Contents		Special Case	

Around the Kueker conjecture

Makoto Yanagawa

University of Tsukuba

August 28, 2012

Contents		Special Case	

Contents

- 1. Introduction
- 2. Preliminaries
- 3. General Results
- 4. Special Cases

Contents	Introduction		Special Case	

What is the Kueker conjecture?

Contents	Introduction		Special Case	

Throughout T is a countable, complete theory with infinite models.

Definition. T is said to be λ -categorical if any two models of T of λ power are isomorphic.

Definition. A model *M* of *T* is said to be κ -saturated if for every subset *A* of *M* which $|A| < \kappa$ and type $p \in S(A)$, *M* realize *p*.

Contents	Introduction		Special Case	

Fact. Every uncountable model of a categorical theory in some infinite power is \aleph_0 -saturated.

Proof.

- 1. Countable categorical case.
- 2. Uncountable categorical case.

Contents	Introduction		Special Case	

Kueker Conjecture

A theory which every uncountable model is \aleph_0 -saturated is categorical in some infinite power.

Contents	Introduction		Special Case	

Definition. T is said to be *Kueker* if it is not \aleph_0 -categorical and every uncountable model is \aleph_0 -saturated.

Example(Position of Kueker theory).

	uncountable model is ℵ₀-saturated	\aleph_0 -categorical	\aleph_1 -categorical
$Th(2^{<\omega})$	×	×	×
DLO, E_{∞}^2	0	0	×
$Vec_{<\omega}$	0	0	0
ACF _p	0	×	0
Kueker	0	×	?

Contents	Introduction		Special Case	

Restated Kueker Conjecture

Kueker theory is \aleph_1 -categorical.

Contents	Preliminaries	Special Case	

Definition. Let $\varphi = \varphi(x) \in L(A)$.

- φ is almost complete over A if there is unique non-algebraic type over A containing it i.e. φ is non-algebraic and for any formula ψ = ψ(x) over A, φ ∧ ψ or φ ∧ ¬ψ is algebraic.
- 2. A almost complete formula φ is *trivial* if the witness is isolated.
- 3. A almost complete formula φ over A is *non-trivial* if it is not trivial.

Contents	Preliminaries	Special Case	

Definition. Let $p \in S(A)$. The multiplicity of p, denote mult(p), is the number of extensions of p over $\operatorname{acl}^{eq}(A)$, that is

$$\mathsf{mult}(p) := |\{q \in S(\mathsf{acl}^{eq}(A)) \mid p \subset q\}|.$$

Note. If $mult(p) \ge \aleph_0$, then $mult(p) = 2^{\aleph_0}$.

Contents	Preliminaries	Special Case	

Definition. Let $A \subset B$.

- 1. *B* is atomic over *A* if for every $b \in B$, tp(a/A) is isolated.
- B is almost atomic over A if for every b ∈ B and a ∈ A, there is a' ∈ A such that tp(b/aa') is isolated.

Contents	Preliminaries	Special Case	

Definition. Let C be infinite set.

- 1. A type is C-coheir if it is finitely satisfiable in C.
- A sequence I = (a_i)_{i<λ} is C-coheir sequence over A if for all i < λ, tp(a_i/Aa_{<i}) is C-coheir.

Remark. Since C is infinite, C-coheir sequence is extensible.

Contents		General Results	Special Case	

General Results

Fact. Assume T is Keker theory.

- 1. *T* has no an uncountable model which is atomic over a finite set.
- 2. T is small.
- 3. The prime model of T over a finite set is minimal.
- 4. Non-trivial almost complete formulas are dense in the prime model.
- 5. Every isolated type over a finite set has finite multiplicity.

Contents		Special Case	

Previous Research

additional property	result	main researcher
ω -stable	0	Lachlan
superstable	\bigcirc	Buechler
stable	\bigcirc	Hrushovski
simple	?	Shami
O-minimal	0	Marker?
VC-minimal	\bigcirc	Guingona
NIP	?	Tanović
built-in Skolem functions	0	Hrushovski
interpret a linear ordering	\bigcirc	Hrushovski
$dcl(\emptyset)$ is infinite	?	Tanović
$\operatorname{acl}(\emptyset)$ is infinite	?	

Tanović's argument in $dcl(\emptyset)$ -infinite

Lemma. Let tp(a/A) be $dcl(\emptyset)$ -coheir, tp(b/A) be isolated type, B be almost atomic over A.

- 1. $tp(a/A) \vdash tp(a/Ab)$, in particular tp(b/Aa) is isolated.
- 2. $tp(a/A) \vdash tp(a/B)$, in particular B is almost atomic over Aa.

Lemma. Let $I = (a_i)_{i < \omega}$ and $J = (b_i)_{i < \omega_1}$ be dcl(\emptyset)-coheir sequence.

- 1. There is an atomic model over I.
- 2. There is an almost atomic model over J.

Generalization to $\operatorname{acl}(\emptyset)$ -infinite

Lemma. Let tp(a/A) be $acl(\emptyset)$ -coheir, tp(b/A) be isolated type, B be almost atomic over A.

- 1. tp(b/Aa) is isolated.
- 2. B is almost atomic over Aa.

Lemma. Let $I = (a_i)_{i < \omega}$ and $J = (b_i)_{i < \omega_1}$ be $\operatorname{acl}(\emptyset)$ -coheir sequence.

- 1. There is an atomic model over I.
- 2. There is an almost atomic model over J.

Contents		Special Case	

Suitability of $acl(\emptyset)$ -infinite

Lemma. Let M be countable model and $p \in S(T)$. Assume that for all $N \succeq M$, N realize p. Then there is $\psi(x, a) \in L(M)$ such that

Propsition. If T is Kueker theory then there is finite set A such that T_A is Kueker theory with $acl(\emptyset)$ -infinite.

Contents		Special Case	

Corollary. If Kueker theory with $acl(\emptyset)$ -infinite is \aleph_1 -categorical, then Kueker conjecture is hold.

Contents		Special Case	

Definition.

- 1. $\operatorname{acl}(\emptyset)$ is *dense* if for any non-algebraic formula $\varphi(x)$, there is $a \in \operatorname{acl}(\emptyset)$ such that $\models \varphi(a)$.
- acl(Ø) is rare if for all n < ω, the set of algebraic points acl_n(Ø) of degree n is finite, where

$$\operatorname{acl}_n(\emptyset) := \{ a \in \operatorname{acl}(\emptyset) \mid |a^{\operatorname{Aut}(\mathcal{M})}| = n \}.$$

Contents		Special Case	

Theorem. Kueker conjecture in $acl(\emptyset)$ is non-rare dense is hold. Proof.

Contents				Special Case	
Theo	orem. Kueker	conjecture in	acl(∅) is non-raı	re dense is hold	d.

Proof.

By density of acl(∅), T has ∃[∞]-elimination and for any infinite definable set D, M = acl(D^M).

Contents		Special Case	

Theorem. Kueker conjecture in $acl(\emptyset)$ is non-rare dense is hold. Proof.

- By density of acl(∅), T has ∃[∞]-elimination and for any infinite definable set D, M = acl(D^M).
- Take acl_n(Ø)-coheir sequence J of length ω₁ where n is witness of rarity of acl(Ø).

Contents		Special Case	

Theorem. Kueker conjecture in $\operatorname{acl}(\emptyset)$ is non-rare dense is hold. Proof.

- By density of acl(∅), T has ∃[∞]-elimination and for any infinite definable set D, M = acl(D^M).
- Take acl_n(Ø)-coheir sequence J of length ω₁ where n is witness of rarity of acl(Ø).
- By existence of almost atomic model over J, for any type tp(a/A) over a finite set there are a_{i0},..., a_{in-1} ∈ J'(≡ J) such that tp(a/Aa_{i<n}) is isolated.

Contents		Special Case	

Theorem. Kueker conjecture in $\operatorname{acl}(\emptyset)$ is non-rare dense is hold. Proof.

- By density of acl(∅), T has ∃[∞]-elimination and for any infinite definable set D, M = acl(D^M).
- ► Take acl_n(Ø)-coheir sequence J of length ω₁ where n is witness of rarity of acl(Ø).
- By existence of almost atomic model over J, for any type tp(a/A) over a finite set there are a_{i0},..., a_{in-1} ∈ J'(≡ J) such that tp(a/Aa_{i<n}) is isolated.
- ▶ Then $\operatorname{mult}(a/Aa_{i_{< n}}) < \omega$, so $\operatorname{mult}(a/A) < \omega$.

	Contents				Special Case	References
Theorem. Kueker conjecture in $\operatorname{acl}(\emptyset)$ is non-rare dense is hold.						

Proof.

- By density of acl(∅), T has ∃[∞]-elimination and for any infinite definable set D, M = acl(D^M).
- Take acl_n(Ø)-coheir sequence J of length ω₁ where n is witness of rarity of acl(Ø).
- By existence of almost atomic model over J, for any type tp(a/A) over a finite set there are a_{i0},..., a_{in-1} ∈ J'(≡ J) such that tp(a/Aa_{i<n}) is isolated.
- ▶ Then $\operatorname{mult}(a/Aa_{i_{< n}}) < \omega$, so $\operatorname{mult}(a/A) < \omega$.
- ► Consequently, there is a minimal set.

References

- 1. S.Shelah, *Classification Theory and the number of nonisomorphic models*, North-Holland, 1978
- 2. A.Pillay, Geometric Stability Theory, Oxford, 1996
- 3. S.Buechler, *Kueker's conjecture for superstable theories*, JSL, 1984
- 4. E.Hrushovski, *Kueker's conjecture for stable theories*, JSL, 1989
- 5. Z.Shami, On Kueker simple theories, JSL, 2005

Contents		Special Case	References

- 6. P.Tanović, *Types directed by constants*, Ann. Pure. Appl. Logic, 2009
- 7. P.Tanović, *Minimal first-order structures*, Ann. Pure. Appl. Logic, 2011
- 8. V.Guingona and M.C.Laskowski, "On VC-minimal theories and variants", arXiv, 2011

Contents		Special Case	References

Fact. Every (uncountable) model of an \aleph_0 -categorical theory is \aleph_0 -saturated.

Proof.

- ℵ₀-categorical theory has a saturated model in countable cardinal.
- ► Let *M* be a uncountable model and *p*(*x*) be a complete type over finite set *A* of *M*.
- ▶ Take countable model $M_0 \preceq M$ containing A.
- By ℵ₀-categoricity, there is a ∈ M₀ ⊂ M such that a ⊨ p(x), so M is ℵ₀-saturated.

Contents		Special Case	References

Fact. Every uncountable model of an \aleph_1 -categorical theory is \aleph_0 -saturated.

Proof.

- ▶ Uncountable categorical theory is ω -stable.
- ω-stable theory has a saturated model in every infinite cardinal.
- [Morley's uncountable categorical theorem]
 Uncountable categorical theory is λ-categorical in every uncountable cardinal λ.

Contents		Special Case	References

The theory E_{∞}^2 is the set of the following formulas over the language $L = \{E\}$ where *E* is 2-ary relation symbol:

▶ *E* is a equivalence relation with two infinite *E*-classes.

Remark.

$$\{M \mid M \models E_{\infty}^{2}\}/\cong \xrightarrow{\approx} \{(\lambda, \kappa) \mid \lambda, \kappa \text{ is cardinal}, \omega \leq \lambda \leq \kappa\}$$
$$M \qquad \mapsto \qquad (|a/E|, |b/E|) \text{ where } M \models \neg E(a, b)$$
$$and |a/E| \leq |b/E|.$$
(back)

Fact 1. T has no an uncountable model which is atomic over a finite set.

Proof.

- If there is an uncountable model which is atomic over a finite set, say A.
- Since uncountable model is ℵ₀-saturated, every type over A is isolated.
- ▶ Then T_A is \aleph_0 -categorical, hence T is so.

Contents		Special Case	References

Fact 2. T is small.

Proof.

- ▶ Take Ehrenfeucht-Mostowski model $EM(\aleph_1)$ of size \aleph_1 .
- ▶ Since uncountable model is \aleph_0 -saturated, $EM(\aleph_1)$ is so.
- $|S(T)| \leq |\{\operatorname{tp}(a) \mid a \in EM(\aleph_1)\}| \leq \aleph_0.$

Fact 3. The prime model of T over a finite set is minimal. Proof.

- Suppose M_0 is prime over finite set and not minimal.
- ▶ Then there is $M_1 \succeq M_0$ such that $M_1 \simeq M_0$.
- Repeat ω_1 times, put $M := \bigcup_{i < \omega_1} M_i$.
- ► Then *M* is uncountable model which is atomic over a finite set.

Contents		Special Case	References

Fact 4. Non-trivial almost complete formulas are dence in the prime model.

Proof.

- ▶ Let $\varphi(x, a)$ be non-algebraic, M be prime over a and take finite approximation of $M = \bigcup_{i < \omega} A_i$ with $a \in A_0$.
- ▶ By smallness, we can get the following a sequence $(\psi_i(x))_{i < \omega}$:

(i)
$$\psi_i \in L(a_i)$$
,
(ii) $\models \forall x(\psi_{i+1} \to \psi_i) \land \forall x(\psi_i \to \varphi)$,
(iii) ψ_i is almost complete over A_i .

▶ If all ψ_i is trivial, then *M* is not minimal.

Contents		General Results	Special Case	References

Fact 5. Every isolated type over a finite set has finite multiplicity. Proof.

- Claim. Isolated type over finite set which has infinite multiplicity is extensible.
- Let p be a isolated type over finite set A which has infinite multiplicity.
- ► Take a prime model *M* over *A* and its finite approximation $M = \bigcup_{i < \omega} A_i$ where $A_0 = A$.
- ▶ By claim, take a suitable sequence of types $(p_i)_{i < \omega}$, and $a \models \bigcup_{i < \omega} p_i$.
- ▶ Then *Ma* is atomic over *A*, so *M* is not minimal.