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Introduction

What is the Kueker conjecture?
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Introduction

Throughout T is a countable, complete theory with infinite models.

Definition. T is said to be A-categorical if any two models of T of
A power are isomorphic.

Definition. A model M of T is said to be k-saturated if for every
subset A of M which |A| < k and type p € S(A), M realize p.
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Introduction

Fact. Every uncountable model of a categorical theory in some
infinite power is Ng-saturated.

Proof.
1. Countable categorical case.

2. Uncountable categorical case.
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Introduction

Kueker Conjecture

A theory which every uncountable model is Np-saturated is
categorical in some infinite power.
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Introduction

Definition. T is said to be Kueker if it is not Ng-categorical and
every uncountable model is Ng-saturated.

Example(Position of Kueker theory).

uncountable model is
Np-saturated Np-categorical | Ni-categorical
Th(2<v) X X X
DLO, EZ, O O X
Vec., O O O
ACF, O X O
| Kueker | O \ X \ ? ‘
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Introduction

Restated Kueker Conjecture

Kueker theory is N-categorical.
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Preliminaries

Definition. Let ¢ = ¢(x) € L(A).

1. ¢ is almost complete over A if there is unique non-algebraic
type over A containing it i.e. ¢ is non-algebraic and for any
formula ¢ = 1¢(x) over A, ¢ A1 or p A =1 is algebraic.

2. A almost complete formula ¢ is trivial if the witness is
isolated.

3. A almost complete formula ¢ over A is non-trivial if it is not
trivial.
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Preliminaries

Definition. Let p € S(A). The multiplicity of p, denote mult(p), is
the number of extensions of p over acl®¥(A), that is

mult(p) := |{q € S(acl**(4)) | p C g}

Note. If mult(p)> No, then mult(p)= 2%.
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Preliminaries

Definition. Let A C B.
1. B is atomic over A if for every b € B, tp(a/A) is isolated.

2. B is almost atomic over A if for every b € B and a € A, there
is @’ € A such that tp(b/aad’) is isolated.
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Preliminaries

Definition. Let C be infinite set.
1. A type is C-coheir if it is finitely satisfiable in C.

2. A sequence | = (a;)i<) is C-coheir sequence over A if for all
i <\ tp(aj/Aa<;) is C-coheir.

Remark. Since C is infinite, C-coheir sequence is extensible.
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General Results

General Results

Fact. Assume T is Keker theory.

1. T has no an uncountable model which is atomic over a finite
set.

T is small.
3. The prime model of T over a finite set is minimal.

4. Non-trivial almost complete formulas are dense in the prime
model.

5. Every isolated type over a finite set has finite multiplicity.
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Special Case

Previous Research

additional property result main researcher
w-stable O Lachlan
superstable (O  Buechler
stable O Hrushovski
simple ? Shami
O-minimal O Marker?
VC-minimal (O Guingona
NIP 7 Tanovi¢
built-in Skolem functions O Hrushovski
interpret a linear ordering | (O Hrushovski
dcl(®) is infinite ? Tanovi¢
acl(0) is infinite ?
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Special Case

Tanovi¢'s argument in dcl()-infinite

Lemma. Let tp(a/A) be dcl(()-coheir, tp(b/A) be isolated type, B
be almost atomic over A.

1. tp(a/A) - tp(a/Ab), in particular tp(b/Aa) is isolated.
2. tp(a/A) F tp(a/B), in particular B is almost atomic over Aa.

Lemma. Let | = (a;)i<y and J = (b;)i<y, be dcl(()-coheir
sequence.

1. There is an atomic model over /.

2. There is an almost atomic model over J.
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Special Case

Generalization to acl(()-infinite

Lemma. Let tp(a/A) be acl((})-coheir, tp(b/A) be isolated type, B
be almost atomic over A.

1. tp(b/Aa) is isolated.
2. B is almost atomic over Aa.

Lemma. Let | = (a;)i<w and J = (b;)i<w, be acl(P)-coheir
sequence.

1. There is an atomic model over /.

2. There is an almost atomic model over J.
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Special Case

Suitability of acl()-infinite

Lemma. Let M be countable model and p € S(T). Assume that
f(;r all N = M, N realize p. Then there is ¥(x, a) € L(M) such
that

> 1/1M is infinite,
» YM C acl(a).

Propsition. If T is Kueker theory then there is finite set A such
that T, is Kueker theory with acl(0)-infinite.
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Special Case

Corollary. If Kueker theory with acl(()-infinite is R;i-categorical,
then Kueker conjecture is hold.
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Special Case

Definition.

1. acl(0) is dense if for any non-algebraic formula ¢(x), there is
a € acl() such that = ¢(a).

2. acl(@) is rare if for all n < w, the set of algebraic points
acl, (D) of degree n is finite, where

acl,(0) := {a € acl(0) | |a"*M)| = n}.
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Special Case

Theorem. Kueker conjecture in acl(()) is non-rare dense is hold.

Proof.
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Special Case

Theorem. Kueker conjecture in acl(()) is non-rare dense is hold.

Proof.

» By density of acl()), T has 3°°-elimination and for any
infinite definable set D, M = acl(DM).
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Special Case

Theorem. Kueker conjecture in acl(()) is non-rare dense is hold.

Proof.
» By density of acl()), T has 3°°-elimination and for any
infinite definable set D, M = acl(DM).

» Take acly(0)-coheir sequence J of length w; where n is
witness of rarity of acl(().
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Special Case

Theorem. Kueker conjecture in acl((}) is non-rare dense is hold.

Proof.

» By density of acl((})), T has 3°°-elimination and for any
infinite definable set D, M = acl(D™).

» Take acly(0))-coheir sequence J of length w; where n is
witness of rarity of acl(().

» By existence of almost atomic model over J, for any type
tp(a/A) over a finite set there are aj,,...,a;,_, € J(=J)
such that tp(a/Aa;_,) is isolated.
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Special Case

Theorem. Kueker conjecture in acl(()) is non-rare dense is hold.

Proof.

» By density of acl()), T has 3°°-elimination and for any
infinite definable set D, M = acl(DM).

» Take acly(0)-coheir sequence J of length w; where n is
witness of rarity of acl(().

» By existence of almost atomic model over J, for any type
tp(a/A) over a finite set there are aj,,...,a;, , € J'(=J)
such that tp(a/Aa;_,) is isolated.

» Then mult(a/Aa;_,) < w, so mult(a/A) < w.
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Special Case

Theorem. Kueker conjecture in acl((}) is non-rare dense is hold.

Proof.

» By density of acl()), T has 3°°-elimination and for any
infinite definable set D, M = acl(D™).

» Take acly(0))-coheir sequence J of length w; where n is
witness of rarity of acl(().

» By existence of almost atomic model over J, for any type
tp(a/A) over a finite set there are a;,,...,a;, , € J'(=J)
such that tp(a/Aa;_,) is isolated.

» Then mult(a/Aa;_,) < w, so mult(a/A) < w.

» Consequently, there is a minimal set.
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Fact. Every (uncountable) model of an Rop-categorical theory is
No-saturated.

Proof.

» No-categorical theory has a saturated model in countable
cardinal.

» Let M be a uncountable model and p(x) be a complete type
over finite set A of M.

» Take countable model My < M containing A.

» By No-categoricity, there is a € My C M such that a = p(x),
so M is Ng-saturated.

[(back)
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Fact. Every uncountable model of an Nj-categorical theory is
No-saturated.

Proof.
» Uncountable categorical theory is w-stable.

» w-stable theory has a saturated model in every infinite
cardinal.

» [Morley’s uncountable categorical theorem]
Uncountable categorical theory is A-categorical in every
uncountable cardinal .

[(back)
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The theory E2 is the set of the following formulas over the
language L = {E} where E is 2-ary relation symbol:

» E is a equivalence relation with two infinite E-classes.
Remark.
M|MEE2} = = {(\k)]| &k is cardinal,w < X < &}

M —  (la/E|,|b/E|) where M |= —E(a, b)
and |a/E| < |b/E]|.

(back)
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Fact 1. T has no an uncountable model which is atomic over a
finite set.

Proof.

» If there is an uncountable model which is atomic over a finite
set, say A.

» Since uncountable model is Ng-saturated, every type over A is
isolated.

» Then T4 is Ng-categorical, hence T is so.
C(back)

Around the Kueker conjecture Makoto Yanagawa



References

Fact 2. T is small.
Proof.
» Take Ehrenfeucht-Mostowski model EM(R1) of size ;.
» Since uncountable model is Ng-saturated, EM(X;) is so.
> [S(T)] < {te(a) | a € EM(R1)}| < No.
[(back)
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Fact 3. The prime model of T over a finite set is minimal.

Proof.
» Suppose My is prime over finite set and not minimal.
» Then there is My r My such that My ~ M.

M;.

» Then M is uncountable model which is atomic over a finite
set.

» Repeat wy times, put M = Ui<w1

[(back)
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Fact 4. Non-trivial almost complete formulas are dence in the
prime model.
Proof.

» Let ¢(x, a) be non-algebraic, M be prime over a and take
finite approximation of M = J;_,, A; with a € Ao.

» By smallness, we can get the following a sequence (¢;(x))i<w:

(i) i € L(a),
(i) = Vx(Yig1 — ¥i) AVx(i — ),

(iii) 1); is almost complete over A;.

» If all ¢; is trivial, then M is not minimal.
[(back)
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Fact 5. Every isolated type over a finite set has finite multiplicity.

Proof.

» Claim. Isolated type over finite set which has infinite
multiplicity is extensible.

» Let p be a isolated type over finite set A which has infinite
multiplicity.
» Take a prime model M over A and its finite approximation
M = .., Ai where Ay = A.
» By claim, take a suitable sequence of types (p;)i<w, and
a ': Ui<w pi-
» Then Ma is atomic over A, so M is not minimal.
[(back)
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