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What is Model Theory?

Model Theory

Equations
model theory = universal algebra + logic
model theory = algebraic geometry − fields
model theory = ordinary mathematics + compactness
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What is Model Theory?

Compactness

Compactness is the property of “being of finite character.”

In topology, compactness means that every open cover has a
finite subcover.
In model theory, compactness means that if a theory is
contradictory then some finite sub-theory is contradictory.

In other words, if every finite part of a theory has a model then
the whole theory has a model.
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Languages, Structures and Models

Language

Formal Language
A language is a set consisting of

constant symbols + function symbols + predicate symbols.

Formula
Let L be a language. An L-formula is a formal ‘statement’
constructed from L, using (individual) variables x, y, z . . . and
logical symbols.

Logical symbols are: ∧ (and), ∨ (or), ¬ (not)→ (implies), ∀ (all
elements) and ∃ (some elements).
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Languages, Structures and Models

Examples

Example (Language)
The language Lo of ordered sets is {∗ < ∗}.
The language Lgp of groups is {e, ∗ · ∗, ∗−1}.
The language LK of K-vector spaces is
{~0, ∗ + ∗,−∗} ∪ {Fa(∗) : a ∈ K}.

Example (Formula)
If L = {c, F(∗), P(∗, ∗)}, the following are examples of L-formulas:

P(c, x), P(F(x), F(y)), ∀x[P(x, y) → ∃zP(z, F(F(x)))], . . .

The first two, which do not contain logical symbols, are called
atomic.

In the third formula, y is free.
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Languages, Structures and Models

Mathematical Structures

Examples of mathematical structures are:
(N, <),
(N, 0, 1,+, ·),
(Z, 0, 1,+·),
(R, 0, 1,+, ·),
(C, 0, 1,+, ·),
(Q, <),
(GL(2,R), ·), . . . .

For a language L, which is a set of symbols, we can define the
notion of L-structures so that each of the examples above becomes
a structure in our sense.
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Languages, Structures and Models

Structures

L-structure
Let L = {c, F, P}. An L-structure M consists of:

the universe M, and
the interpretation ι of symbols in L such that

ι(c) is an element in M,
ι(F) is a function Mn → M (n is the arity of F),
ι(P) is a subset of Mm (m is the arity of P).

c is a mere symbol, and in the structureM, c is interpreted as an
element ι(c) ∈ M.
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Languages, Structures and Models

An L-structureM has the form:

(M, ι(c), ι(F), ι(P)).

ι(X), X ∈ L, is sometimes simply written as XM.
SoM has the form

(M, cM, FM, PM).

We sometimes say M is an L-structure, if there is no
confusion.
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Languages, Structures and Models

LetM be an L-structure. We write M |= ∗, if ∗ is true in M.

Example
(R, 0, 1,+, ·, <) |= ∀x( 0 < x → ∃y(x = y · y ∧ ¬(y = 0)));
A positive element is a square.
(N,+, ·) |= ∀x∃y0, y1, y2, y3(x = y0 · y0 + x = y1 · y1 + x =

y2 · y2 + x = y3 · y3).
Four Square Theorem

We sayM is a model of T ifM |= T.
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Languages, Structures and Models

Example
Let R be a binary predicate symbol. An undirected graph G is
considered as an R-structure satisfying

G |= ∀x, y(R(x, y) → R(y, x)) ∧ ∀x(¬R(x, x)).
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Languages, Structures and Models

Definable Sets

Definition
A subset A of M is called a definable set if there is an L-formula
ϕ(x, ȳ) and b̄ ∈ M (tuples from M, called parameters) such that

A = {a ∈ M : M |= ϕ(a, b̄)}.

Definable sets of Mn is defined similarly.

A as above is sometimes called b̄-definable.
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Languages, Structures and Models

Example
2Z (the even numbers) is a definable subset of (Z, 0,+),
because

2Z = {a ∈ Z : Z |= ∃x(a = x + x)}.

Contrary to this, 2Z is not a definable subset of (Z, 0, <).

Undefinability of 2Z in (Z, 0, <) is shown by using compactness.
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Languages, Structures and Models

Remark

If M is a countable (infinite) structure, there are 2ℵ0-many subsets
of M.
But there are only countably many formulas (with parameters from
M). So there are only countably many definable sets of M.

In general, if M has the cardinality κ, there are only κ-many definable subsets of M.
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Languages, Structures and Models

Definable Sets and Automorphisms

Definition (Isomorphism)
Let M and N be {c, F, P}-structures. A bijection σ : M → N is
called an isomorphism of M and N, if it satisfies:

σ(cM) = cN;
σ(PM) = PN;
σ(FM(ā)) = FN(σ(b̄)).

Isomorphism preserves formulas. M |= ϕ(a) ⇒ N |= ϕ(σ(a)).
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Languages, Structures and Models

26 / 73



Languages, Structures and Models

Automorphisms fix definable sets
Let A be a definable set of M, defined by a formula with
parameters b̄. Let σ ∈ Aut(M/b̄) be an automorphism of M fixing
b̄ point-wise. Then

σ(A) = A.

Proof.

a ∈ A ⇐⇒ M |= ϕ(a, b̄)
⇐⇒ M |= ϕ(σa, σb̄)
⇐⇒ M |= ϕ(σa, b̄)
⇐⇒ σa ∈ A.

�
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Compactness Theorem

Lecture 2
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Compactness Theorem

Compactness Theorem

Theorem
Let T be a set of L-sentences. The following two conditions on T
are equivalent:

1 T has a model;
2 Every finite subset of T has a model. (T is finitely satisfiable.)

The implication 1 ⇒ 2 is trivial. So we assume 2 and prove 1.
For simplicity, we assume L is countable.
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Compactness Theorem

Several different proofs of Compactness Theorem are known:
1 Proof using Completeness Theorem,
2 Proof using Ultraproduct, definition

3 Others.
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Compactness Theorem

Sketch of Proof of Compactness

1 Let
L∗ = L ∪ {c0, c1, . . . },

T′ = T ∪ {∃xϕi(x) → ϕi(ci) : i ∈ ω},

where ϕi(x)’s enumerate all the L∗-formulas.
2 T′ is finitely satisfiable.
3 By Zorn’s lemma, we can choose a set T∗ ⊃ T′ of

L∗-sentences such that (i) T∗ is finitely satisfiable and (ii)
maximal among such.

4 Using T∗, we define an L∗-structure, which is a model of
T∗ ⊃ T.
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Compactness Theorem

Main Lemma

Definition
We say T (a set of L-sentences) has the witnessing property if
(*) for any L-formula ϕ(x), there is a constant c ∈ L such that

‘∃xϕ(x) → ϕ(c)’ ∈ T.

Lemma (Main Lemma)

Let T∗ have the following properties:
1 Every finite subset of T∗ has a model;
2 T∗ has the witnessing property;
3 T∗ is complete, i.e., for all ϕ, ϕ ∈ T∗ or ¬ϕ ∈ T∗.

Then T∗ has a model M∗ whose universe is (essentially) the set of
all closed terms of L∗.

Elementary Chain Theorem
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Compactness Theorem

Definition of M∗

Using T∗, we define an L∗-structure M∗ by the following:
CT =the set of all closed L∗-terms. (A closed term is a term
without a variable.
For s, t ∈ CT, s ∼ t ⇐⇒ s = t belongs to T∗. (It will be
shown that ∼ is an equivalence relation on CT.)
M∗ = CT/∼ = {[t] : t ∈ CT}.

cM∗ := [c], where c is a constant symbol in L∗;
FM∗([t1], . . . , [tm]) := [F(t1, . . . , tm)], where F is an m-ary
function symbol in L∗;
PM = {([t1], . . . , [tn]) : P(t1, . . . , tn) ∈ T∗}, where P is an n-ary
predicate symbol in L∗.
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Compactness Theorem

Proof of Main Lemma

Claim
For all L-formulas ϕ(x1, . . . , xn) and t1, . . . , tn ∈ CT,

M∗
|= ϕ([t1], . . . , [tn]) ⇐⇒ ϕ(t1, . . . , tn) ∈ T∗.

Proof by induction on the number k of logical symbols in ϕ.
k = 0 ϕ is an atomic formula in this case. The equivalence is

rather clear from the definition of the interpretation.

M∗
|= P([t]) ⇐⇒ ([t]) ∈ PM∗

⇐⇒ P(t) ∈ T∗.

M∗
|= F([t]) = [u] ⇔ FM∗([t])= [u] ⇔ [F(t)]= [u] ⇔ F(t)=u ∈ T∗.
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Compactness Theorem

k + 1 Case 1: ϕ = ψ ∧ θ.

M∗
|= (ψ ∧ θ)([t1], . . . , [tn])

⇐⇒ M∗
|= ψ([t1], . . . , [tn]) and M∗

|= θ([t1], . . . , [tn])
⇐⇒ ψ(t1, . . . , tn) ∈ T∗ and θ(t1, . . . , tn) ∈ T∗

⇐⇒ ψ(t1, . . . , tn) ∧ θ(t1, . . . , tn) ∈ T∗.

Case 2: ϕ(x1, . . . , xn) = ∃yψ(x, x1, . . . , xn).

M∗
|= ∃xψ(x, [t1], . . . , [tn])

⇐⇒ M∗
|= ψ([s], [t1], . . . , [tn]), for some s ∈ CT

⇐⇒ ψ(s, t1, . . . , tn) ∈ T∗, for some s ∈ CT
⇐⇒ ∃xψ(s, t1, . . . , tn) ∈ T∗.

⇐ of the last line is the most essential part, and it follows from the
fact T∗ ⊃ T′.
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Compactness Theorem

Strategy of Proof

Extend T to T∗ so that T∗ satisfies the conditions in Main Lemma.

L∗ = L ∪ {c0, c1, . . . },

T′ = T ∪ {∃xϕi(x) → ϕi(ci) : i ∈ ω}. T′ clearly has the
witnessing property.
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Compactness Theorem

Proof of Compactness

L∗ = L ∪ {c0, c1, . . . },

T′ = T ∪ {∃xϕi(x) → ϕi(ci) : i ∈ ω}.

Claim 1
Every finite subset F of T′ has a model.

Proof: Consider the simplest case. Let F have the form
{ψi}i<k ∪ {∃xϕ0(x) → ϕ0(c0)}, where ψi’s are in T.
Since T is finitely satisfiable, there is a model M |= {ψi}i<k.
If ϕ0(x) has a solution in M, then let cM

0
be one of such solutions.

Then M becomes a model of F.
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Compactness Theorem

Claim 2
There is T∗ (a set of L∗-sentences) extending

T′ = T ∪ {∃xϕi(x) → ϕi(ci) : i ∈ ω}

such that
1 T∗ is finitely satisfiable, and
2 T∗ is maximal among all such sets.

Proof: Simply use Zorn’s lemma.
It is easy to see that T∗ is complete.
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Compactness Theorem

Remark
Construction of M∗ is similar to that of a field extension K[x]/I,
where I is a maximal ideal of K[x].

M∗ K[x]/I

Preuniverse All closed terms All polynomials

∼ s = t modulo T∗ s = t modulo I

Universe (All closed terms)/∼ (All polynomials)/∼
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Compactness Theorem

Undefinability of 2Z in (Z, 0, <)

Example (Application of Compactness 1)
In Z = (Z, 0, <), every n ∈ Z is definable.
For example 1 is the unique element satisfying
0 < x ∧ ¬∃y(0 < y < x).
Let T = {ϕ : Z |= ϕ} ∪ {0 < c, 1 < c, 2 < c, . . . }.
Every finite part of T has a model. So, by compactness, there
is a model of T. Call it Z∗.
Z
∗ = (Z, 0, <) + ‘copies of (Z, <)’.

Suppose, for a contradiction, 2Z is definable by ϕ(x). Then
∀x(ϕ(x) → ϕ(x + 1)) ∈ T, so it is true in Z∗.
However, the mapping σ : Z∗ → Z

∗, a 7→ a (a standard)
a 7→ a + 1 (a non-standard), is an automorphism of Z∗.
This is a contradiction. (σ moves the set defined by ϕ.)
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Compactness Theorem

Z and Z∗
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Compactness Theorem

Non-standard model of R

Example (Application of Compactness 2)
1 We regard R as a {0, 1,+, ·, <, . . . }-structure.
2 Let

T = {ϕ : R |= ϕ} ∪ {|c| < 1/n : n ∈ N},

where c is a new constant symbol.
3 Every finite subset of T has a model.
4 By compactness, there is a model R∗ of T.
5 R

∗ is almost the same as R, since every sentence true in R is
true in R∗. But R∗ � R, since R∗ has an infinitesimal.

6 If every element in R is named by a constant symbol in the
language, then we have R ⊂ R∗.
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Compactness Theorem
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Compactness Theorem

Non-standard model of R

Example (Application of Compactness 2)
1 We regard R as a {0, 1,+, ·, <, . . . }-structure.
2 Let

T = {ϕ : R |= ϕ} ∪ {|c| < 1/n : n ∈ N},

where c is a new constant symbol.
3 Every finite subset of T has a model.
4 By compactness, there is a model R∗ of T.
5 R

∗ is almost the same as R, since every sentence true in R is
true in R∗. But R∗ � R, since R∗ has an infinitesimal.

6 If every element in R is named by a constant symbol in the
language, then we have R ⊂ R∗.

51 / 73



Compactness Theorem
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Compactness Theorem

Elementary Chain Theorem

Definition
We say N ⊃ M is an elementary extension of M (in symbol
M ≺ N) if, for all ϕ(x1, . . . , xn) and a1, . . . , an ∈ M,

M |= ϕ(a1, . . . , an) ⇐⇒ N |= ϕ(a1, . . . , an).

Example (Application of Main Lemma)
M0 ≺ M1 ≺ · · · ≺ Mi ≺ . . . (i < α) =⇒ Mi ≺

⋃
j<α M j.

Proof.
By extending L, we can assume each element a in

⋃
j<α M j is

named by a constant ca in L. Let T∗ =
⋃

i<α{ϕ : Mi |= ϕ}. Then T∗
satisfies the three conditoins in Main Lemma. So, T∗ has a model
whose universe is the ca’s. �
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Compactness Theorem
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Large and Small Models

Lecture 3
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Large and Small Models

Theorem (Compactness Theorem)
Let T be a set of L-sentences. The following two conditions on T
are equivalent:

1 T has a model;
2 Every finite subset of T has a model.

T having a model is called a theory.
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Large and Small Models

Let A ⊂ M, where M is an L-structure.

L(A) := L ∪ {ca : a ∈ A}.

M naturally becomes an L(A)-structure, by letting

ca
M = a (a ∈ M)
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Large and Small Models

Types

Definition
1 A set Σ(x) of formulas (x free) is finitely satisfiable in M if

whenever F(x) ⊂ f in Σ(x) then M |= ∃x
∧

F(x).
2 Σ(x) is realized in M if there is a ∈ M that satisfies all

formulas in Σ(x).
3 For A ⊂ M, a set Σ(x) of L(A)-formulas is called a type over

A, if
Σ(x) is finitely satisfiable in M, and
Σ(x) is complete for L(A)-formulas.
For all ϕ(x) (L(A)-formula), ϕ(x) ∈ Σ(x) or (¬ϕ(x)) ∈ Σ(x).
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Large and Small Models

A finitely satisfiable set can be extended to a type. Use Zorn’s
lemma.
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Large and Small Models

Remark
A finitely satisfiable set is not necessarily to be realized.

In N, Σ(x) = {0 < x, 1 < x, . . . } is finitely satisfiable, but it does
not have a solution in N.
In Q (algebraic closure of Q),

Σ(x) = { f (x) , 0 : f (x) ∈ Q[x], f . 0}

is finitely satisfiable, but it is not realized in Q.
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Large and Small Models

Elementary Extension

Definition
Let M be an L-structure and N be an extension of M (as an
L-structure). We say N is an elementary extension of M, in symbol,

M ≺ N

if M |= ϕ iff N |= ϕ, for all L(M)-sentences ϕ.

Finite satisfiability is preserved under elementary extensions.
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Lemma
Let Σ(x) be finitely satisfiable in M. Then there is M∗ � M such
that Σ(x) is realized in M∗.

Proof.
Let

T := {ϕ (L(M)-sentence) : M |= ϕ} ∪ {ψ(c) : ψ(x) ∈ Σ(x)}.

Then every finite subset of T has a model. So, by compactness, T
has a model M∗. Clearly cM∗ realizes Σ(x). �
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By a repeated use of this lemma, we can prove the following.
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Existence of Large Models

Corollary
Let M be an L-structure and let κ be an infinite cardinal. There is
M∗ such that

M∗ � M, and
M∗ is κ-saturated.

A structure M is called κ-saturated, if A ⊂ M has the cardinality < κ then
every type over A is realized in M.
A κ-saturated structure M elementarily embeds every N ≡ M of size ≤ κ.
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Definition
1 We say Σ(x) is omitted in M, if it is not realized in M.
2 We say Σ(x) is isolated in T, if there is no (consistent) formula
ϕ(x) such that (in any model M |= T) if a satisfies ϕ(x) then a
realizes Σ(x).
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Omitting Types Theorem

Theorem (Omitting Types Theorem)
Let T be a countable L-theory and Σ(x) a set of L-formulas.
Suppose that Σ(x) is not isolated in T. Then there is a model
M |= T omitting Σ.

Countability is essential in this theorem.
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Sketch of Proof of Omitting Types Theorem

1 We put L∗ = L ∪ {c0, c1, . . . }.
2 Enumerate all L∗-formulas ϕ(x) as:

ϕ0(x), ϕ1(x), . . .
3 Letting T0 = T, we shall define a theory Ti and a formula
ψi(x) ∈ Σ(x) inductively:

Ti+1 = Ti ∪ {∃xϕi(x) → ϕi(ci)} ∪ {¬ψi(ci)}

4 Using T∗ =
⋃

Ti, we can define a model M∗ |= T∗. (Exactly by
the same argument as in Compactness Theorem)

5 Any element a ∈ M∗ has a form [cn] (for some n). So a
satisfies ¬ψn and hence it does not realize Σ.
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Existence of Small Models

Let T be a complete theory formulated in a countable L.

Corollary
Suppose that T is small. Then there is a model M |= T such that
if N |= T is another model, then M can be elementarily embedded
into N.

Such an M is called a prime model of T.
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Proof.
1 By (an extended version of) Omitting Types Theorem, there is

a model M |= T that omits all non-isolated types over ∅.
2 For each n,

Σn(x0, . . . , xn) = {ϕ(x0, . . . , xn) : M |= ϕ(m0, . . . , mn)}
is an isolated type.

3 Let N |= T.
4 Chose ϕ(x0) isolating Σ0(x0). Since ∃x0ϕ(x0) is true in M, it is

also true in N. So, we can choose n0 ∈ satisfying ϕ.
5 The mapping m0 7→ n0 is a partial elementary embedding.
6 By continuing this, we get an elementary embedding mi → ni

(i ∈ N).

�
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Summary

1 Lecture 1: L-structures
2 Lecture 2: Compactness
3 Lecture 3: Large Models and Small Models

Existence of κ saturated models — Application of Compactness
Existence of prime models — Application of Omitting Types
Theorem
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More

Definition
A complete theory T is called small if there are only countably
many types over ∅.

previous page
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More

Definition
Let I be a set. U ⊂ P(I) is called an ultrafilter over I if

1 U has the finite intersection property, and
2 U is maximal among such.

Sets in U can be considered as ‘large’ subsets of I.

Fact
Let {Mi : i ∈ I} be a set of L-structures. The product

∏
i∈I Mi

naturally becomes an L-structure.

For (ai)i∈I, (bi)i∈I ∈
∏

Mi, (ai)i∈I ∼U (bi)i∈I iff {i ∈ I : ai = bi} ∈ U.
Then the set ∏

i∈I

Mi/ ∼U

becomes an L-structure, and is called the ultraproduct of Mi’s.
previous page
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