A Basic Introduction
to Model Theory

Akito Tsuboi

University of Tsukuba

Logic Summer School at Waseda
September 5, 2016

Ay
1/73



Outline

@ What is Model Theory?
(@ Languages, Structures and Models
@ Compactness Theorem

(4 Large and Small Models

73



Lecture 1




N v e
Model Theory

Equations
o model theory = universal algebra + logic
model theory = algebraic geometry — fields
model theory = ordinary mathematics +
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What is Model Theory?

Model Theory

Equations
o model theory = universal algebra + logic
@ model theory = algebraic geometry — fields
o model theory = ordinary mathematics + compactness




Compactness

Compactness is the property of “being of finite character.”
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What is Model Theory?

Compactness

Compactness is the property of “being of finite character.”

o In topology, compactness means that every open cover has a
finite subcover.




What is Model Theory?

Compactness

Compactness is the property of “being of finite character.”

o In model theory, compactness means that if a theory is
contradictory then some finite sub-theory is contradictory.

In other words, if every finite part of a theory has a model then
the whole theory has a model.

73



Languages, Structures and Models

Language

Formal Language
A language is a set consisting of

constant symbols + function symbols + predicate symbols.

Formula

Let L be a language. An L-formula is a formal ‘statement’
constructed from L, using (individual) variables x,y,z... and
logical symbols.
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Languages, Structures and Models

Language

Formal Language
A language is a set consisting of

constant symbols + function symbols + predicate symbols.

Formula

Let L be a language. An L-formula is a formal ‘statement’
constructed from L, using (individual) variables x,y,z... and
logical symbols.

Logical symbols are: A (and), V (or), = (not) — (implies), V (all
elements) and 3 (some elements).
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Languages, Structures and Models

Examples

Example (Language)

o The language L, of ordered sets is {* < *}.
o The language L,, of groups is {e, * - %, %~}

o The language Lk of K-vector spaces is
{0, % + %,—%} U {F,(%) : a € K}.
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Languages, Structures and Models

Examples

Example (Language)
o The language L, of ordered sets is {* < *}.
o The language L,, of groups is {e, * - %, %~}
o The language Lk of K-vector spaces is
{6,* + %, —%} U {F,(%) : a € K}.

Example (Formula)
If L = {c, F(%), P(*, %)}, the following are examples of L-formulas:

P(c, x), P(F(x), F(y)), Yx[P(x,y) = 3zP(z, F(F(x)))], ...

The first two, which do not contain logical symbols, are called
atomic.

In the third formula, y is free.



Languages, Structures and Models

Mathematical Structures

Examples of mathematical structures are:
o (N, <),
o (N,0,1,+,-),
° (Z,0,1,+-),
o (R,0,1,+,-),
o (C,0,1,+,-),
° (@ <),
o (GL(2,R),"), ...
For a language L, which is a set of symbols, we can define the

notion of L-structures so that each of the examples above becomes
a structure in our sense.
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Languages, Structures and Models

Structures

L-structure

Let L = {c, F, P}. An L-structure Wt consists of:
o the universe M, and

o the interpretation ¢ of symbols in L such that
o t(c)is an elementin M,
o ((F) is a function M" —» M (n is the arity of F),
o «(P) is a subset of M™ (m is the arity of P).
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Languages, Structures and Models

Structures

L-structure

Let L = {c, F, P}. An L-structure Wt consists of:
o the universe M, and

o the interpretation ¢ of symbols in L such that
o t(c)is an elementin M,
o ((F) is a function M" —» M (n is the arity of F),
o «(P) is a subset of M™ (m is the arity of P).

¢ is a mere symbol, and in the structure M, ¢ is interpreted as an
element «(c) € M.
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An L-structure M has the form: }

(M, i«(c), (F), L(P)).

CIRT- =, <) Z[z DaC
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Languages, Structures and Models

An L-structure 9t has the form:

(M, «(c), «(F), «(P)).

o «X), X € L, is sometimes simply written as XM,

o So M has the form

(M, M, FM, PM).
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Languages, Structures and Models

An L-structure 9t has the form:

(M, «(c), «(F), «(P)).

o «X), X € L, is sometimes simply written as XM,
@ So M has the form

(M, c™, FM, pM),

o We sometimes say M is an L-structure, if there is no
confusion.
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Languages, Structures and Models

Let M be an L-structure. We write 9t = #*, if = is true in M.

Example
o (R0,1L,+,,<)FVYx(0<x—>Ay(x=y-y A =(y =0)));
A positive element is a square.
o (N,+,°) F VxAyo, y1,y2,¥3(x = yo-yo+x =y - y1+x =

Y2:y2+ X =y3-y3).
Four Square Theorem

We say Miisa model of TifME T.
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Languages, Structures and Models

Example

Let R be a binary predicate symbol. An undirected graph G is
considered as an R-structure satisfying

G E VYx,y(R(x,y) = R(y,x)) A Yx(=R(x, x)).
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Languages, Structures and Models

Definable Sets

Definition

A subset A 9f M is called a definable set if there is an L-formula

p(x,y) and b € M (tuples from M, called parameters) such that
A={aeM: ME ¢(a,b)).

Definable sets of M" is defined similarly.

A as above is sometimes called b-definable.
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Languages, Structures and Models

Example

o 27 (the even numbers) is a definable subset of (Z, 0, +),
because
2Z={a €% : 7% E Ix(a = x + x)}.

o Contrary to this, 27Z is not a definable subset of (%Z, 0, <).

Undefinability of 27 in (Z, 0, <) is shown by using compactness.
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Languages, Structures and Models

Remark

If M is a countable (infinite) structure, there are 2%-many subsets
of M.

But there are only countably many formulas (with parameters from
M). So there are only countably many definable sets of M.

In general, if M has the cardinality «, there are only k-many definable subsets of M.
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Languages, Structures and Models

Definable Sets and Automorphisms

Definition (Isomorphism)
Let M and N be {c, F, P}-structures. A bijectiono : M — N is
called an isomorphism of M and N, if it satisfies:

o o(cM) = ¢V;
o o(PM) = PV;
o o(FM(a)) = F¥(o(b)).

Isomorphism preserves formulas. M [ ¢(a) = N E ¢(o(a)).
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Languages, Structures and Models

Automorphisms fix definable sets

Let A be a definable set of M, defined by a formula with
parameters b. Let o € Aut(M/b) be an automorphism of M fixing
b point-wise. Then

o(A) = A.
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Languages, Structures and Models

Automorphisms fix definable sets

Let A be a definable set of M, defined by a formula with
parameters b. Let o0 € Aut(M/b) be an automorphism of M fixing
b point-wise. Then

o(A) = A.
Proof.
a€eA & MEpab)
& ME ¢(0a, (_rb)
& ME ¢(oga,b)
& o0ac€A.
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Compactness Theorem

Compactness Theorem

Theorem

Let T be a set of L-sentences. The following two conditions on T
are equivalent:

@ T has a model;
@ Every finite subset of T has a model. (T is finitely satisfiable.)
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Compactness Theorem

Compactness Theorem

Theorem

Let T be a set of L-sentences. The following two conditions on T
are equivalent:

@ T has a model;
@ Every finite subset of T has a model. (T is finitely satisfiable.)

The implication 1 = 2 is trivial. So we assume 2 and prove 1.
For simplicity, we assume L is countable.
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Compactness Theorem

@ Proof using Completeness Theorem,
@ Others.

Several different proofs of Compactness Theorem are known
@ Proof using Ultraproduct,

DA
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Compactness Theorem

Sketch of Proof of Compactness

@ Let
L* = LVU{cycC1,...},
T' =T U {Axpi(x) = ¢i(c) : i € w},
where @;(x)’s enumerate all the L*-formulas.
@ T is finitely satisfiable.

@ By Zorn’s lemma, we can choose a set T* D T” of
L*-sentences such that (i) 7" is finitely satisfiable and (ii)
maximal among such.

@ Using T*, we define an L*-structure, which is a model of
T*>T.
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Compactness Theorem

Main Lemma

Definition
We say T (a set of L-sentences) has the witnessing property if

(*) for any L-formula ¢(x), there is a constant ¢ € L such that
Axp(x) = p(c) € T.

Lemma (Main Lemma)

Let T* have the following properties:

@ Every finite subset of T* has a model;

@ T* has the witnessing property;

@ T* is complete, i.e., for all ¢, ¢ € T* or ~p € T*.
Then T* has a model M* whose universe is (essentially) the set of
all closed terms of L*.

Elementary Chain Theorem
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Compactness Theorem

Definition of M*

Using T, we define an L*-structure M* by the following:

o CT =the set of all closed L*-terms. (A closed term is a term
without a variable.

o Fors,t € CT, s ~t < s = tbelongsto T™*. (It will be
shown that ~ is an equivalence relation on CT.)
o M*=CT/~={[t]:teCT}.
o ¢ :=[c], where ¢ is a constant symbol in L*;
o FM'([t1],...,[tm]) := [F(t1,...,tm)], where F is an m-ary
function symbol in L*;
o PM =(([t1],...,[ta)) : P(t1,...,t,) € T*}, where Pis an n-ary
predicate symbol in L*.
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Compactness Theorem

Proof of Main Lemma

Claim
For all L-formulas ¢(x1,...,x,) and ty,...,¢, € CT,

M* |= So([tl]’“'a[tn]) — ‘p(tla"',tn) € T*'

Proof by induction on the number k of logical symbols in ¢.

¢ is an atomic formula in this case. The equivalence is
rather clear from the definition of the interpretation.

M E P(t]) < (t]) e P < P@t)eT".

M*'E F([t]) = [u] & FY([t)=[u] & [F()]=[u] & F(t)=u € T".
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Compactness Theorem

Case1: o=y A6.

M E @ A0(t],..., [t
= M’ Ey(t],...,[t.]) and M* | 0([t1],...,[t.])
& Y(ty,...,t,) € T* and O(ty,...,t,) € T*
E Y(tyyeeeyty) AO(ty,...,t,) € T

Case 2: @o(x1y...,x,) = AYY(x,x15...,X,).

M* E Axy(x, [t],...,[t.])
= M" E y(sl,[t1]),...,[t.]), for some s € CT
= Y(s,ty...,t,) € T*, forsomes € CT
& AxyY(s,tyy...,t,) € T".

& of the last line is the most essential part, and it follows from the
factT* O T'.
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Strategy of Proof

Extend T to T* so that T™ satisfies the conditions in Main Lemma. |

RN Ge
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Compactness Theorem

Strategy of Proof

Extend T to T* so that T* satisfies the conditions in Main Lemma. )

oL*=LUV {C(),Cl,...},
o T" =T VU {Ixpi(x) = ¢i(c;) : i € w}. T' clearly has the
witnessing property.
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Proof of Compactness
oL*=LU {C(),Cl,...},
Claim 1

0 T =TV {Axpi(x) = ¢i(c;) : i € w}.

Every finite subset F of T has a model.

Ay
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Compactness Theorem

Proof of Compactness

o L*=LVU/{cyp,C15---.}
O T =T VU {Axpi(x) = @i(c;) : i € w}.

Claim 1
Every finite subset F of T’ has a model.

Proof: Consider the simplest case. Let F have the form

Wili<i U {Axpo(x) = @o(co)}, where ¢;’s are in T.

Since T is finitely satisfiable, there is a model M [ {¥;}i<-

If o(x) has a solution in M, then let ¢ be one of such solutions.
Then M becomes a model of F.
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Compactness Theorem

Claim 2
There is T* (a set of L*-sentences) extending

T' =TV {Axp;(x) = ¢i(c;) : i € w}

such that
@ T* is finitely satisfiable, and
@ T*is maximal among all such sets.
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Compactness Theorem

Claim 2
There is T* (a set of L*-sentences) extending

T' =TV {Axp;(x) = ¢i(c;) : i € w}

such that
@ T* is finitely satisfiable, and
@ T*is maximal among all such sets.

Proof: Simply use Zorn’s lemma.

It is easy to see that T* is complete.
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Remark

Construction of M* is similar to that of a field extension K[x]/I,

Compactness Theorem

where I is a maximal ideal of K[x].

M*

Kix1/T

Preuniverse

All closed terms

All polynomials

s = t modulo T*

s = t modulo I

Universe

(All closed terms)/~

(All polynomials)/~
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Compactness Theorem

Undefinability of 27Z in (Z, 0, <)

Example (Application of Compactness 1)

0 InZ = (Z,0,<), every n € Z is definable.
For example 1 is the unique element satisfying
0<xA-dyl0<y<x).

oletT={p:ZE¢}U{0<c,1<c,2<0c,...}.

o Every finite part of T has a model. So, by compactness, there
is a model of T. Call it Z*.

o Z* = (2,0, <) + ‘copies of (Z, <)’.
o Suppose, for a contradiction, 27 is definable by ¢(x). Then
Vx(p(x) = o(x + 1)) € T, so itis true in Z*.

o However, the mapping o : Z* — 7Z*, a — a (a standard)
a = a + 1 (a non-standard), is an automorphism of Z*.

This is a contradiction. (o- moves the set defined by ¢.)

©




(Zlul < )

(Z%,0,<) 11 1 oo— 1

og(a)=a+1

Z, and 7Z*

41 I

0

:l'l—._lll.."

e
|

o is identical

\

g(a)=a+1
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Compactness Theorem

Non-standard model of R

Example (Application of Compactness 2)
@ Weregard Ras a{0,1, +,-, <,...}-structure.

u]
o)
|
"
it
1l

Qe
47/73



Compactness Theorem

Non-standard model of R

Example (Application of Compactness 2)

@ Weregard Ras a{0,1, +,-, <,...}-structure.

@ Let
T={p:RE¢@}U{lc| <1/n:neN},

where ¢ is a new constant symbol.
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Compactness Theorem

Non-standard model of R

Example (Application of Compactness 2)
@ Weregard Ras a{0,1, +,-, <,...}-structure.
@ Let
T={p:RE¢@}U{lc| <1/n:neN},
where ¢ is a new constant symbol.
@ Every finite subset of T has a model.
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Compactness Theorem

Non-standard model of R

Example (Application of Compactness 2)
@ Weregard Ras a{0,1, +,-, <,...}-structure.
@ Let
T={p:RE¢@}U{lc| <1/n:neN},
where ¢ is a new constant symbol.
@ Every finite subset of T has a model.
@ By compactness, there is a model R* of T.
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Compactness Theorem

Non-standard model of R

Example (Application of Compactness 2)
@ Weregard Rasa{0,1,+,-,<,...}-structure.
@ Let
T={p:RE¢@}U{lc| <1/n:neN},
where ¢ is a new constant symbol.
@ Every finite subset of T has a model.
@ By compactness, there is a model R* of T.

® RR*is almost the same as R, since every sentence true in R is
true in IR*. But R* 2 R, since R* has an infinitesimal.
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Compactness Theorem

Non-standard model of R

Example (Application of Compactness 2)
@ Weregard Rasa{0,1,+,-,<,...}-structure.
@ Let
T={p:RE¢@}U{lc| <1/n:neN},
where ¢ is a new constant symbol.
@ Every finite subset of T has a model.
@ By compactness, there is a model R* of T.

® RR*is almost the same as R, since every sentence true in R is
true in IR*. But R* 2 R, since R* has an infinitesimal.

@ |If every element in R is named by a constant symbol in the
language, then we have R c R*.
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Compactness Theorem

Elementary Chain Theorem

Definition
We say N D M is an elementary extension of M (in symbol
M < N) if, for all (x1,...,x,) and ay,...,a, € M,

MI=§0(a19°°°,an) = N|=So(a1’-°-’an)°
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Compactness Theorem

Elementary Chain Theorem

Definition
We say N D M is an elementary extension of M (in symbol
M < N) if, for all (x1,...,x,) and ay,...,a, € M,

M|=90(a19“°9an) = N|=90(a19---9an)°

Example (Application of Main Lemma)
My<My < <M<...i<a) = M; < Uj<a'Mj-
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Compactness Theorem

Elementary Chain Theorem

Definition
We say N D M is an elementary extension of M (in symbol
M < N) if, for all (x1,...,x,) and ay,...,a, € M,

M|=§0(a19“-,an) = N|=90(a19---9an)°

Example (Application of Main Lemma)
My<My < <M<...i<a) = M; < Uj<a'Mj-

Proof.

By extending L, we can assume each element a in U;., M; is
named by a constant ¢, in L. Let T* = ;.. {¢ : M; E ¢}. Then T*
satisfies the three conditoins in Main Lemma. So, T* has a model
whose universe is the ¢,’s. O
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Large and Small Models

Theorem (Compactness Theorem)

Let T be a set of L-sentences. The following two conditions on T
are equivalent:

@ T has a model;
@ Every finite subset of T has a model.

T having a model is called a theory.
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Large and Small Models

Let A ¢ M, where M is an L-structure.
L(A):=LU{c,:a€ A}
M naturally becomes an L(A)-structure, by letting

cM=a (@aeM
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Large and Small Models

Types

Definition
@ A set X(x) of formulas (x free) is finitely satisfiable in M if
whenever F(x) Cyi, X(x) then M |E Ax A F(x).
@ X(x)is realized in M if there is a € M that satisfies all
formulas in X(x).
@ For A c M, a set X(x) of L(A)-formulas is called a type over
A, if
o X(x) is finitely satisfiable in M, and
o X(x) is complete for L(A)-formulas.
For all p(x) (L(A)-formula), ¢(x) € X(x) or (m¢(x)) € X(x).
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Large and Small Models

A finitely satisfiable set can be extended to a type. Use Zorn’s
lemma.
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Large and Small Models

Remark
A finitely satisfiable set is not necessatrily to be realized.

o InN, Z(x) = {0 < x,1 < x,...} is finitely satisfiable, but it does
not have a solution in N.

o In @ (algebraic closure of Q),

Z(x) = {f(x) #0: f(x) € Qlx], f £ 0}

is finitely satisfiable, but it is not realized in @
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Large and Small Models

Elementary Extension

Definition
Let M be an L-structure and N be an extension of M (as an
L-structure). We say N is an elementary extension of M, in symbol,

M<N

if M E ¢ iff N E ¢, for all L(M)-sentences ¢.

Finite satisfiability is preserved under elementary extensions.
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Large and Small Models

Lemma
Let X(x) be finitely satisfiable in M. Then there is M* > M such
that X(x) is realized in M*.
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Large and Small Models

Lemma
Let X(x) be finitely satisfiable in M. Then there is M* > M such
that X(x) is realized in M*.

Proof.
Let

T := {p (L(M)-sentence) : M E ¢} U {Y(c) : Y(x) € Z(x)}.

Then every finite subset of T has a model. So, by compactness, T
has a model M*. Clearly ¢™" realizes X(x). o
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Large and Small Models

By a repeated use of this lemma, we can prove the following.
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Large and Small Models

Existence of Large Models

Corollary

Let M be an L-structure and let k be an infinite cardinal. There is
M* such that

o M* > M, and
o M* is k-saturated.

4

A structure M is called k-saturated, if A € M has the cardinality < « then
every type over A is realized in M.
A k-saturated structure M elementarily embeds every N = M of size < k.
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Large and Small Models

Definition
@ We say X(x) is omitted in M, if it is not realized in M.

@ We say X(x) is isolated in T, if there is no (consistent) formula
¢(x) such that (in any model M [ T) if a satisfies ¢(x) then a
realizes X(x).
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Large and Small Models

Omitting Types Theorem

Theorem (Omitting Types Theorem)

LetT be a countable L-theory and X(x) a set of L-formulas.

Suppose that X(x) is not isolated in T. Then there is a model
M E T omitting X.

Countability is essential in this theorem.
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Large and Small Models

Sketch of Proof of Omitting Types Theorem

@ We pUtL* = LU{cp,C15...}.
@ Enumerate all L*-formulas ¢(x) as:
Po(x), p1(x), ...

@ Letting Ty = T, we shall define a theory T; and a formula
¥i(x) € X(x) inductively:

Ty =T; U {dxpi(x) = @i(c)} U {=yi(c))

@ Using T* = |J T;, we can define a model M* | T*. (Exactly by
the same argument as in Compactness Theorem)

® Any element a € M* has a form [¢,] (for some n). So a
satisfies =, and hence it does not realize X.
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Large and Small Models

Existence of Small Models

Let T be a complete theory formulated in a countable L.

Corollary

Suppose that T is small. Then there is a model M = T such that
if N E T is another model, then M can be elementarily embedded
into N.

Such an M is called a prime model of T
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Large and Small Models

Proof.

@ By (an extended version of) Omitting Types Theorem, there is
amodel M E T that omits all non-isolated types over @.

@ For each n,
To(X05 005 x0) = {@(X05...,%,) : M | @(my,...,m,)}
is an isolated type.
@ LetNET.

@ Chose @(xy) isolating Xy(xy). Since Axgp(xy) is true in M, it is
also true in N. So, we can choose n, € satisfying ¢.

@& The mapping my — ny is a partial elementary embedding.

@ By continuing this, we get an elementary embedding m; — n;
(I € N).




Large and Small Models

Summary

@ Lecture 1: L-structures
@ Lecture 2: Compactness

@ Lecture 3: Large Models and Small Models

o Existence of « saturated models — Application of Compactness
o Existence of prime models — Application of Omitting Types
Theorem
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Large and Small Models

References

@ Model Theory: Third Edition (Dover Books on Mathematics) ,
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Definition
A complete theory T is called small if there are only countably
many types over 0.

o & = = Z= DaC
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More

Definition

Let I be aset. U c () is called an ultrafilter over I if
@ U has the finite intersection property, and
@ U is maximal among such.

Sets in U can be considered as ‘large’ subsets of I.

Fact

Let{M; : i € I} be a set of L-structures. The product [1;c; M;
naturally becomes an L-structure.

For (ai)icr, (bi)ier € 1 M, (@i)ier ~v (biicr 1T {i €I : a; = b;} € U.

Then the set
[ 1M ~v

becomes an L-structure, and is called the ultraproduct of M;’s.
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