大学院生向け講義 Generic Structure について

Akito Tsuboi

University of Tsukuba

2012 山中湖モデル理論研究集会August 28

E. Hrushovski, A stable **ℵ**₀-categorical pseudoplane, preprint, 1988.

Hrushovski's pseudoplane

Hrushovski constructed an ω -categorical (merely) stable pseudoplane, which gives a negative answer to the following Lachlan's conjectures:

- **(C3)** There exists no ω -categorical pseudoplane.
- (C1) If T is stable and ω -categorical then T is totally transcendental.

A. H. Lachlan, Two conjectures regarding the stability of -categorical theories, Fund. Math., 81 (1974), 133-145.

Hrushovski's pseudoplane

Hrushovski constructed an ω -categorical (merely) stable pseudoplane, which gives a negative answer to the following Lachlan's conjectures:

- **(C3)** There exists no ω -categorical pseudoplane.
- (C1) If T is stable and ω -categorical then T is totally transcendental.

A. H. Lachlan, Two conjectures regarding the stability of -categorical theories, Fund. Math., 81 (1974), 133-145.

- An almost strongly minimal set interpreting two algebraically closed fields of different characteristics (Hrushovski).
- An almost strongly minimal non-desarguesian projective plane (Baldwin)
- Ikeda's minimal structure,
- Herwig's structure of weight omega, pause
-

- An almost strongly minimal set interpreting two algebraically closed fields of different characteristics (Hrushovski).
- An almost strongly minimal non-desarguesian projective plane (Baldwin)
- Ikeda's minimal structure,
- Herwig's structure of weight omega, pause
-

- An almost strongly minimal set interpreting two algebraically closed fields of different characteristics (Hrushovski).
- An almost strongly minimal non-desarguesian projective plane (Baldwin)
- Ikeda's minimal structure,
- Herwig's structure of weight omega, pause
-

- An almost strongly minimal set interpreting two algebraically closed fields of different characteristics (Hrushovski).
- An almost strongly minimal non-desarguesian projective plane (Baldwin)
- Ikeda's minimal structure,
- Herwig's structure of weight omega, pause
-

- An almost strongly minimal set interpreting two algebraically closed fields of different characteristics (Hrushovski).
- An almost strongly minimal non-desarguesian projective plane (Baldwin)
- Ikeda's minimal structure,
- Herwig's structure of weight omega, pause
-

Outline

- Random graph
 - 1 Definition
 - 2 Existence
 - 3 Properties
- 2 Fraïssé Limit
 - 1 Definition
 - 2 Existence
 - 3 Properties
- (K, \leq) -Generic Structure
 - $oldsymbol{1}$ Predimension $oldsymbol{\delta}$
 - 2 Dimension d
 - 3 Stability of (K, ≤)-Generic

My talk today is based on:

References

- 1 Baldwin, John T.; Shi, Niandong, Stable generic structures, Ann. Pure Appl. Logic 79, No.1, 1-35 (1996).
- Wilfrid Hodges, Model Theory (Encyclopedia of Mathematics and its Applications), Cambridge University Press, 2008
- 4 Frank O. Wagner, Relational structures and dimensions, in Automorphisms of First-Order Structures (Oxford Logic Guides), Oxford Univ Pr on Demand, 1994

Graph

R is a binary relation symbol.

Definition

An R-structure G is said to be a graph if

- R is symmetric.
 - $G \models \forall x \forall y [R(x,y) \rightarrow R(y,x)].$
 - **R** is irreflexive.

$$G \models \forall x [\neg R(x, x)].$$

Garph – Picture

A graph is something like this.

- There is an edge between vertices $a, b \in G$ if R(a, b) holds in G.
- Our graph is an undirected graph.

Subgraphs

Let $G = (G, \mathbb{R}^G)$ and $H = (H, \mathbb{R}^H)$ be two graphs.

Subgraph

H is a subgraph of G if $H \subset G$ and $R^H \subset R^G$.

Full Subgraph

H is a full subgraph of G if $H \subset G$ and $R^H = R^G \cap H^2$.

Subgraphs

Let $G = (G, R^G)$ and $H = (H, R^H)$ be two graphs.

Subgraph

H is a subgraph of G if $H \subset G$ and $R^H \subset R^G$.

Full Subgraph

H is a full subgraph of G if $H \subset G$ and $R^H = R^G \cap H^2$.

Notation

We simply write $H \subset G$ if H is a full subgraph.

Random Graph

Definition

A graph G = (G, R) is said to be a random graph if the following are satisfied

■ For any two disjoint finite subsets $A, B \subset G$, there is $d \in G$ such that $G \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.

Random Graph

Random Graph – Picture

- If a random graph G exists, then it is an infinite graph: Suppose that G has n elements $a_1, ..., a_n$. Then there is $d \in G$ such that $\bigwedge R(a_i, d)$. By the irreflexiveness, $d \notin \{a_1, ..., a_n\}$.
- The axiom T_{RG} of random graphs can be expressed by an infinite set of first order sentences.

- If a random graph G exists, then it is an infinite graph: Suppose that G has n elements $a_1, ..., a_n$. Then there is $d \in G$ such that $\bigwedge R(a_i, d)$. By the irreflexiveness, $d \notin \{a_1, ..., a_n\}$.
- The axiom T_{RG} of random graphs can be expressed by an infinite set of first order sentences.

- If a random graph G exists, then it is an infinite graph: Suppose that G has n elements $a_1, ..., a_n$. Then there is $d \in G$ such that $\bigwedge R(a_i, d)$. By the irreflexiveness, $d \notin \{a_1, ..., a_n\}$.
- The axiom T_{RG} of random graphs can be expressed by an infinite set of first order sentences.

Random Graph

Existence

Theorem

A random graph exists.

- 1 Let G_0 be a one-point graph.
- 2 Inductively define $G_0 \subset G_1 \subset G_2 \cdots$ such that
 - for any $A, B \subset G_n$ $(A \cap B = \emptyset)$ there is $d \in G_{n+1}$ such that $G_{n+1} \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- $G = \bigcup_{n \in \omega} G_n$ is a (countable) random graph.

- 1 Let G_0 be a one-point graph.
- 2 Inductively define $G_0 \subset G_1 \subset G_2 \cdots$ such that
 - for any $A, B \subset G_n$ $(A \cap B = \emptyset)$ there is $d \in G_{n+1}$ such that $G_{n+1} \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- $G = \bigcup_{n \in \omega} G_n$ is a (countable) random graph.

- 1 Let G_0 be a one-point graph.
- 2 Inductively define $G_0 \subset G_1 \subset G_2 \cdots$ such that
 - for any $A, B \subset G_n$ $(A \cap B = \emptyset)$ there is $d \in G_{n+1}$ such that $G_{n+1} \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- $G = \bigcup_{n \in \omega} G_n$ is a (countable) random graph.

- 1 Let G_0 be a one-point graph.
- 2 Inductively define $G_0 \subset G_1 \subset G_2 \cdots$ such that
 - for any $A, B \subset G_n$ $(A \cap B = \emptyset)$ there is $d \in G_{n+1}$ such that $G_{n+1} \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- $G = \bigcup_{n \in \omega} G_n$ is a (countable) random graph.

- 1 Let G_0 be a one-point graph.
- 2 Inductively define $G_0 \subset G_1 \subset G_2 \cdots$ such that
 - for any $A, B \subset G_n$ $(A \cap B = \emptyset)$ there is $d \in G_{n+1}$ such that $G_{n+1} \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- $G = \bigcup_{n \in \omega} G_n$ is a (countable) random graph.

Properties of Random Graphs

Theorem

A random graph embeds every finite graph (as a full subgraph).

- 1 Let G be a random graph and H a finite graph.
- Let $H = H_0 \cup \{e\}$. We can assume $H_0 \subset G$.
- 3 Let $A = \{a \in H_0 : R(a, e)\}$ and $B = \{b \in H_0 : R(b, e)\}$.
- 4 By T_{RG} , we can find $d \in G$ such that $G \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- Then $H = H_0 \cup \{e\} \cong H_0 \cup \{d\} \subset G$.

- 1 Let G be a random graph and H a finite graph.
- 2 Let $H = H_0 \cup \{e\}$. We can assume $H_0 \subset G$.
- 3 Let $A = \{a \in H_0 : R(a, e)\}$ and $B = \{b \in H_0 : R(b, e)\}$.
- 4 By T_{RG} , we can find $d \in G$ such that $G \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- 5 Then $H = H_0 \cup \{e\} \cong H_0 \cup \{d\} \subset G$.

- 1 Let G be a random graph and H a finite graph.
- 2 Let $H = H_0 \cup \{e\}$. We can assume $H_0 \subset G$.
- 3 Let $A = \{a \in H_0 : R(a, e)\}$ and $B = \{b \in H_0 : R(b, e)\}$.
- 4 By T_{RG} , we can find $d \in G$ such that $G \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- Then $H = H_0 \cup \{e\} \cong H_0 \cup \{d\} \subset G$.

٦

- 1 Let G be a random graph and H a finite graph.
- 2 Let $H = H_0 \cup \{e\}$. We can assume $H_0 \subset G$.
- 3 Let $A = \{a \in H_0 : R(a, e)\}$ and $B = \{b \in H_0 : R(b, e)\}$.
- 4 By T_{RG} , we can find $d \in G$ such that $G \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- Then $H = H_0 \cup \{e\} \cong H_0 \cup \{d\} \subset G$.

- 1 Let G be a random graph and H a finite graph.
- 2 Let $H = H_0 \cup \{e\}$. We can assume $H_0 \subset G$.
- 3 Let $A = \{a \in H_0 : R(a,e)\}$ and $B = \{b \in H_0 : R(b,e)\}$.
- 4 By T_{RG} , we can find $d \in G$ such that $G \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- 5 Then $H = H_0 \cup \{e\} \cong H_0 \cup \{d\} \subset G$.

- 1 Let *G* be a random graph and *H* a finite graph.
- 2 Let $H = H_0 \cup \{e\}$. We can assume $H_0 \subset G$.
- 3 Let $A = \{a \in H_0 : R(a,e)\}$ and $B = \{b \in H_0 : R(b,e)\}$.
- 4 By T_{RG} , we can find $d \in G$ such that $G \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- 5 Then $H = H_0 \cup \{e\} \cong H_0 \cup \{d\} \subset G$.

- 1 Let *G* be a random graph and *H* a finite graph.
- 2 Let $H = H_0 \cup \{e\}$. We can assume $H_0 \subset G$.
- 3 Let $A = \{a \in H_0 : R(a, e)\}$ and $B = \{b \in H_0 : R(b, e)\}$.
- 4 By T_{RG} , we can find $d \in G$ such that $G \models \bigwedge_{a \in A} R(a, d) \land \bigwedge_{b \in B} \neg R(b, d)$.
- 5 Then $H = H_0 \cup \{e\} \cong H_0 \cup \{d\} \subset G$.

Random Graph

Embedding – Picture

Random Graph

A similar argument shows

Theorem

A random graph embeds every countable graph.

Random Graph

Theorem

 T_{RG} is complete and ω -categorical. In other words, any two countable random graphs are isomorphic.

- 1 Use a back-and-forth argument.
- 2 Let $G = \{g_i : i \in \omega\}$ and $H = \{h_i : i \in \omega\}$ be two random graphs.
- Construct finite partial isomporphisms $\sigma_i:G\to H$ such that
 - $\blacksquare \emptyset = \sigma_0 \subset \sigma_1 \subset \sigma_2 \cdots$
 - $g_0, ..., g_j \in \text{dom}(\sigma_i) \ (j < i),$
 - $h_0, ..., h_j \in \operatorname{ran}(\sigma_i) \ (j < i).$
- $\sigma = \bigcup_{i \in \omega} \sigma_i$ is an isomorphism between G and H.

- Use a back-and-forth argument.
- 2 Let $G = \{g_i : i \in \omega\}$ and $H = \{h_i : i \in \omega\}$ be two random graphs.
- Construct finite partial isomporphisms $\sigma_i:G\to H$ such that
 - $\blacksquare \emptyset = \sigma_0 \subset \sigma_1 \subset \sigma_2 \cdots$
 - $g_0, ..., g_i \in dom(\sigma_i) \ (j < i),$
 - $h_0, ..., h_j \in \operatorname{ran}(\sigma_i) \ (j < i).$
- $\sigma = \bigcup_{i \in \omega} \sigma_i$ is an isomorphism between G and H

- Use a back-and-forth argument.
- 2 Let $G = \{g_i : i \in \omega\}$ and $H = \{h_i : i \in \omega\}$ be two random graphs.
- 3 Construct finite partial isomporphisms $\sigma_i:G\to H$ such that
 - $\blacksquare \emptyset = \sigma_0 \subset \sigma_1 \subset \sigma_2 \cdots$
 - $g_0, ..., g_j \in \text{dom}(\sigma_i) \ (j < i),$
- $\sigma = \bigcup_{i \in \omega} \sigma_i$ is an isomorphism between G and H

- Use a back-and-forth argument.
- 2 Let $G = \{g_i : i \in \omega\}$ and $H = \{h_i : i \in \omega\}$ be two random graphs.
- 3 Construct finite partial isomporphisms $\sigma_i:G\to H$ such that

 - $g_0, ..., g_j \in \text{dom}(\sigma_i) \ (j < i),$
 - $h_0, ..., h_j \in \operatorname{ran}(\sigma_i) \ (j < i).$
- $\sigma = \bigcup_{i \in \omega} \sigma_i$ is an isomorphism between G and H

- Use a back-and-forth argument.
- 2 Let $G = \{g_i : i \in \omega\}$ and $H = \{h_i : i \in \omega\}$ be two random graphs.
- 3 Construct finite partial isomporphisms $\sigma_i:G\to H$ such that

 - $g_0, ..., g_j \in \text{dom}(\sigma_i) \ (j < i),$
 - $h_0, ..., h_j \in \operatorname{ran}(\sigma_i) \ (j < i).$
- $\sigma = \bigcup_{i \in \omega} \sigma_i$ is an isomorphism between G and H.

Limit of Finite Graphs

A random graph can be considered as a limit of finite graphs.

Let K be the class of all (isomorphism types of) finite graphs. A random graph G clearly has the following two properties:

- 1 Any finite $X \subset G$ is a member of K.
- 2 If $A \subset B \in K$ and $A \subset G$ then there is a copy $B' \subset G$ such that $B \cong_A B'$.

Limit of Finite Graphs

A random graph can be considered as a limit of finite graphs. Let K be the class of all (isomorphism types of) finite graphs. A random graph G clearly has the following two properties:

- 1 Any finite $X \subset G$ is a member of K.
- 2 If $A \subset B \in K$ and $A \subset G$ then there is a copy $B' \subset G$ such that $B \cong_A B'$.

Remark

Let us consider the following graphs G_n (finite random graph):

- $|G_n| = \{1, ..., n\}$ (verteces).
- Add edges between them at random.

$$Prob(R(l, m)) = p = const, (l < m \le n).$$

Then, for any R-sentence φ ,

$$\lim_{n\to\infty}(\operatorname{Prob}(G_n\models\varphi))=1\iff T_{RG}\models\varphi.$$

In particular,

$$\lim_{n\to\infty}(\operatorname{Prob}(G_n\models\varphi))=0\ or\ 1,$$

(Fagin)

Now we work in a more general setting.

Class K

Let *L* be a (finite) relational language.

Let ${\it K}$ be a class of (isomorphism types of) finite ${\it L}$ -structures.

We assume the following:

- $\emptyset \in K$
- *K* is closed under substructures.
- AP (Amalgamation Property): Suppose that $A \subset B_1 \in K$ and $A \subset B_2 \in K$. Then there is $\exists C \in K$ such that
 - $A \subset C$.
 - \blacksquare $\exists B_1', B_2' \subset C$ s.t. $B_1' \cong_A B_1, B_2' \cong_A B_2$

Free Amalgamation – Picture

Amalgamation – Picture

Free amalgam of B_1 , B_2 over A will be denoted by

$$B_1 \oplus_A B_2$$

Sometimes the free amalgama is written as $B_1 \otimes_A B_2$ or $B_1 \coprod_A B_2, \dots$

The domain of $B_1 \oplus_A B_2$ is the disjoint union of B_1 and B_2 over A, and the relation on $B_1 \oplus_A B_2$ is the union of those on B_1 and B_2 .

Free amalgam of B_1 , B_2 over A will be denoted by

$$B_1 \oplus_A B_2$$

Sometimes the free amalgama is written as $B_1 \otimes_A B_2$ or $B_1 \coprod_A B_2$, ... The domain of $B_1 \oplus_A B_2$ is the disjoint union of B_1 and B_2 over A, and the relation on $B_1 \oplus_A B_2$ is the union of those on B_1 and B_2 .

Examples of K

Example

Let K_g be the class of all finite graphs. Then K_g clearly has the AP.

Example

Let K_{tfg} be the class of all triangle free finite graphs. Then K_{tfg} has the AP.

A triangle consists of three points a, b, c such that $R(a, b) \wedge R(b, c) \wedge R(c, a)$.

Fraïssé Limit

Let K be a class of (isomorhism types of) finite L-structures. We always assume the following:

- $\emptyset \in K$
- *K* is closed under substructures.

Theorem

Suppose that K has the AP. Then there is a countable L-structure M with the following properties:

- 1 Any finite $X \subset M$ is a member of K.
- 2 If $A \subset B \in K$ and $A \subset M$ then there is a copy $B' \subset M$ such that $B \cong_A B'$.

A countable L-strucute having the properties 1 and 2 will be called a Fraïssé Limit of K.

Fraïssé Limit is universal and homogeneous

Fraïssé

Theorem

Suppose that K has the AP. Then there is a countable L-structure M with the following properties:

- 1 Any finite $X \subset M$ is a member of K.
- 2 If $A \subset B \in K$ and $A \subset M$ then there is a copy $B' \subset M$ such that $B \cong_A B'$.

A countable L-strucute having the properties 1 and 2 will be called a Fraïssé Limit of K.

Fraïssé Limit is universal and homogeneous.

Property 2 – Picture

- 1 Let (A_i, B_i) $(i \in \omega)$ be an enumeration of all the pairs (A, B) with $A \subset B \in K$. (We assume any such pair appears infinitely many times.)
- 2 Using AP we can construct a sequence of finite L-structures $M_0 \subset M_1 \subset \cdots$ such that for any i
 - $M_i \in K$
 - $\blacksquare A_i \cong A \subset M_i \Rightarrow \exists B \text{ s.t. } B_i \cong_A B \subset M_{i+1}.$
- Then $M = \bigcup_{i \in \omega} M_i$ has the required properties.

- 1 Let (A_i, B_i) $(i \in \omega)$ be an enumeration of all the pairs (A, B) with $A \subset B \in K$. (We assume any such pair appears infinitely many times.)
- 2 Using AP we can construct a sequence of finite L-structures $M_0 \subset M_1 \subset \cdots$ such that for any i
 - $M_i \in K$
 - $\blacksquare A_i \cong A \subset M_i \Rightarrow \exists B \text{ s.t. } B_i \cong_A B \subset M_{i+1}.$
- Then $M = \bigcup_{i \in \omega} M_i$ has the required properties.

- 1 Let (A_i, B_i) $(i \in \omega)$ be an enumeration of all the pairs (A, B) with $A \subset B \in K$. (We assume any such pair appears infinitely many times.)
- Using AP we can construct a sequence of finite L-structures $M_0 \subset M_1 \subset \cdots$ such that for any i
 - $M_i \in K$
 - $\blacksquare A_i \cong A \subset M_i \Rightarrow \exists B \text{ s.t. } B_i \cong_A B \subset M_{i+1}.$
- Then $M = \bigcup_{i \in \omega} M_i$ has the required properties.

- 1 Let (A_i, B_i) $(i \in \omega)$ be an enumeration of all the pairs (A, B) with $A \subset B \in K$. (We assume any such pair appears infinitely many times.)
- Using AP we can construct a sequence of finite L-structures $M_0 \subset M_1 \subset \cdots$ such that for any i
 - $M_i \in K$
 - $\blacksquare A_i \cong A \subset M_i \Rightarrow \exists B \text{ s.t. } B_i \cong_A B \subset M_{i+1}.$
- Then $M = \bigcup_{i \in \omega} M_i$ has the required properties.

- 1 Let (A_i, B_i) $(i \in \omega)$ be an enumeration of all the pairs (A, B) with $A \subset B \in K$. (We assume any such pair appears infinitely many times.)
- Using AP we can construct a sequence of finite L-structures $M_0 \subset M_1 \subset \cdots$ such that for any i
 - $M_i \in K$
 - $\blacksquare A_i \cong A \subset M_i \Rightarrow \exists B \text{ s.t. } B_i \cong_A B \subset M_{i+1}.$
- 3 Then $M = \bigcup_{i \in \omega} M_i$ has the required properties.

Uniqueness

Theorem

For given K, a Fraïssé Limit is unique up to isomorphism.

Proof

Use a back-and-forth argument.

Uniqueness

Theorem

For given K, a Fraïssé Limit is unique up to isomorphism.

Proof.

Use a back-and-forth argument.

Fraïssé

Example

Let K_g be the class of all finite graphs. Then a (countable) random graph is a K_g -Fraïssé Limit.

Example

Let K_{tfg} be the class of all triangle free finite graphs. Then there is a unique K_{tfg} -Fraïssé Limit.

K with Ordered Structure

Hrushovski Amalgamation

K with Predimension

As before,

■ $L = \{P_1, ..., P_m\}$ is a (finite) relational language.

For simplicity, we only consider L-structures with

$$P_i(x_1, x_2, ..., x_{n_i}) \rightarrow \bigwedge_{j \neq k} x_j \neq x_k$$

■ $P_i(x_1, x_2, ..., x_{n_i}) \rightarrow P_i(x_{\sigma(1)}, ..., x_{\sigma(n_i)})$, where σ is a permutation of $\{1, ..., n_i\}$.

K with Predimension

As before,

■ $L = \{P_1, ..., P_m\}$ is a (finite) relational language.

For simplicity, we only consider *L*-structures with

$$P_i(x_1, x_2, ..., x_{n_i}) \rightarrow \bigwedge_{i \neq k} x_i \neq x_k$$

■ $P_i(x_1, x_2, ..., x_{n_i}) \rightarrow P_i(x_{\sigma(1)}, ..., x_{\sigma(n_i)})$, where σ is a permutation of $\{1, ..., n_i\}$.

Let
$$L = \{P_1, ..., P_n\}.$$

Let $\alpha_1, ..., \alpha_n$ be positive real numbers. Mainly $0 < \alpha_i < 1$.

Definition

For a finite L-structure A, the predimension of A (with respect to $\alpha_1, ..., \alpha_n$) is defined by:

$$\delta(A) = \sum |A| - \alpha_i |P_i(A)|,$$

where $P_i(A)$ is the set of all n_i -element subsets $B \subset A$ satisfying P_i .

Let
$$L = \{P_1, ..., P_n\}.$$

Let $\alpha_1, ..., \alpha_n$ be positive real numbers. Mainly $0 < \alpha_i < 1$.

Definition

For a finite *L*-structure *A*, the predimension of *A* (with respect to $\alpha_1, ..., \alpha_n$) is defined by:

$$\delta(A) = \sum |A| - \alpha_i |P_i(A)|,$$

where $P_i(A)$ is the set of all n_i -element subsets $B \subset A$ satisfying P_i .

Let
$$L = \{P_1, ..., P_n\}.$$

Let $\alpha_1, ..., \alpha_n$ be positive real numbers. Mainly $0 < \alpha_i < 1$.

Definition

For a finite *L*-structure *A*, the predimension of *A* (with respect to $\alpha_1, ..., \alpha_n$) is defined by:

$$\delta(A) = \sum |A| - \alpha_i |P_i(A)|,$$

where $P_i(A)$ is the set of all n_i -element subsets $B \subset A$ satisfying P_i .

Example – Graph Case

$$\delta(A) = |A| - \alpha$$
(the # of edges in A)

Example

$$\delta(A) = 3 - 3\alpha$$
, $\delta(B) = 4 - 6\alpha$.

Example – Graph Case

$$\delta(A) = |A| - \alpha$$
(the # of edges in A)

Example

$$\delta(A) = 3 - 3\alpha$$
, $\delta(B) = 4 - 6\alpha$.

Relative Predimension

Let *A* and *B* be subsets of a larger finite *L*-structure.

Definition

$$\delta(A/B) = \delta(AB) - \delta(B),$$

where AB denotes $A \cup B$.

Notice that $\delta(A/B) = \delta(A \setminus B/B)$.

Relative Predimension

Let *A* and *B* be subsets of a larger finite *L*-structure.

Definition

$$\delta(A/B) = \delta(AB) - \delta(B),$$

where AB denotes $A \cup B$.

Notice that $\delta(A/B) = \delta(A \setminus B/B)$.

From now on we assume $L = \{R\}$. This is for simplicity only.

Lemma

Let $A \cap B = \emptyset$.

- 1 $\delta(A/B) = \delta(A) \alpha |R(A,B)|$, where R(A,B) denotes the set of all edges between A and B.
- 2 (Monotonicity) $B_0 \subset B \Rightarrow \delta(A/B) \leq \delta(A/B_0).$

From this, we know that if $A \cap B = A \cap C$ and $B \subset C$ then $\delta(A/B) \geq \delta(A/C)$.

Lemma

Let $A \cap B = \emptyset$.

- 1 $\delta(A/B) = \delta(A) \alpha |R(A,B)|$, where R(A,B) denotes the set of all edges between A and B.
- 2 (Monotonicity) $B_0 \subset B \Rightarrow \delta(A/B) \leq \delta(A/B_0).$

From this, we know that if $A \cap B = A \cap C$ and $B \subset C$ then $\delta(A/B) \ge \delta(A/C)$.

$$\delta(A/B) = \delta(A) - \alpha |R(A,B)|$$

$$3 = |A| - \alpha(|(R(A)| + |R(B)| + |R(A, B)|) + \alpha|R(B)|$$

$$|A| = |A| - \alpha |R(A)| - \alpha |R(A, B)|$$

_

$$\delta(A/B) = \delta(A) - \alpha |R(A,B)|$$

$$= |A| - \alpha |R(A)| - \alpha |R(A, B)|$$

$$5 = \delta(A) - \alpha |R(A, B)|.$$

$$\delta(A/B) = \delta(A) - \alpha |R(A,B)|$$

$$|A| = |A| - \alpha |R(A)| - \alpha |R(A, B)|$$

$$\mathbf{5} = \delta(A) - \alpha |R(A, B)|.$$

$$\delta(A/B) = \delta(A) - \alpha |R(A, B)|$$

$$3 = |A| - \alpha(|(R(A)| + |R(B)| + |R(A, B)|) + \alpha|R(B)|$$

$$= |A| - \alpha |R(A)| - \alpha |R(A, B)|$$

$$\delta(A/B) = \delta(A) - \alpha |R(A,B)|$$

$$3 = |A| - \alpha(|(R(A)| + |R(B)| + |R(A, B)|) + \alpha|R(B)|$$

$$|\mathbf{4}| = |A| - \alpha |R(A)| - \alpha |R(A, B)|$$

$$\mathbf{5} = \delta(A) - \alpha |R(A, B)|$$

$$\delta(A/B) = \delta(A) - \alpha |R(A, B)|$$

$$3 = |A| - \alpha(|(R(A)| + |R(B)| + |R(A, B)|) + \alpha|R(B)|$$

- 1 $B_0 \subset B$ implies $R(A, B_0) \subset R(A, B)$.
- 2 So $|R(A, B_0)| \le |R(A, B)|$.
- By part 1, we conclude $\delta(A/B_0) \ge \delta(A/B)$.

- $1 B_0 \subset B \text{ implies } R(A, B_0) \subset R(A, B).$
- 2 So $|R(A, B_0)| \le |R(A, B)|$.
- 3 By part 1, we conclude $\delta(A/B_0) \ge \delta(A/B)$.

- 1 $B_0 \subset B$ implies $R(A, B_0) \subset R(A, B)$.
- 2 So $|R(A, B_0)| \le |R(A, B)|$.
- 3 By part 1, we conclude $\delta(A/B_0) \ge \delta(A/B)$.

- 1 $B_0 \subset B$ implies $R(A, B_0) \subset R(A, B)$.
- 2 So $|R(A, B_0)| \le |R(A, B)|$.
- 3 By part 1, we conclude $\delta(A/B_0) \ge \delta(A/B)$.

Strong Subset

Definition

Let $A \subset B$ be finite L-structures. We write $A \leq B$ if

$$A \subset C \subset B \Rightarrow \delta(C/A) \ge 0 \ (\forall C).$$

If $A \leq B$, we say (i) A is a strong subset of B or (ii) A is closed in B.

Strong Subset

Definition

Let $A \subset B$ be finite L-structures. We write $A \leq B$ if

$$A \subset C \subset B \Rightarrow \delta(C/A) \ge 0 \ (\forall C).$$

If $A \leq B$, we say (i) A is a strong subset of B or (ii) A is closed in B.

$$K_{\alpha}$$

$$L = \{R\}. \ \delta(A) = |A| - \alpha |R(A)|.$$

$$K_{\alpha} = \{A : \emptyset \leq A\}.$$

Clearly K_{α} is closed under substructures. We consider K_{α} with \leq (strong subset relation).

Properties of (K_{α}, \leq)

Lemma

- **1** ≤ is an order on K_{α} .
- $2 \emptyset \leq A$
- $\exists \ A \leq B, C \subset B \Rightarrow A \cap C \leq C.$
- 4 In particular, $A \leq B$, $A \subset C \subset B \Rightarrow A \leq C$.

\leq is an order on K_{α} .

- 1 It suffices to prove transitivity.
- 2 Let $A_0 \leq A_1 \leq A_2$ and $A_0 \subset X \subset A_2$.
- $\delta(X/A_0) = \delta(X/X \cap A_1) + \delta(X \cap A_1/A_0)$
- $\leq \delta(X/X \cap A_1)$
- $\leq \delta(X/A_1)$ (Monotonicity)
- $| \mathbf{6} | \geq 0.$
- 7 So $A_0 \leq A_2$.

$A \leq B, C \subset B \Rightarrow A \cap C \leq C.$

Proof.

- 1 Assume $A \leq B$, $C \subset B$.
- 2 Let $A \cap C \subset X \subset C$.
- $| 4 | \geq \delta(X \setminus A)$
- ≥ 0 .
- 6 This shows $A \cap C \leq C$.

Ť.

Amalgamation Property

Lemma

Let $A \leq B \in K_{\alpha}$ and $A \leq C \in K_{\alpha}$. Then $D = B \oplus_{A} C$ has the following properties:

- 1 $D \in K_{\alpha}$
- $B \leq D$ and $C \leq D$.

- 1 We want to show $B \leq D$.
- 2 Let $B \subset X \subset D$. We show $\delta(X/B) \ge 0$.
- $\delta(X/B) = \delta(X \setminus B) \alpha |R(X \setminus B, B)|$
- $= \delta(X \setminus B) \alpha |R(X \setminus B, A)| \text{ (by freeness)}$
- $\delta = \delta(X \setminus B/A) \ge 0$. (by $A \le C$)

- 1 We want to show $B \leq D$.
- **2** Let $B \subset X \subset D$. We show $\delta(X/B) \ge 0$.
- $= \delta(X \setminus B) \alpha |R(X \setminus B, A)| \text{ (by freeness)}$
- $\delta = \delta(X \setminus B/A) \ge 0$. (by $A \le C$)

- 1 We want to show $B \leq D$.
- **2** Let $B \subset X \subset D$. We show $\delta(X/B) \ge 0$.
- $\delta(X/B) = \delta(X \setminus B) \alpha |R(X \setminus B, B)|$
- $|A| = \delta(X \setminus B) \alpha |R(X \setminus B, A)| \text{ (by freeness)}$
- $\delta = \delta(X \setminus B/A) \ge 0$. (by $A \le C$)

- 1 We want to show $B \leq D$.
- 2 Let $B \subset X \subset D$. We show $\delta(X/B) \geq 0$.
- $4 = \delta(X \setminus B) \alpha |R(X \setminus B, A)| \text{ (by freeness)}$
- $\delta = \delta(X \setminus B/A) \ge 0$. (by $A \le C$)

- 1 We want to show $B \leq D$.
- 2 Let $B \subset X \subset D$. We show $\delta(X/B) \ge 0$.
- $4 = \delta(X \setminus B) \alpha |R(X \setminus B, A)| \text{ (by freeness)}$
- $5 = \delta(X \setminus B/A) \ge 0$. (by $A \le C$)

$$D = B \oplus_A C \in K_\alpha$$

- 1 Let $X \subset D$. We want to show $\delta(X) \geq 0$.
- $\geq \delta(X \setminus B/X \cap B) \text{ (by } X \cap B \in K_{\alpha})$
- $\geq 0 \text{ (by } B \leq D).$

└─*K* with Ordered Structure

$$D = B \oplus_A C \in K_\alpha$$

- 1 Let $X \subset D$. We want to show $\delta(X) \geq 0$.
- $\geq \delta(X \setminus B/X \cap B) \text{ (by } X \cap B \in K_{\alpha})$
- $\geq 0 \text{ (by } B \leq D).$

$$D = B \oplus_A C \in K_\alpha$$

- 1 Let $X \subset D$. We want to show $\delta(X) \geq 0$.
- $\geq \delta(X \setminus B/X \cap B)$ (by $X \cap B \in K_{\alpha}$)
- $\geq 0 \text{ (by } B \leq D).$

$$D = B \oplus_A C \in K_\alpha$$

- 1 Let $X \subset D$. We want to show $\delta(X) \geq 0$.
- $\geq \delta(X \setminus B/X \cap B)$ (by $X \cap B \in K_{\alpha}$)
- ≥ 0 (by $B \leq D$).

(K_{α}, \leq) -generic structure

Theorem

There is a countable structure M having the following properties:

- 1 Any finite $X \subset M$ is a member of K_{α} .
- 2 If $A \leq B \in K$ and $A \leq M$ then there is a copy $B' \leq M$ such that $B \cong_A B'$.

 $A \leq M$ is an abbreviation of the statement $A \leq F (\forall F \subset_{\text{fin}} M)$.

A countable structure M having the propeties 1 and will be referred as a (K_{α}, \leq) -generic structure.

(K_{α}, \leq) -generic structure

Theorem

There is a countable structure M having the following properties:

- 1 Any finite $X \subset M$ is a member of K_{α} .
- 2 If $A \leq B \in K$ and $A \leq M$ then there is a copy $B' \leq M$ such that $B \cong_A B'$.

 $A \leq M$ is an abbreviation of the statement $A \leq F$ ($\forall F \subset_{\text{fin}} M$).

A countable structure M having the propeties 1 and will be referred as a (K_{α}, \leq) -generic structure.

Existence

Remark

The existence of (K_{α}, \leq) -generic structure can be shown exactly the same way as in the case of random graph. The point is that (K_{α}, \leq) has the AP.

Existence

Remark

The existence of (K_{α}, \leq) -generic structure can be shown exactly the same way as in the case of random graph. The point is that (K_{α}, \leq) has the AP.

Conclusion

Theorem

Let (K, \leq) be a subclass of (K_{α}, \leq) with the AP. Then there is a (K, \leq) -generic structure.

Conclusion

Or more generally:

Theorem

Let (K, \leq) be a class of finite L-structures satisfying AP (+ some necessary conditions on \leq). Then there is a (K, \leq) -generic structure M such that

- 1 Any finite $X \subset M$ is a member of K.
- 2 If $A \leq B \in K$ and $A \leq M$ then there is a copy $B' \leq M$ such that $B \cong_A B'$.

Uniqueness

Closed Finite Sets

For showing the uniquenss of a (countable) (K, \leq) -generic structure, we need to construct a tower of parital isomorphisms between closed finite subsets.

Again we assume $K \subset K_{\alpha}$.

Uniqueness

Closed Finite Sets

For showing the uniquenss of a (countable) (K, \leq) -generic structure, we need to construct a tower of parital isomorphisms between closed finite subsets.

Again we assume $K \subset K_{\alpha}$.

Let M be an L-structure such that every finite $A \subset M$ belongs to K.

Definition

Let $A \subset M$. A is called a closed subset of M if for any finite $B \subset M$,

$$A \cap B \leq B$$
.

If A_0 is finite then A_0 is closed $\iff A_0 \leq M$. So, even if A is infinite, we write $A \leq M$ if A is closed in M.

Let M be an L-structure such that every finite $A \subset M$ belongs to K.

Definition

Let $A \subset M$. A is called a closed subset of M if for any finite $B \subset M$,

$$A \cap B \leq B$$
.

If A_0 is finite then A_0 is closed $\iff A_0 \leq M$. So, even if A is infinite, we write $A \leq M$ if A is closed in M.

Remark

- 1 M itself is a closed set.
- $C_1 \leq M$ and $C_2 \leq M$ then $C_1 \cap C_2 \leq M$.
- Given $A \subset M$, there is a minimum set $C \subset M$ such that $A \subset C \leq M$. This C is denoted by A (the closure of A).

Remark

- 1 M itself is a closed set.
- $C_1 \leq M$ and $C_2 \leq M$ then $C_1 \cap C_2 \leq M$.
- Given $A \subset M$, there is a minimum set $C \subset M$ such that $A \subset C \leq M$. This C is denoted by A (the closure of A).

Remark

- 1 M itself is a closed set.
- $C_1 \leq M$ and $C_2 \leq M$ then $C_1 \cap C_2 \leq M$.
- 3 Given $A \subset M$, there is a minimum set $C \subset M$ such that $A \subset C \leq M$. This C is denoted by A (the closure of A).

Remark

Suppose that there is no infinite sequence $A_0 \subset A_1 \subset A_2 \cdots$ of K-sets such that

$$\delta(A_0) > \delta(A_1) > \cdots$$
.

Then, for any $N \equiv M$,

$$A \subset_{\text{fin}} N \Rightarrow \overline{A} \subset_{\text{fin}} N$$
.

Finite Closure Property

Example

- 11 For $\alpha \in Q$, K_{α} has the finite closure property.
- 2 Suppose that there is an increasing function $f:\omega \to \mathbb{R}$ such that
 - $\blacksquare \lim_{n\to\infty} f(n) = \infty$
 - $\blacksquare A \in K \Rightarrow \delta(A) \ge f(|A|).$

Then *K* has the finite closure property.

Conclusion

Theorem

Let (K, \leq) be a class of finite L-structures satisfying AP+ Finite Closure Property. Then there is a unique (K, \leq) -generic structure M:

- 1 Any finite $X \subset M$ is a member of K_{α} .
- 2 If $A \leq B \in K$ and $A \leq M$ then there is a copy $B' \leq M$ such that $B \cong_A B'$.

Conclusion

Theorem

Let (K, \leq) be a class of finite L-structures satisfying AP+ Finite Closure Property. Then there is a unique (K, \leq) -generic structure M:

- 1 Any finite $X \subset M$ is a member of K_{α} .
- 2 If $A \leq B \in K$ and $A \leq M$ then there is a copy $B' \leq M$ such that $B \cong_A B'$.

On Saturation of Generic Structures

A generic structure need not to be ω -saturated. We assume that (K, \leq) has AP and Finite Closure Propery.

Theorem

Let M be a (K, \leq) -generic structure. The following conditions are equivalent:

- **11** M is ω -saturated.
- 2 For any $N \equiv M$, $A \leq N$, $A \leq B \in K$ and $n \in \omega$, there is $B' \leq_n N$ such that $B \cong_A B'$.

 $X \leq_n Y$ (*n*-closedness) is the statement that $X \leq XZ$ for any $Z \subset Y$ with $|Z| \leq n$.

1 implies that any N is n-generic.

Proof: $1 \Rightarrow 2$.

- Suppose that 2 is not the case.
- 2 For some $n \in \omega$, $A \leq B \in K$, The following set $\Gamma(X)$ is consistent with T = Th(M).
 - $X \cong A$ is a closed set
 - \blacksquare $(X,Y)\cong (A,B)\Rightarrow Y$ is not *n*-closed, for any Y.
- By saturation, there is $A' \subset M$ realizing Γ . But then M is not a generic structure.

1 implies that any N is n-generic.

Proof: $1 \Rightarrow 2$.

- Suppose that 2 is not the case.
- 2 For some $n \in \omega$, $A \leq B \in K$, The following set $\Gamma(X)$ is consistent with T = Th(M).
 - $X \cong A$ is a closed set
 - $(X,Y)\cong (A,B)\Rightarrow Y$ is not *n*-closed, for any Y.
- By saturation, there is $A' \subset M$ realizing Γ . But then M is not a generic structure.

1 implies that any N is n-generic.

Proof: $1 \Rightarrow 2$.

- Suppose that 2 is not the case.
- 2 For some $n \in \omega$, $A \leq B \in K$, The following set $\Gamma(X)$ is consistent with T = Th(M).
 - $X \cong A$ is a closed set
 - $(X,Y)\cong (A,B)\Rightarrow Y \text{ is not } n\text{-closed, for any } Y.$
- 3 By saturation, there is $A' \subset M$ realizing Γ. But then M is not a generic structure.

2 implies that M is saturated.

Proof: $2 \Rightarrow 1$.

1 Condition 2 implies that any ω -saturated model N of T has the following property:

$$A \leq B \in K, A \leq N \Rightarrow \exists B' \leq N, B \cong_A B'.$$

- 2 So any finite partial isomorphism σ between closed sets $A \leq M$ and $A_1 \leq N$ can be extended to $\sigma^*: M \to N$, $\sigma^*(M) \prec N$.
- This shows that M is ω -saturated.

2 implies that M is saturated.

Proof: $2 \Rightarrow 1$.

1 Condition 2 implies that any ω -saturated model N of T has the following property:

$$A \leq B \in K, A \leq N \Rightarrow \exists B' \leq N, B \cong_A B'.$$

- 2 So any finite partial isomorphism σ between closed sets $A \leq M$ and $A_1 \leq N$ can be extended to $\sigma^* : M \to N$, $\sigma^*(M) \prec N$.
- This shows that M is ω -saturated

2 implies that M is saturated.

Proof: $2 \Rightarrow 1$.

1 Condition 2 implies that any ω -saturated model N of T has the following property:

$$A \leq B \in K, \ A \leq N \Rightarrow \exists B' \leq N, B \cong_A B'.$$

- 2 So any finite partial isomorphism σ between closed sets $A \leq M$ and $A_1 \leq N$ can be extended to $\sigma^* : M \to N$, $\sigma^*(M) \prec N$.
- **3** This shows that M is ω -saturated.

Conclusion

If a generic structure M is ω -saturated, then any κ -saturated $N \equiv M$ has the following property:

$$A \leq N, A \leq B \in K, |B| < \kappa \Rightarrow \exists B' \leq N, B' \cong_A B.$$

Dimenseion

Let M be a (K, \leq) -generic structure, where (K, \leq) has the finite closure property. Let $N \equiv M$.

Definition (Dimension)

Let $A \subset N$ be a finite set.

$$d(A) = \inf\{\delta(B) : A \subset B \subset_{\text{fin}} N\} = \overline{\delta(A)}$$

L Dimenseion

Definition (Relative Dimension)

$$d(a/A) := d(aA) - d(A)$$
 (A is finite).

Lemma (Monotonicity)

- $a \subset b \Rightarrow d(a/A) \leq d(b/A)$.
- $\exists A \subset B \Rightarrow d(a/A) \leq d(a/B).$

$$A \subset B \Rightarrow d(A) \leq d(B)$$
.

- Since $A \subset B$, $\{\delta(X) : A \subset X\} \supset \{\delta(X) : B \subset X\}$.
- 3 So we conclude $d(A) \leq d(B)$.

$$A \subset B \Rightarrow d(A) \leq d(B)$$
.

- 2 Since $A \subset B$, $\{\delta(X) : A \subset X\} \supset \{\delta(X) : B \subset X\}$.
- 3 So we conclude $d(A) \leq d(B)$.

$$A \subset B \Rightarrow d(A) \leq d(B)$$
.

- 2 Since $A \subset B$, $\{\delta(X) : A \subset X\} \supset \{\delta(X) : B \subset X\}$.
- 3 So we conclude $d(A) \leq d(B)$.

$A \subset B \Rightarrow d(a/A) \leq d(a/B)$.

- 1 We can assume $\overline{A} = A$ and $\overline{B} = B$.
- $2 d(a/A) = \delta(\overline{Aa}) \delta(A) \ge \delta(\overline{Aa}) \delta(\overline{Aa} \cap B)$
- $\exists = \delta(\overline{Aa}/\overline{Aa} \cap B) \ge \delta(\overline{Aa}/B).$

$A \subset B \Rightarrow d(a/A) \leq d(a/B)$.

- 1 We can assume $\overline{A} = A$ and $\overline{B} = B$.
- 2 $d(a/A) = \delta(Aa) \delta(A) \ge \delta(Aa) \delta(Aa \cap B)$
- $\exists = \delta(Aa/Aa \cap B) \ge \delta(Aa/B).$

$$A \subset B \Rightarrow d(a/A) \leq d(a/B)$$
.

- 11 We can assume $\overline{A} = A$ and $\overline{B} = B$.
- $2 d(a/A) = \delta(\overline{Aa}) \delta(A) \ge \delta(\overline{Aa}) \delta(\overline{Aa} \cap B)$
- $\exists = \delta(Aa/Aa \cap B) \ge \delta(Aa/B).$

$$A \subset B \Rightarrow d(a/A) \leq d(a/B)$$
.

- 1 We can assume $\overline{A} = A$ and $\overline{B} = B$.
- $2 d(a/A) = \delta(\overline{Aa}) \delta(A) \ge \delta(\overline{Aa}) \delta(\overline{Aa} \cap B)$
- $\mathbf{3} = \delta(\overline{Aa}/\overline{Aa} \cap B) \geq \delta(\overline{Aa}/B).$

$$A \subset B \Rightarrow d(a/A) \leq d(a/B)$$
.

- 1 We can assume $\overline{A} = A$ and $\overline{B} = B$.
- $2 d(a/A) = \delta(\overline{Aa}) \delta(A) \ge \delta(\overline{Aa}) \delta(\overline{Aa} \cap B)$
- $3 = \delta(\overline{Aa}/\overline{Aa} \cap B) \ge \delta(\overline{Aa}/B).$

Dimenseion

Remark

By monotonicity, for not necessarily finite A, we can define

$$d(a/A) = \inf\{d(a/A_0) : A_0 \subset_{\text{fin}} A\}.$$

└─ Dimenseion

Lemma

Let A, B, C be closed finite sets with $A = B \cap C$. Suppose d(B/C) = d(B/A). Then $BC = B \oplus_A C$ and BC is closed.

- 1 d(BC) = d(B/C) + d(C)
- 3 = d(B) + d(C) d(A)
- $= \delta(B) + \delta(C) \delta(A)$
- $|\delta| \geq \delta(BC)$.
- Since $d(BC) \le \delta(BC)$, we have $d(BC) \le \delta(BC)$, hence BC is closed.
- By $\delta(B) + \delta(C) \delta(A) = \delta(BC)$, $R(BC) \subset R(B) \cup R(C)$, so $BC = B \oplus_A C$.

- $| \mathbf{4} | = \delta(\mathbf{B}) + \delta(\mathbf{C}) \delta(\mathbf{A})$
- $|\delta| \geq \delta(BC)$.
- Since $d(BC) \le \delta(BC)$, we have $d(BC) \le \delta(BC)$, hence BC is closed.
- By $\delta(B) + \delta(C) \delta(A) = \delta(BC)$, $R(BC) \subset R(B) \cup R(C)$, so $BC = B \oplus_A C$.

- 3 = d(B) + d(C) d(A)
- $= \delta(B) + \delta(C) \delta(A)$
- Since $d(BC) \le \delta(BC)$, we have $d(BC) \le \delta(BC)$, hence BC is closed.
- By $\delta(B) + \delta(C) \delta(A) = \delta(BC)$, $R(BC) \subset R(B) \cup R(C)$, so $BC = B \oplus_A C$.

$$3 = d(B) + d(C) - d(A)$$

$$= \delta(B) + \delta(C) - \delta(A)$$

- $\leq \delta(BC)$
- Since $d(BC) \le \delta(BC)$, we have $d(BC) \le \delta(BC)$, hence BC is closed.
- By $\delta(B) + \delta(C) \delta(A) = \delta(BC)$, $R(BC) \subset R(B) \cup R(C)$, so $BC = B \oplus_A C$.

$$3 = d(B) + d(C) - d(A)$$

$$= \delta(B) + \delta(C) - \delta(A)$$

$$\leq \delta(BC)$$
.

- Since $d(BC) \le \delta(BC)$, we have $d(BC) \le \delta(BC)$, hence BC is closed.
- By $\delta(B) + \delta(C) \delta(A) = \delta(BC)$, $R(BC) \subset R(B) \cup R(C)$, so $BC = B \oplus_A C$.

- 3 = d(B) + d(C) d(A)
- $\leq \delta(BC)$.
- 6 Since $d(BC) \le \delta(BC)$, we have $d(BC) \le \delta(BC)$, hence BC is closed.
- By $\delta(B) + \delta(C) \delta(A) = \delta(BC)$, $R(BC) \subset R(B) \cup R(C)$, so $BC = B \oplus_A C$.

- 3 = d(B) + d(C) d(A)
- $\leq \delta(BC)$.
- 6 Since $d(BC) \le \delta(BC)$, we have $d(BC) \le \delta(BC)$, hence BC is closed.
- 7 By $\delta(B) + \delta(C) \delta(A) = \delta(BC)$, $R(BC) \subset R(B) \cup R(C)$, so $BC = B \oplus_A C$.

 $\alpha > 0$ is necessary

- 3 = d(B) + d(C) d(A)
- $= \delta(B) + \delta(C) \delta(A)$
- $\leq \delta(BC)$.
- 6 Since $d(BC) \le \delta(BC)$, we have $d(BC) \le \delta(BC)$, hence BC is closed.
- 7 By $\delta(B) + \delta(C) \delta(A) = \delta(BC)$, $R(BC) \subset R(B) \cup R(C)$, so $BC = B \oplus_A C$. $\alpha > 0$ is necessary.

П

By an $\varepsilon - \delta$ type argument, for not necessarily finite A and $A_0 \subset A$, we have the following:

(*) Suppose

$$d(a/A_0) = d(a/A)$$
 and $\overline{A_0a} \cap \overline{A} = \overline{A_0}$.

Then

$$\overline{Aa} = \overline{A_0a} \oplus \overline{A_0} \overline{A} \le N.$$

Dimenseion

Theorem

Let M be an ω -saturated (K, \leq) -generic structure. Then T = Th(M) is stable.

We work in a sufficiently saturated $N \equiv M$.

└─ Dimenseion

Theorem

Let M be an ω -saturated (K, \leq) -generic structure. Then T = Th(M) is stable.

We work in a sufficiently saturated $N \equiv M$.

Proof of Stability

- 1 Let A be a closed subset of N with $|A| = 2^{\omega}$.
- 2 We show that $|S(A)| = 2^{\omega}$.
- Let $\operatorname{tp}(a/A) \in S(A)$. We can choose a countable closed A_0 such that $d(a/A_0) = d(a/A)$ and $\overline{A_0a} \cap A = A_0$.
- 4 Then $Aa = A_0a \oplus_{A_0} A \leq N$.
- So the information of tp(a/A) is completely included in $tp(a/A_0)$.
- 6 So $|S(A)| = |A^{\omega}| \times |S(A_0)| = 2^{\omega}$.

Hrushovski's pseudoplane

Hrushovski constructed an ω -categorical merely stable pseudoplane. I explain how he constructed the structure.

Hrushovski's pseudoplane

Hrushovski constructed an ω -categorical merely stable pseudoplane. I explain how he constructed the structure.

L Dimenseion

- What is pseudoplane?
- 2 What is *K* in this case?

Pseudoplane

A pseudoplane is a triple (P, L, I) with the following properties:

- Every line $l \in L$ has infinitely many points $p \in P$.
- (Its dual) Every point $p \in P$ lies on infinitely many lines $l \in L$.
- For any distinct points $p \neq q \in P$, at most finite number of lines $l \in L$ pass both p and q.
- (Its dual)

Pseudoplane

A pseudoplane is a triple (P, L, I) with the following properties:

- Every line $l \in L$ has infinitely many points $p \in P$.
- (Its dual) Every point $p \in P$ lies on infinitely many lines $l \in L$.
- For any distinct points $p \neq q \in P$, at most finite number of lines $l \in L$ pass both p and q.
- (Its dual)

Pseudoplane

A pseudoplane is a triple (P, L, I) with the following properties:

- Every line $l \in L$ has infinitely many points $p \in P$.
- (Its dual) Every point $p \in P$ lies on infinitely many lines $l \in L$.
- For any distinct points $p \neq q \in P$, at most finite number of lines $l \in L$ pass both p and q.
- (Its dual)

For defining K (a class of finite graphs), Hrushovski defined a function $f:\omega\to\mathbb{R}$ and $\alpha\in\mathbb{R}$ such that

- $oldsymbol{1} f$ increases very slowly.
- $\lim f = \infty$
- 3 $f(4) > 4 4\alpha = \delta(\Box)$.

K is the class of all finite graphs A such that, for every $A_0 \subset A$, $f(|A_0|) \leq \delta(A_0)$.

From 1, we have the (free) AP.

From 2, we have the finite closure property and ω -categoricity.

From 3, there is no box in K.

For defining K (a class of finite graphs), Hrushovski defined a function $f:\omega\to\mathbb{R}$ and $\alpha\in\mathbb{R}$ such that

- $oldsymbol{1} f$ increases very slowly.
- $\lim f = \infty$
- 3 $f(4) > 4 4\alpha = \delta(\Box)$.

K is the class of all finite graphs A such that, for every $A_0 \subset A$, $f(|A_0|) \leq \delta(A_0)$.

From 1, we have the (free) AP.

From 2, we have the finite closure property and ω -categoricity. From 3, there is no box in K.

For defining K (a class of finite graphs), Hrushovski defined a function $f:\omega\to\mathbb{R}$ and $\alpha\in\mathbb{R}$ such that

- $oldsymbol{1}$ f increases very slowly.
- $\lim f = \infty$
- 3 $f(4) > 4 4\alpha = \delta(\Box)$.

K is the class of all finite graphs A such that, for every $A_0 \subset A$, $f(|A_0|) \leq \delta(A_0)$.

From 1, we have the (free) AP.

From 2, we have the finite closure property and ω -categoricity.

From 3, there is no box in K.

Dimenseion

References

- Wilfrid Hodges, Model Theory (Encyclopedia of Mathematics and its Applications), Cambridge University Press, 2008
- Baldwin, John T.; Shi, Niandong, Stable generic structures, Ann. Pure Appl. Logic 79, No.1, 1-35 (1996).
- 3 Frank O. Wagner, Relational structures and dimensions, in Automorphisms of First-Order Structures (Oxford Logic Guides), Oxford Univ Pr on Demand, 1994
- 4 E. Hrushovski, A stable ℵ₀-categorical pseudoplane, unpublished, 1988.