる。

$$X = \{(x_1, x_2, 0) \in \mathbf{R}^3 \mid x_1^2 + x_2^2 \leq 1\}$$

によって X を定めると、第二成分を比較することにより X は N_1 と共通部分を持たないことがわかる。X の定め方から X は境界付きコンパクト多様体になり、
$X \subset \mathbf{R}^2 \times \{0\}$ は自然に向きが定まる。したがって、定理 3.2.2 より $l(M, N_1) = 0$
が成り立つ。

命題 3.2.4 L, M, N を向きの付いた境界を持たない n 次元多様体とする。さらに、
L, M はコンパクトであり、M, N は連結であると仮定する。このとき、C^∞ 級写像
$f : L \to M$, $g : M \to N$ に対して

$$\deg(g \circ f) = \deg g \cdot \deg f$$

が成り立つ。

証明 $z \in N$ を $g \circ f$ の正則値とすると、z は g の正則値になり、さらに各 $y \in$
$g^{-1}(z)$ は f の正則値になる。$x \in (g \circ f)^{-1}(z)$ について、

$$\text{sign}(g \circ f)_x = \text{sign}(dg_{f(x)} \circ df_x) = \text{sign}dg_{f(x)} \circ \text{sign}df_x$$
3.2. まつわり数

が成り立ち、

\[(g \circ f)^{-1}(z) = \bigcup_{y \in g^{-1}(z)} f^{-1}(y)\]

は共通部分のない合併になるので、

\[
\deg(g \circ f) = \sum_{x \in (g \circ f)^{-1}(z)} \text{sign}(g \circ f)_x = \sum_{x \in (g \circ f)^{-1}(z)} \text{sign}g_{f(x)} \text{sign}f_x
\]

\[
= \sum_{y \in g^{-1}(z)} \sum_{x \in f^{-1}(y)} \text{sign}g_{y} \text{sign}f_x = \sum_{y \in g^{-1}(z)} \text{sign}g_y \cdot \deg f
\]

\[= \deg g \cdot \deg f\]

を得る。

命題 3.2.5 \(M, N \subset R^{k+1}\) は共通部分がなく、さらに境界なしで向きの付いたコンパクト多様体であって、\(\dim M + \dim N = k\) を満たすとする。このとき、\(R^{k+1}\)
の恒等写像と滑らかにイソトピックな微分同型 \(h : R^{k+1} \to R^{k+1}\) に対して、微分
同型 \(h : M \to h(M), h : N \to h(N)\) によって \(h(M)\) と \(h(N)\) の向きを定めると、
\(l(h(M), h(N)) = l(M, N)\) が成り立つ。

証明 仮定より、滑らかなイソトピー \(F_t (t \in [0, 1])\) で

\[F_0(x) = x, \quad F_1(x) = h(x) \quad (x \in R^{k+1})\]

を満たすものが存在する。これによって滑らかなホモトピー

\[\tilde{F}_t : M \times N \to S^k; \ (x, y) \mapsto \frac{F_t(x) - F_t(y)}{|F_t(x) - F_t(y)|}\]

を定めることができる。\(\tilde{F}_0\) は \(M\) と \(N\) のまつわり写像 \(\lambda_{M,N}\) であり、\(\tilde{F}_1\) は

\[h : M \times N \to h(M) \times h(N); \ (x, y) \mapsto (h(x), h(y))\]

と \(h(M)\) と \(h(N)\) のまつわり写像 \(\lambda_{h(M),h(N)}\) との合成 \(\lambda_{h(M),h(N)} \circ h\) になる。よって、
\(\lambda_{M,N}\) は \(\lambda_{h(M),h(N)} \circ h\) と滑らかにホモトピーになり、補題 2.2.7 と命題 3.2.4 より

\[\deg \lambda_{M,N} = \deg(\lambda_{h(M),h(N)} \circ h) = \deg \lambda_{h(M),h(N)} \cdot \deg h.\]

\(h : M \times N \to h(M) \times h(N)\) は向きを保つ微分同型だから、例 2.2.11 より \(\deg h = 1\)
となり、

\[l(M, N) = \deg \lambda_{M,N} = \deg \lambda_{h(M),h(N)} = l(h(M), h(N))\]

を得る。

\(R^{k+1}\) 内の部分多様体に対して定義したまつわり数を \(S^{k+1}\) 内の部分多様体に対
しても定義する。そのために、球面の立体射影を準備しておく。2 次元球面の立体
射影は定理 1.1.16 の証明中に定義した。一般次元の球面の立体射影を示す拡張である。

\(S^n \) の双極点 \((0, \ldots, 0, 1) \) に関する立体射影を \(h_+: S^n - \{(0, \ldots, 0, 1)\} \to \mathbb{R}^n \) で表す。すなわち、\((x_1, \ldots, x_{n+1}) \in S^n - \{(0, \ldots, 0, 1)\} \) に対して

\[
(0, \ldots, 0, 1) + t(x_1, \ldots, x_n, x_{n+1} - 1) = (tx_1, \ldots, tx_n, 1 + t(x_{n+1} - 1))
\]

の第 \((n + 1)\) 成分が 0 になる点を対応させることになるので、

\[
1 + t(x_{n+1} - 1) = 0, \quad t = \frac{1}{1 - x_{n+1}}.
\]

よって、\((x_1, \ldots, x_{n+1}) \in S^n - \{(0, \ldots, 0, 1)\} \) に対して

\[
h_+(x_1, \ldots, x_{n+1}) = \left(\frac{x_1}{1 - x_{n+1}}, \ldots, \frac{x_n}{1 - x_{n+1}}\right).
\]

この立体射影によって \(S^n \) の向きがどのように写るか調べる。そのために \(i \) 成分のみ 1 で他の成分はすべて 0 の \(\mathbb{R}^{n+1} \) の元を \(e_i \) で表す。\(e_1 \in S^n \) における接ベクトル空間 \(T_{e_1}S^n \) の元 \(e_2, \ldots, e_{n+1} \) は \(T_{e_1}S^n \) の基底になり、向きを定めている。

\[
e_i = \frac{d}{dt} \bigg|_{t=0} (\cos t e_1 + \sin t e_i) \quad (2 \leq i \leq n + 1)
\]

となるので、\(2 \leq i \leq n \) のとき

\[
dh_+(e_i) = \frac{d}{dt} \bigg|_{t=0} h_+(\cos t e_1 + \sin t e_i) = \frac{d}{dt} \bigg|_{t=0} (\cos t e_1 + \sin t e_i) = e_i
\]

となり、

\[
dh_+(e_{n+1}) = \frac{d}{dt} \bigg|_{t=0} h_+(\cos t e_1 + \sin t e_{n+1}) = \frac{d}{dt} \bigg|_{t=0} \frac{\cos t}{1 - \sin t} e_1
\]

\[
= -\sin t (1 - \sin t) - \cos t (-\cos t)
\]

\[
= \frac{1}{1 - \sin^2 t} e_1 = e_1.
\]

\(dh_+ \) は \(T_{e_1}S^n \) の正の向きの基底 \(e_2, \ldots, e_n, e_{n+1} \) を \(\mathbb{R}^n \) の基底 \(e_2, \ldots, e_n, e_1 \) に写す。

したがって、\(dh_+: T_{e_1}S^n \to \mathbb{R}^n \) は \(n \) が奇数のときに向きを保ち、\(n \) が偶数のときに向きを逆にすると。ここで、\(n \) が奇数のときに \(\rho = 1 \) とし、\(n \) が偶数のとき \(\rho \in O(n) \) を \(\det \rho = -1 \) となるものをとると \(\rho \circ dh_+: T_{e_1}S^n \to \mathbb{R}^n \) は向きを保つ微分同型写像になる。これより、\(\rho \circ h_+: S^n - \{e_{n+1}\} \to \mathbb{R}^n \) も向きを保つ微分同型写像になる。

\(e_{n+1} \in S^n \) 以外の点 \(p \in S^n \) については、\(e_{n+1} \) と \(p \) を含む平面の回転 \(r_\theta \in SO(n+1) \) を \(r_\theta(p) = e_{n+1} \) を満たすようとり、\(\rho \circ h_+ \circ r_\theta : S^n - \{p\} \to \mathbb{R}^n \) を考えると、これも向きを保つ微分同型写像になる。そこで、\(st_p = \rho \circ h_+ \circ r_\theta : S^n - \{p\} \to \mathbb{R}^n \) とおくと、任意の \(p \in S^n \) に対して \(st_p : S^n - \{p\} \to \mathbb{R}^n \) は向きを保つ微分同型写像になる。
3.2 まつわり数

定義 3.2.6 $M, N \subset S^{k+1}$ は共通部分がなく、さらに境界なしで向きの付いたコンパクト多様体であって、$\dim M + \dim N = k$ を満たすとする。$M \cup N$ に含まれない点 $p \in S^{k+1}$ をとり、向きを保つ微分同型写像 $st_p : S^{k+1} - \{p\} \rightarrow \mathbb{R}^{k+1}$ によって $st_p(M), st_p(N)$ の向きを定め、

$$l(M, N) = l(st_p(M), st_p(N))$$

によって M と N のまつわり数 $l(M, N)$ を定める。

命題 3.2.7 定義 3.2.6 のまつわり数の定義は、$M \cup N$ に含まれない点 $p \in S^{k+1}$ のとり方に依存しない。

証明 $\dim S^{k+1} - \dim M = k + 1 - \dim M = 1 + \dim N \geq 2$ が成り立つ。同様に $\dim S^{k+1} - \dim N \geq 2$ も成り立つ。これより、$S^{k+1} - M$ は弧状連結になり $S^{k+1} - (M \cup N)$ も弧状連結になる。任意の二点 $p_0, p_1 \in S^{k+1} - (M \cup N)$ に対してこれらを結ぶ $S^{k+1} - (M \cup N)$ 内の埋め込みになっている C^∞ 級曲線 $p_t \ (t \in [0, 1])$ をとることができる。さらに p_t のパラメータは弧長パラメータをとる。

$$\{p_t \mid 0 \leq t \leq 1\}$$

の開近傍 $W \subset S^{k+1} - (M \cup N)$ をとり、速度ベクトル p_t' を S^{k+1} 上のベクトル場 X に拡張し、

$$\{x \in S^{k+1} \mid X(x) \neq 0\} \subset W$$

を満たすようにする。$x \in X$ を始点とする X の積分曲線を $\phi_t(x)$ で表わすと、ϕ_t は

$$\frac{d\phi_t(x)}{dt} = X(\phi_t(x)), \quad \phi_0(x) = x$$

を満たす。さらに X の定め方から

$$\frac{dp_t}{dt} = X(p_t) \quad (0 \leq t \leq 1)$$

が成り立つので、p_t は p_0 を始点とする X の積分曲線になっている。よって $0 \leq t \leq 1$ のとき $\phi_t(p_0) = p_t$ となり、特に $\phi_1(p_0) = p_1$ が成り立つ。ϕ_t は恒等写像とイソトピックになり、各 ϕ_t は $S^{k+1} - W$ では恒等写像になる。そこで、

$$st_{p_t} \circ \phi_t \circ (st_{p_0})^{-1} : \mathbb{R}^{k+1} \rightarrow \mathbb{R}^{k+1}$$

について考えると、これは \mathbb{R}^{k+1} 微分同型 $st_{p_1} \circ \phi_1 \circ (st_{p_0})^{-1}$ と恒等写像の間のイソトピーになり、

$$st_{p_1}(M) = (st_{p_1} \circ \phi_1 \circ (st_{p_0})^{-1}) \circ st_{p_0}(M), \quad st_{p_1}(N) = (st_{p_1} \circ \phi_1 \circ (st_{p_0})^{-1}) \circ st_{p_0}(N)$$

が成り立つ。したがって、命題 3.2.5 より次の等式を得る。

$$l(st_{p_1}(M), st_{p_1}(N)) = l(st_{p_0}(M), st_{p_0}(N))$$

以上で定義 3.2.6 のまつわり数の定義は、$M \cup N$ に含まれない点 $p \in S^{k+1}$ のとり方に依存しないことがわかった。
3.3 Hopf不変量

$f : M \to N$ を向きの付いた多様体間の C^∞ 級写像とし、$\dim M > \dim N$ が成り立つと仮定する。f の正則値 $y \in N$ に対して、補題 1.2.4 より $f^{-1}(y)$ は多様体になる。各点 $x \in f^{-1}(y)$ において $df_x : T_x M \to T_y N$ は全射になり $\ker(df_x) = T_x(f^{-1}(y))$ が成り立つ。そこで、$T_y N$ における $T_x(f^{-1}(y))$ の直交補空間を P_x で表すと df_x は P_x から $T_y N$ への線形同型を与える。$T_y N$ の正の向きの基底 w_1, \ldots, w_n をとり、$df_x(v_i) = w_i (1 \leq i \leq n)$ を満たすように $v_i \in P_x$ をとると、v_1, \ldots, v_n は P_x の基底になる。$T_x(f^{-1}(y))$ の基底 u_1, \ldots, u_{m-n} を

\[u_1, \ldots, u_{m-n}, v_1, \ldots, v_n \]

が $T_x M$ の正の向きになるようにとる。この u_1, \ldots, u_{m-n} によって $T_x(f^{-1}(y))$ の向きが定まり、$f^{-1}(y)$ は向きの付いた多様体になる。

定理 3.3.1 $f : S^{2p-1} \to S^p$ を C^∞ 級写像とし、$y \neq z$ を f の正則値とする。$f^{-1}(y)$ と $f^{-1}(z)$ には自然に向きが定まり、まちがい数 $l(f^{-1}(y), f^{-1}(z))$ が定まる。$l(f^{-1}(y), f^{-1}(z))$ は y と z の選び方はには依存しないで、f のホモトピー類にのみ依存する。

定義 3.3.2 定理 3.3.1 の整数 $H(f) = l(f^{-1}(y), f^{-1}(z))$ を f の Hopf不変量と呼ぶ。
参考文献について

この講義ノート全体を通して Milnor[2] を参考にした。
Brouwer の不動点定理 (定理 1.2.23) の証明は、C^∞ 級写像の場合に不動点定理を
証明し (補題 1.2.19)、連続写像の場合は Stone-Weierstrass の近似定理 (定理 1.2.22)
を利用して証明した。定理 1.2.22 については [2] には詳しく書かれていないので、
Dieudonné[1], Chapter VII Spaces of continuous functions,
3. The Stone-Weierstrass approximation theorem
を参考にして詳細な証明をつけた。その際、[1] の (7.3.1.6) の証明にあった不自然
な部分は修正した。