A Basic Introduction to Model Theory

Akito Tsuboi

University of Tsukuba

Logic Summer School at Waseda September 5, 2016

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 当 9 4 で
1/73

- 1) What is Model Theory?
- 2 Languages, Structures and Models
- 3 Compactness Theorem
- 4 Large and Small Models

What is Model Theory?

Lecture 1

<ロト < 部ト < 言ト < 言ト 三日 のへ(~ 3/73

Model Theory

Equations

- model theory = universal algebra + logic
- model theory = algebraic geometry fields
- model theory = ordinary mathematics + compactness

Model Theory

Equations

- model theory = universal algebra + logic
- model theory = algebraic geometry fields

• model theory = ordinary mathematics + compactness

Model Theory

Equations

- model theory = universal algebra + logic
- model theory = algebraic geometry fields
- model theory = ordinary mathematics + compactness

Compactness

Compactness is the property of "being of finite character."

- In topology, compactness means that every open cover has a finite subcover.
- In model theory, compactness means that if a theory is contradictory then some finite sub-theory is contradictory.

In other words, if every finite part of a theory has a model then the whole theory has a model.

Compactness

Compactness is the property of "being of finite character."

- In topology, compactness means that every open cover has a finite subcover.
- In model theory, compactness means that if a theory is contradictory then some finite sub-theory is contradictory.

In other words, if every finite part of a theory has a model then the whole theory has a model.

Compactness

Compactness is the property of "being of finite character."

- In topology, compactness means that every open cover has a finite subcover.
- In model theory, compactness means that if a theory is contradictory then some finite sub-theory is contradictory.

In other words, if every finite part of a theory has a model then the whole theory has a model.

Language

Formal Language

A language is a set consisting of

constant symbols + function symbols + predicate symbols.

Formula

Let *L* be a language. An *L*-formula is a formal 'statement' constructed from *L*, using (individual) variables x, y, z... and logical symbols.

Logical symbols are: \land (and), \lor (or), \neg (not) \rightarrow (implies), \forall (all elements) and \exists (some elements).

Language

Formal Language

A language is a set consisting of

constant symbols + function symbols + predicate symbols.

Formula

Let *L* be a language. An *L*-formula is a formal 'statement' constructed from *L*, using (individual) variables x, y, z... and logical symbols.

Logical symbols are: \land (and), \lor (or), \neg (not) \rightarrow (implies), \forall (all elements) and \exists (some elements).

Examples

Example (Language)

- The language L_o of ordered sets is $\{* < *\}$.
- The language L_{gp} of groups is $\{e, *\cdot *, *^{-1}\}$.
- The language L_K of *K*-vector spaces is $\{\vec{0}, * + *, -*\} \cup \{F_a(*) : a \in K\}.$

Example (Formula)

If $L = \{c, F(*), P(*, *)\}$, the following are examples of *L*-formulas:

 $P(c,x), P(F(x),F(y)), \forall x[P(x,y) \rightarrow \exists z P(z,F(F(x)))], \ldots$

The first two, which do not contain logical symbols, are called *atomic*.

In the third formula, y is free.

Examples

Example (Language)

- The language L_o of ordered sets is $\{* < *\}$.
- The language L_{gp} of groups is $\{e, *\cdot *, *^{-1}\}$.
- The language L_K of *K*-vector spaces is $\{\vec{0}, * + *, -*\} \cup \{F_a(*) : a \in K\}.$

Example (Formula)

If $L = \{c, F(*), P(*, *)\}$, the following are examples of *L*-formulas:

 $P(c, x), P(F(x), F(y)), \forall x[P(x, y) \rightarrow \exists z P(z, F(F(x)))], \ldots$

The first two, which do not contain logical symbols, are called *atomic*.

In the third formula, y is free.

Mathematical Structures

Examples of mathematical structures are:

- (ℕ,<),
- $(\mathbb{N}, 0, 1, +, \cdot),$
- (ℤ**, 0, 1, +**•),
- (**R**, 0, 1, +, ·),
- (ℂ, 0, 1, +, ·),
- (ℚ, <),
- $(GL(2,\mathbb{R}),\cdot),\ldots$

For a language L, which is a set of symbols, we can define the notion of L-structures so that each of the examples above becomes a structure in our sense.

Structures

L-structure

- Let $L = \{c, F, P\}$. An *L*-structure \mathfrak{M} consists of:
 - the universe M, and
 - the interpretation ι of symbols in L such that
 - $\iota(c)$ is an element in M,
 - $\iota(F)$ is a function $M^n \to M$ (*n* is the arity of *F*),
 - $\iota(P)$ is a subset of M^m (*m* is the arity of *P*).

c is a mere symbol, and in the structure \mathfrak{M} , *c* is interpreted as an element $\iota(c) \in M$.

Structures

L-structure

- Let $L = \{c, F, P\}$. An *L*-structure \mathfrak{M} consists of:
 - the universe M, and
 - the interpretation ι of symbols in L such that
 - $\iota(c)$ is an element in M,
 - $\iota(F)$ is a function $M^n \to M$ (*n* is the arity of *F*),
 - $\iota(P)$ is a subset of M^m (*m* is the arity of *P*).

c is a mere symbol, and in the structure \mathfrak{M} , *c* is interpreted as an element $\iota(c) \in M$.

An *L*-structure \mathfrak{M} has the form:

$(M,\iota(c),\iota(F),\iota(P)).$

ι(*X*), *X* ∈ *L*, is sometimes simply written as *X^M*.
So 𝔐 has the form

 $(M, c^M, F^M, P^M).$

• We sometimes say *M* is an *L*-structure, if there is no confusion.

An *L*-structure \mathfrak{M} has the form:

 $(M,\iota(c),\iota(F),\iota(P)).$

• $\iota(X), X \in L$, is sometimes simply written as X^M .

So M has the form

 $(M, c^M, F^M, P^M).$

• We sometimes say *M* is an *L*-structure, if there is no confusion.

An *L*-structure \mathfrak{M} has the form:

 $(M,\iota(c),\iota(F),\iota(P)).$

• $\iota(X), X \in L$, is sometimes simply written as X^M .

So M has the form

 $(M, c^M, F^M, P^M).$

• We sometimes say *M* is an *L*-structure, if there is no confusion.

Let \mathfrak{M} be an *L*-structure. We write $\mathfrak{M} \models *$, if * is true in *M*.

Example

- $(\mathbb{R}, 0, 1, +, \cdot, <) \models \forall x (0 < x \rightarrow \exists y (x = y \cdot y \land \neg (y = 0)));$ A positive element is a square.
- $(\mathbb{N}, +, \cdot) \models \forall x \exists y_0, y_1, y_2, y_3(x = y_0 \cdot y_0 + x = y_1 \cdot y_1 + x = y_2 \cdot y_2 + x = y_3 \cdot y_3).$ Four Square Theorem

We say \mathfrak{M} is a model of T if $\mathfrak{M} \models T$.

Example

Let R be a binary predicate symbol. An undirected graph G is considered as an R-structure satisfying

 $G \models \forall x, y(R(x, y) \rightarrow R(y, x)) \land \forall x(\neg R(x, x)).$

Definable Sets

Definition

A subset A of M is called a definable set if there is an L-formula $\varphi(x, \bar{y})$ and $\bar{b} \in M$ (tuples from M, called parameters) such that

$$A = \{a \in M : M \models \varphi(a, \bar{b})\}.$$

Definable sets of M^n is defined similarly.

A as above is sometimes called \bar{b} -definable.

Example

• $2\mathbb{Z}$ (the even numbers) is a definable subset of $(\mathbb{Z}, 0, +)$, because

$$2\mathbb{Z} = \{a \in \mathbb{Z} : \mathbb{Z} \models \exists x (a = x + x)\}.$$

• Contrary to this, $2\mathbb{Z}$ is not a definable subset of $(\mathbb{Z}, 0, <)$.

Undefinability of $2\mathbb{Z}$ in $(\mathbb{Z}, 0, <)$ is shown by using compactness.

Remark

If *M* is a countable (infinite) structure, there are 2^{\aleph_0} -many subsets of *M*.

But there are only countably many formulas (with parameters from M). So there are only countably many definable sets of M.

In general, if M has the cardinality κ , there are only κ -many definable subsets of M.

Definable Sets and Automorphisms

Definition (Isomorphism)

Let *M* and *N* be {*c*, *F*, *P*}-structures. A bijection $\sigma : M \rightarrow N$ is called an isomorphism of *M* and *N*, if it satisfies:

•
$$\sigma(c^M) = c^N$$
;
• $\sigma(P^M) = P^N$;
• $\sigma(F^M(\bar{a})) = F^N(\sigma(\bar{b}))$.

Isomorphism preserves formulas. $M \models \varphi(a) \Rightarrow N \models \varphi(\sigma(a))$.

<ロト < 部ト < 臣ト < 臣ト 三日 のへ(~ 26/73

Automorphisms fix definable sets

Let *A* be a definable set of *M*, defined by a formula with parameters \overline{b} . Let $\sigma \in Aut(M/\overline{b})$ be an automorphism of *M* fixing \overline{b} point-wise. Then

 $\sigma(A) = A.$

Proof.

$$\begin{array}{rcl} a \in A & \Longleftrightarrow & M \models \varphi(a, \bar{b}) \\ & \Leftrightarrow & M \models \varphi(\sigma a, \sigma \bar{b}) \\ & \Leftrightarrow & M \models \varphi(\sigma a, \bar{b}) \\ & \Leftrightarrow & \sigma a \in A. \end{array}$$

Automorphisms fix definable sets

Let *A* be a definable set of *M*, defined by a formula with parameters \overline{b} . Let $\sigma \in Aut(M/\overline{b})$ be an automorphism of *M* fixing \overline{b} point-wise. Then

 $\sigma(A) = A.$

Proof.

$$\begin{array}{rcl} a \in A & \Longleftrightarrow & M \models \varphi(a,\bar{b}) \\ \Leftrightarrow & M \models \varphi(\sigma a,\sigma \bar{b}) \\ \Leftrightarrow & M \models \varphi(\sigma a,\bar{b}) \\ \Leftrightarrow & \sigma a \in A. \end{array}$$

<ロ > < 部 > < 言 > < 三 > < 三 > のへ(~ 29/73

Compactness Theorem

Theorem

Let *T* be a set of *L*-sentences. The following two conditions on *T* are equivalent:

① T has a model;

② Every finite subset of T has a model. (T is finitely satisfiable.)

The implication $1 \Rightarrow 2$ is trivial. So we assume 2 and prove 1. For simplicity, we assume *L* is countable.

Compactness Theorem

Theorem

Let *T* be a set of *L*-sentences. The following two conditions on *T* are equivalent:

① T has a model;

② Every finite subset of T has a model. (T is finitely satisfiable.)

The implication $1 \Rightarrow 2$ is trivial. So we assume 2 and prove 1. For simplicity, we assume *L* is countable. Several different proofs of Compactness Theorem are known:

- Proof using Completeness Theorem,
- Proof using Ultraproduct, definition
- Others.

Sketch of Proof of Compactness

Let

$$L^* = L \cup \{c_0, c_1, \dots\},\$$
$$T' = T \cup \{\exists x \varphi_i(x) \to \varphi_i(c_i) : i \in \omega\},\$$

where $\varphi_i(x)$'s enumerate all the L^* -formulas.

- 2 T' is finitely satisfiable.
- ③ By Zorn's lemma, we can choose a set T* ⊃ T' of L*-sentences such that (i) T* is finitely satisfiable and (ii) maximal among such.
- ④ Using T^* , we define an L^* -structure, which is a model of $T^* \supset T$.

Main Lemma

Definition

We say T (a set of L-sentences) has the witnessing property if

(*) for any *L*-formula $\varphi(x)$, there is a constant $c \in L$ such that $\exists x \varphi(x) \rightarrow \varphi(c)' \in T$.

Lemma (Main Lemma)

Let T* have the following properties:

- ① Every finite subset of T^* has a model;
- 2 T^* has the witnessing property;
- ③ T^* is complete, i.e., for all $\varphi, \varphi \in T^*$ or $\neg \varphi \in T^*$.

Then T^* has a model M^* whose universe is (essentially) the set of all closed terms of L^* .

Elementary Chain Theorem

Definition of *M*^{*}

Using T^* , we define an L^* -structure M^* by the following:

- *CT* =the set of all closed *L**-terms. (A closed term is a term without a variable.
- For $s, t \in CT$, $s \sim t \iff s = t$ belongs to T^* . (It will be shown that \sim is an equivalence relation on CT.)

•
$$M^* = CT / \sim = \{[t] : t \in CT\}.$$

- $c^{M^*} := [c]$, where c is a constant symbol in L^* ;
- $F^{M^*}([t_1], \dots, [t_m]) := [F(t_1, \dots, t_m)]$, where *F* is an *m*-ary function symbol in L^* ;
- $P^M = \{([t_1], \dots, [t_n]) : P(t_1, \dots, t_n) \in T^*\}$, where *P* is an *n*-ary predicate symbol in L^* .

Proof of Main Lemma

Claim

For all *L*-formulas $\varphi(x_1, \ldots, x_n)$ and $t_1, \ldots, t_n \in CT$,

$$M^* \models \varphi([t_1], \ldots, [t_n]) \iff \varphi(t_1, \ldots, t_n) \in T^*.$$

Proof by induction on the number k of logical symbols in φ . k = 0 φ is an atomic formula in this case. The equivalence is rather clear from the definition of the interpretation.

$$M^* \models P([t]) \iff ([t]) \in P^{M^*} \iff P(t) \in T^*.$$

 $M^* \models F([t]) = [u] \Leftrightarrow F^{M^*}([t]) = [u] \Leftrightarrow [F(t)] = [u] \Leftrightarrow F(t) = u \in T^*.$

|k+1| Case 1: $\varphi = \psi \wedge \theta$.

$$M^* \models (\psi \land \theta)([t_1], \dots, [t_n])$$

$$\iff M^* \models \psi([t_1], \dots, [t_n]) \text{ and } M^* \models \theta([t_1], \dots, [t_n])$$

$$\iff \psi(t_1, \dots, t_n) \in T^* \text{ and } \theta(t_1, \dots, t_n) \in T^*$$

$$\iff \psi(t_1, \dots, t_n) \land \theta(t_1, \dots, t_n) \in T^*.$$

Case 2: $\varphi(x_1,\ldots,x_n) = \exists y \psi(x,x_1,\ldots,x_n).$

$$M^* \models \exists x \psi(x, [t_1], \dots, [t_n])$$

$$\iff M^* \models \psi([s], [t_1], \dots, [t_n]), \text{ for some } s \in CT$$

$$\iff \psi(s, t_1, \dots, t_n) \in T^*, \text{ for some } s \in CT$$

$$\iff \exists x \psi(s, t_1, \dots, t_n) \in T^*.$$

 \Leftarrow of the last line is the most essential part, and it follows from the fact $T^* \supset T'$.

Compactness Theorem

Strategy of Proof

Extend T to T^* so that T^* satisfies the conditions in Main Lemma.

- $L^* = L \cup \{c_0, c_1, ...\},$
- $T' = T \cup \{\exists x \varphi_i(x) \rightarrow \varphi_i(c_i) : i \in \omega\}$. T' clearly has the witnessing property.

Strategy of Proof

Extend T to T^* so that T^* satisfies the conditions in Main Lemma.

- $L^* = L \cup \{c_0, c_1, \ldots\},$
- $T' = T \cup \{\exists x \varphi_i(x) \rightarrow \varphi_i(c_i) : i \in \omega\}$. T' clearly has the witnessing property.

Proof of Compactness

•
$$L^* = L \cup \{c_0, c_1, \dots\},$$

•
$$T' = T \cup \{\exists x \varphi_i(x) \rightarrow \varphi_i(c_i) : i \in \omega\}.$$

Claim 1 Every finite subset F of T' has a model.

Proof: Consider the simplest case. Let *F* have the form $\{\psi_i\}_{i < k} \cup \{\exists x \varphi_0(x) \rightarrow \varphi_0(c_0)\}$, where ψ_i 's are in *T*. Since *T* is finitely satisfiable, there is a model $M \models \{\psi_i\}_{i < k}$. If $\varphi_0(x)$ has a solution in *M*, then let c_0^M be one of such solutions. Then *M* becomes a model of *F*.

Proof of Compactness

•
$$L^* = L \cup \{c_0, c_1, \dots\},$$

•
$$T' = T \cup \{\exists x \varphi_i(x) \rightarrow \varphi_i(c_i) : i \in \omega\}.$$

Claim 1 Every finite subset F of T' has a model.

Proof: Consider the simplest case. Let *F* have the form $\{\psi_i\}_{i < k} \cup \{\exists x \varphi_0(x) \rightarrow \varphi_0(c_0)\}$, where ψ_i 's are in *T*. Since *T* is finitely satisfiable, there is a model $M \models \{\psi_i\}_{i < k}$. If $\varphi_0(x)$ has a solution in *M*, then let c_0^M be one of such solutions. Then *M* becomes a model of *F*.

Claim 2

There is T^* (a set of L^* -sentences) extending

$$T' = T \cup \{\exists x \varphi_i(x) \to \varphi_i(c_i) : i \in \omega\}$$

such that

- T* is finitely satisfiable, and
- ② T^* is maximal among all such sets.

Proof: Simply use Zorn's lemma.

It is easy to see that T^* is complete.

Claim 2

```
There is T^* (a set of L^*-sentences) extending
```

$$T' = T \cup \{\exists x \varphi_i(x) \to \varphi_i(c_i) : i \in \omega\}$$

such that

- (1) T^* is finitely satisfiable, and
- 2 T^* is maximal among all such sets.

Proof: Simply use Zorn's lemma.

It is easy to see that T^* is complete.

Remark

Construction of M^* is similar to that of a field extension K[x]/I, where I is a maximal ideal of K[x].

	<i>M</i> *	K[x]/I
Preuniverse	All closed terms	All polynomials
~	$s = t \mod T^*$	$s = t \mod I$
Universe	(All closed terms)/~	(All polynomials)/~

Undefinability of $2\mathbb{Z}$ in $(\mathbb{Z}, 0, <)$

Example (Application of Compactness 1)

- In Z = (Z, 0, <), every n ∈ Z is definable.
 For example 1 is the unique element satisfying 0 < x ∧ ¬∃y(0 < y < x).
- Let $T = \{ \varphi : \mathbb{Z} \models \varphi \} \cup \{ 0 < c, 1 < c, 2 < c, \ldots \}.$
- Every finite part of *T* has a model. So, by compactness, there is a model of *T*. Call it Z^{*}.

•
$$\mathbb{Z}^* = (\mathbb{Z}, 0, <) + \text{`copies of } (\mathbb{Z}, <)$$
'.

- Suppose, for a contradiction, $2\mathbb{Z}$ is definable by $\varphi(x)$. Then $\forall x(\varphi(x) \rightarrow \varphi(x+1)) \in T$, so it is true in \mathbb{Z}^* .
- However, the mapping $\sigma : \mathbb{Z}^* \to \mathbb{Z}^*$, $a \mapsto a$ (*a* standard) $a \mapsto a + 1$ (*a* non-standard), is an automorphism of \mathbb{Z}^* .
- This is a contradiction. (σ moves the set defined by φ .)

 \mathbb{Z} and \mathbb{Z}^*

Non-standard model of \mathbb{R}

Example (Application of Compactness 2)

We regard ℝ as a {0, 1, +, ·, <,...}-structure.
 2 Let

 $T = \{\varphi : \mathbb{R} \models \varphi\} \cup \{|c| < 1/n : n \in \mathbb{N}\},\$

- 3 Every finite subset of *T* has a model.
- ④ By compactness, there is a model \mathbb{R}^* of T.
- ⑤ ℝ* is almost the same as ℝ, since every sentence true in ℝ is true in ℝ*. But ℝ* ≇ ℝ, since ℝ* has an infinitesimal.
- If every element in ℝ is named by a constant symbol in the language, then we have ℝ ⊂ ℝ*.

Non-standard model of $\mathbb R$

Example (Application of Compactness 2)

- ① We regard \mathbb{R} as a {0, 1, +, ·, <, ... }-structure.
- Let

$T=\{\varphi:\mathbb{R}\models\varphi\}\cup\{|c|<1/n:n\in\mathbb{N}\},$

- 3 Every finite subset of *T* has a model.
- ④ By compactness, there is a model \mathbb{R}^* of T.
- S R* is almost the same as R, since every sentence true in R is true in R*. But R* ≇ R, since R* has an infinitesimal.
- If every element in ℝ is named by a constant symbol in the language, then we have ℝ ⊂ ℝ*.

Non-standard model of $\mathbb R$

Example (Application of Compactness 2)

① We regard \mathbb{R} as a {0, 1, +, ·, <, ... }-structure.

Let

 $T=\{\varphi:\mathbb{R}\models\varphi\}\cup\{|c|<1/n:n\in\mathbb{N}\},$

- Severy finite subset of T has a model.
- ④ By compactness, there is a model \mathbb{R}^* of T.
- ⑤ R* is almost the same as R, since every sentence true in R is true in R*. But R* ≇ R, since R* has an infinitesimal.
- If every element in ℝ is named by a constant symbol in the language, then we have ℝ ⊂ ℝ*.

Non-standard model of \mathbb{R}

Example (Application of Compactness 2)

(1) We regard \mathbb{R} as a {**0**, **1**, +, ·, <, ... }-structure.

Let

 $T=\{\varphi:\mathbb{R}\models\varphi\}\cup\{|c|<1/n:n\in\mathbb{N}\},$

- Every finite subset of T has a model.
- ④ By compactness, there is a model \mathbb{R}^* of T.
- ⑤ R* is almost the same as R, since every sentence true in R is true in R*. But R* ≇ R, since R* has an infinitesimal.
- If every element in ℝ is named by a constant symbol in the language, then we have ℝ ⊂ ℝ*.

Non-standard model of $\mathbb R$

Example (Application of Compactness 2)

(1) We regard \mathbb{R} as a {**0**, **1**, +, ·, <, ... }-structure.

Let

 $T=\{\varphi:\mathbb{R}\models\varphi\}\cup\{|c|<1/n:n\in\mathbb{N}\},$

- Is Every finite subset of T has a model.
- ④ By compactness, there is a model \mathbb{R}^* of T.
- If every element in ℝ is named by a constant symbol in the language, then we have ℝ ⊂ ℝ*.

Non-standard model of \mathbb{R}

Example (Application of Compactness 2)

(1) We regard \mathbb{R} as a {**0**, **1**, +, ·, <, ... }-structure.

Let

 $T = \{\varphi: \mathbb{R} \models \varphi\} \cup \{|c| < 1/n : n \in \mathbb{N}\},\$

- Is Every finite subset of T has a model.
- ④ By compactness, there is a model \mathbb{R}^* of T.
- ⑤ ℝ* is almost the same as ℝ, since every sentence true in ℝ is true in ℝ*. But ℝ* ≇ ℝ, since ℝ* has an infinitesimal.
- If every element in ℝ is named by a constant symbol in the language, then we have ℝ ⊂ ℝ*.

Elementary Chain Theorem

Definition

We say $N \supset M$ is an elementary extension of M (in symbol $M \prec N$) if, for all $\varphi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in M$,

$$M \models \varphi(a_1,\ldots,a_n) \iff N \models \varphi(a_1,\ldots,a_n).$$

Example (Application of Main Lemma)

 $M_0 \prec M_1 \prec \cdots \prec M_i \prec \ldots \ (i < \alpha) \implies M_i \prec \bigcup_{j < \alpha} M_j.$

Proof.

By extending *L*, we can assume each element *a* in $\bigcup_{j<\alpha} M_j$ is named by a constant c_a in *L*. Let $T^* = \bigcup_{i<\alpha} \{\varphi : M_i \models \varphi\}$. Then T^* satisfies the three conditions in Main Lemma. So, T^* has a model whose universe is the c_a 's.

Elementary Chain Theorem

Definition

We say $N \supset M$ is an elementary extension of M (in symbol $M \prec N$) if, for all $\varphi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in M$,

$$M \models \varphi(a_1,\ldots,a_n) \iff N \models \varphi(a_1,\ldots,a_n).$$

Example (Application of Main Lemma) $M_0 \prec M_1 \prec \cdots \prec M_i \prec \ldots \ (i < \alpha) \implies M_i \prec \bigcup_{j < \alpha} M_j.$

Proof.

By extending *L*, we can assume each element *a* in $\bigcup_{j<\alpha} M_j$ is named by a constant c_a in *L*. Let $T^* = \bigcup_{i<\alpha} \{\varphi : M_i \models \varphi\}$. Then T^* satisfies the three conditoins in Main Lemma. So, T^* has a model whose universe is the c_a 's.

Elementary Chain Theorem

Definition

We say $N \supset M$ is an elementary extension of M (in symbol $M \prec N$) if, for all $\varphi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in M$,

$$M \models \varphi(a_1,\ldots,a_n) \iff N \models \varphi(a_1,\ldots,a_n).$$

Example (Application of Main Lemma)

$$M_0 \prec M_1 \prec \cdots \prec M_i \prec \ldots \ (i < \alpha) \implies M_i \prec \bigcup_{j < \alpha} M_j.$$

Proof.

By extending *L*, we can assume each element *a* in $\bigcup_{j < \alpha} M_j$ is named by a constant c_a in *L*. Let $T^* = \bigcup_{i < \alpha} \{\varphi : M_i \models \varphi\}$. Then T^* satisfies the three conditions in Main Lemma. So, T^* has a model whose universe is the c_a 's. Large and Small Models

Lecture 3

<ロト < 部ト < 差ト < 差ト 差目目 のへで 56/73 Theorem (Compactness Theorem)

Let *T* be a set of *L*-sentences. The following two conditions on *T* are equivalent:

- ① T has a model;
- ② Every finite subset of T has a model.

T having a model is called a theory.

Let $A \subset M$, where M is an L-structure.

$$L(A) := L \cup \{c_a : a \in A\}.$$

M naturally becomes an L(A)-structure, by letting

$$c_a{}^M = a \quad (a \in M)$$

Types

Definition

- A set $\Sigma(x)$ of formulas (*x* free) is finitely satisfiable in *M* if whenever $F(x) \subset_{fin} \Sigma(x)$ then $M \models \exists x \land F(x)$.
- ② $\Sigma(x)$ is realized in *M* if there is *a* ∈ *M* that satisfies all formulas in $\Sigma(x)$.
- ③ For A ⊂ M, a set $\Sigma(x)$ of L(A)-formulas is called a type over A, if
 - $\Sigma(x)$ is finitely satisfiable in M, and
 - $\Sigma(x)$ is complete for L(A)-formulas. For all $\varphi(x)$ (L(A)-formula), $\varphi(x) \in \Sigma(x)$ or $(\neg \varphi(x)) \in \Sigma(x)$.

A finitely satisfiable set can be extended to a type. Use Zorn's lemma.

Remark

A finitely satisfiable set is not necessarily to be realized.

- In ℕ, Σ(x) = {0 < x, 1 < x,...} is finitely satisfiable, but it does not have a solution in ℕ.
- In Q (algebraic closure of Q),

```
\Sigma(x) = \{f(x) \neq 0 : f(x) \in \mathbb{Q}[x], f \not\equiv 0\}
```

is finitely satisfiable, but it is not realized in \mathbb{Q} .

Elementary Extension

Definition

Let M be an L-structure and N be an extension of M (as an L-structure). We say N is an elementary extension of M, in symbol,

$M\prec N$

if $M \models \varphi$ iff $N \models \varphi$, for all L(M)-sentences φ .

Finite satisfiability is preserved under elementary extensions.

Lemma

Let $\Sigma(x)$ be finitely satisfiable in M. Then there is $M^* > M$ such that $\Sigma(x)$ is realized in M^* .

Proof.

Let

 $T := \{ \varphi \ (L(M) \text{-sentence}) : M \models \varphi \} \cup \{ \psi(c) : \psi(x) \in \Sigma(x) \}.$

Then every finite subset of *T* has a model. So, by compactness, *T* has a model M^* . Clearly c^{M^*} realizes $\Sigma(x)$.

Lemma

Let $\Sigma(x)$ be finitely satisfiable in M. Then there is $M^* > M$ such that $\Sigma(x)$ is realized in M^* .

Proof.

Let

 $T := \{\varphi \ (L(M) \text{-sentence}) : M \models \varphi\} \cup \{\psi(c) : \psi(x) \in \Sigma(x)\}.$

Then every finite subset of *T* has a model. So, by compactness, *T* has a model M^* . Clearly c^{M^*} realizes $\Sigma(x)$.

By a repeated use of this lemma, we can prove the following.

Existence of Large Models

Corollary

Let *M* be an *L*-structure and let κ be an infinite cardinal. There is M^* such that

- $M^* \succ M$, and
- M^* is κ -saturated.

A structure *M* is called κ -saturated, if $A \subset M$ has the cardinality $< \kappa$ then every type over *A* is realized in *M*.

A κ -saturated structure M elementarily embeds every $N \equiv M$ of size $\leq \kappa$.

Definition

- (1) We say $\Sigma(x)$ is omitted in *M*, if it is not realized in *M*.
- 2 We say $\Sigma(x)$ is isolated in *T*, if there is no (consistent) formula $\varphi(x)$ such that (in any model $M \models T$) if *a* satisfies $\varphi(x)$ then *a* realizes $\Sigma(x)$.

Large and Small Models

Omitting Types Theorem

Theorem (Omitting Types Theorem)

Let *T* be a countable *L*-theory and $\Sigma(x)$ a set of *L*-formulas. Suppose that $\Sigma(x)$ is not isolated in *T*. Then there is a model $M \models T$ omitting Σ .

Countability is essential in this theorem.

Sketch of Proof of Omitting Types Theorem

① We put
$$L^* = L \cup \{c_0, c_1, ...\}$$
.

2 Enumerate all L^* -formulas $\varphi(x)$ as:

 $\varphi_0(x), \varphi_1(x), \ldots$

3 Letting $T_0 = T$, we shall define a theory T_i and a formula $\psi_i(x) \in \Sigma(x)$ inductively:

$$T_{i+1} = T_i \cup \{\exists x \varphi_i(x) \to \varphi_i(c_i)\} \cup \{\neg \psi_i(c_i)\}$$

- ④ Using $T^* = \bigcup T_i$, we can define a model $M^* \models T^*$. (Exactly by the same argument as in Compactness Theorem)
- Any element $a \in M^*$ has a form $[c_n]$ (for some *n*). So *a* satisfies $\neg ψ_n$ and hence it does not realize Σ.

Existence of Small Models

Let T be a complete theory formulated in a countable L.

Corollary

Suppose that *T* is small. Then there is a model $M \models T$ such that if $N \models T$ is another model, then *M* can be elementarily embedded into *N*.

Such an M is called a prime model of T.

Proof.

- By (an extended version of) Omitting Types Theorem, there is a model $M \models T$ that omits all non-isolated types over Ø.
- For each n,

 $\Sigma_n(x_0,\ldots,x_n) = \{\varphi(x_0,\ldots,x_n) : M \models \varphi(m_0,\ldots,m_n)\}$ is an isolated type.

- 3 Let $N \models T$.
- ④ Chose $φ(x_0)$ isolating $Σ_0(x_0)$. Since $∃x_0φ(x_0)$ is true in *M*, it is also true in *N*. So, we can choose *n*₀ ∈ satisfying *φ*.
- (5) The mapping $m_0 \mapsto n_0$ is a partial elementary embedding.
- 6 By continuing this, we get an elementary embedding $m_i \rightarrow n_i$ ($i \in \mathbb{N}$).

Summary

- 1 Lecture 1: *L*-structures
- 2 Lecture 2: Compactness
- Iccture 3: Large Models and Small Models
 - Existence of *κ* saturated models Application of Compactness
 - Existence of prime models Application of Omitting Types Theorem

References

- Model Theory: Third Edition (Dover Books on Mathematics), 2012/6/13 C.C. Chang, H. Jerome Keisler.
- Akito Tsuboi's web page.

More

Definition

A complete theory T is called small if there are only countably many types over \emptyset .

previous page

More

Definition

Let I be a set. $U \subset \mathcal{P}(I)$ is called an ultrafilter over I if

(1) U has the finite intersection property, and

U is maximal among such.

Sets in *U* can be considered as 'large' subsets of *I*.

Fact

Let $\{M_i : i \in I\}$ be a set of *L*-structures. The product $\prod_{i \in I} M_i$ naturally becomes an *L*-structure.

For $(a_i)_{i \in I}$, $(b_i)_{i \in I} \in \prod M_i$, $(a_i)_{i \in I} \sim_U (b_i)_{i \in I}$ iff $\{i \in I : a_i = b_i\} \in U$. Then the set

$$\prod_{i\in I} M_i/\sim_U$$

becomes an *L*-structure, and is called the ultraproduct of M_i 's.

previous page