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E. Hrushovski, A stable No-categorical pseudoplane, preprint,
1988.
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Hrushovski's pseudoplane

Hrushovski constructed an w-categorical (merely) stable
pseudoplane, which gives a negative answer to the following
Lachlan’s conjectures:

m (C3) There exists no w-categorical pseudoplane.

m (C1) If T is stable and w-categorical then T is totally
transcendental.
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Hrushovski's pseudoplane

Hrushovski constructed an w-categorical (merely) stable
pseudoplane, which gives a negative answer to the following
Lachlan’s conjectures:

m (C3) There exists no w-categorical pseudoplane.

m (C1) If T is stable and w-categorical then T is totally
transcendental.

A. H. Lachlan, Two conjectures regarding the stability of -categorical theories,
Fund. Math., 81 (1974), 133-145.
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Many interesting examples were constructed using Hrushovski’'s
method.

m An almost strongly minimal set interpreting two algebraically
closed fields of different characteristics (Hrushovski).

m An almost strongly minimal non-desarguesian projective plane
(Baldwin)

m lkeda’s minimal structure,
m Herwig’s structure of weight omega, pause
m ...
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My talk today is based on:
References

Baldwin, John T.; Shi, Niandong, Stable generic structures,
Ann. Pure Appl. Logic 79, No.1, 1-35 (1996).

Wilfrid Hodges, Model Theory (Encyclopedia of Mathematics
and its Applications), Cambridge University Press, 2008

E. Hrushovski, A stable Np-categorical pseudoplane,
unpublished notes, 1988.

B Frank O. Wagner, Relational structures and dimensions, in

Automorphisms of First-Order Structures (Oxford Logic
Guides), Oxford Univ Pr on Demand, 1994
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LRandom Graph

R is a binary relation symbol.
An R-structure G is said to be a graph if

m R is symmetric.

G E YXVYY[R(X, y) = R(y, X)].
m Ris irreflexive.

G E YX[=R(x, X)].
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LRandom Graph

Garph — Picture

A graph is something like this.



00000000 Generic Structure 0000

LRandom Graph

Remark

m There is an edge between vertices a, b € G if R(a, b) holds in
G.

m Our graph is an undirected graph.
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LRandom Graph

Subgraphs

Let G = (G, R®) and H = (H, R") be two graphs.

Subgraph

H is a subgraph of Gif H c Gand R" c RC.
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LRandom Graph

Subgraphs

Let G = (G, R®) and H = (H, R") be two graphs.

Subgraph

H is a subgraph of Gif H c Gand R" c RC.

Full Subgraph

H is a full subgraph of Gif H ¢ Gand R" = R® n HZ2.
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LRandom Graph

Notation

We simply write H c Gif H is a full subgraph.
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LRandom Graph

Random Graph

A graph G = (G, R) is said to be a random graph if the following
are satisfied

m For any two disjoint finite subsets A, B c G, thereis d € G
such that G E Azea R(8 d) A Apeg ~R(b, d).
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LRandom Graph

Random Graph — Picture
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LRandom Graph

Remark

m If a random graph G exists, then it is an infinite graph:
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m If a random graph G exists, then it is an infinite graph:
Suppose that G has n elements ay, ..., an. Thenthereisd € G
such that A R(a;, d). By the irreflexiveness, d ¢ {ay, ..., an}.
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LRandom Graph

Remark

m If a random graph G exists, then it is an infinite graph:
Suppose that G has n elements ay, ..., an. Thenthereisd € G
such that A R(a;, d). By the irreflexiveness, d ¢ {ay, ..., an}.

m The axiom Trg of random graphs can be expressed by an
infinite set of first order sentences.
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LRandom Graph

Existence

A random graph exists.



00000000 Generic Structure 0000

LRandom Graph

A Proof
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Let Gg be a one-point graph.
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Let Gg be a one-point graph.
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LRandom Graph

A Proof

Let Gg be a one-point graph.
Inductively define Go € G; € Gy .-+ such that
m forany A,B c G, (AN B = @) there is d € G,41 such that
Gn E /\aeA R(ae d) A /\beB _'R(bs d)
G = Unew Gn is a (countable) random graph.
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LRandom Graph

Properties of Random Graphs

A random graph embeds every finite graph (as a full subgraph).
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LRandom Graph
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LRandom Graph

Let G be a random graph and H a finite graph.
Let H = Hg U {€}. We can assume Hgo c G.
Let A=f{a€e Hp: R(ae)}and B ={be Hp: R(be)}.

By Tra, we can find d € G such that
G E /\aeA R(as d) A /\beB —-R(b, d)-
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LRandom Graph

Let G be a random graph and H a finite graph.
Let H = Hg U {€}. We can assume Hgo c G.
Let A={ae Hp: R(a,e}and B ={b € Hp: R(b,e)}.
By Tra, we can find d € G such that
G E Aaea R(@,d) A Apeg =R(b, d).
Then H = Ho U {e} = Ho U {d} c G.
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LRandom Graph

Embedding — Picture
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LRandom Graph

A similar argument shows

A random graph embeds every countable graph.
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LRandom Graph

Trg is complete and w-categorical.
In other words, any two countable random graphs are isomorphic.
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graphs.
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LRandom Graph

Use a back-and-forth argument.

LetG={gi:i €w}and H = {h; : i € w} be two random
graphs.
Construct finite partial isomporphisms o : G = H such that
m0=09C01C0Oo---,
B Joy ey gj € dom(o-i) (J < |),
m ho,..., hj eran(oi) (j <1i).

B o = Uie, Ti is an isomorphism between G and H.
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LRandom Graph

Limit of Finite Graphs

A random graph can be considered as a limit of finite graphs.
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LRandom Graph

Limit of Finite Graphs

A random graph can be considered as a limit of finite graphs.

Let K be the class of all (isomorphism types of) finite graphs.

A random graph G clearly has the following two properties:
Any finite X ¢ G is a member of K.

If Ac B € Kand A c Gthen thereis a copy B’ ¢ G such
that B =5 B’.
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LRandom Graph

Remark

Let us consider the following graphs Gy, (finite random graph):
m |Gy = {1, ..., n} (verteces).

m Add edges between them at random.
Prob(R(l, m)) = p= const (I < m< n).
Then, for any R-sentence ¢,

lim (Prob(Gn - ¢)) =1 <= Trc F ¢

In particular,
r!im (Prob(Gh E ¢)) =0o0r1,

(Fagin)
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L Fraissé

Now we work in a more general setting.
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L Fraissé

Class K

Let L be a (finite) relational language.
Let K be a class of (isomorphism types of) finite L-structures.

We assume the following:
mfhekK
m K is closed under substructures.
m AP (Amalgamation Property):
Suppose that A c B; € Kand A c By € K. Then there is
dC € K such that

m AcC,
n EIB’l, B’2 c Csut. B’1 =, By, B’2 =, By
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L Fraissé

Free Amalgamation — Picture

-
A .
@ \l//./

./_\. Amalgam
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L Fraissé

Amalgamation — Picture

./_\. Amalgam
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L Fraissé

Free amalgam of B, B> over A will be denoted by

B1®a B2

Sometimes the free amalgama is written as B; ® A B, or By [[ Ba, ...
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L Fraissé

Free amalgam of B, B> over A will be denoted by

B1®a B2

Sometimes the free amalgama is written as B; ® A B, or By [[ Ba, ...
The domain of B; @4 B is the disjoint union of B; and B, over A, and the
relation on B; @4 B, is the union of those on B; and B,.
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L Fraissé

Examples of K

Let Kg be the class of all finite graphs. Then Kg clearly has the AP.

Example

Let Kitg be the class of all triangle free finite graphs. Then Kysgq
has the AP.

A triangle consists of three points a, b, ¢ such that

R(a, b) A R(b, ) A R(c, a).
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L Fraissé

Fraissé Limit

Let K be a class of (isomorhism types of) finite L-structures. We
always assume the following:

mdeK
m K is closed under substructures.
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LFra‘l'ssé

Theorem

Suppose that K has the AP. Then there is a countable L-structure
M with the following properties:

Any finite X € M is a member of K.

If Ac Be KandA c M then there is a copy B’ ¢ M such
that B =5 B’.

A countable L-strucute having the properties 1 and 2 will be called
a Fraissé Limit of K.
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LFra‘l'ssé

Theorem

Suppose that K has the AP. Then there is a countable L-structure
M with the following properties:
Any finite X € M is a member of K.

If Ac Be KandA c M then there is a copy B’ ¢ M such
that B =5 B’.

A countable L-strucute having the properties 1 and 2 will be called
a Fraissé Limit of K.
Fraissé Limit is universal and homogeneous.
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L Fraissé

Property 2 — Picture
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LFre\‘l'ssé

A Proof
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L Fraissé

A Proof

Let (A, B) (i € w) be an enumeration of all the pairs (A, B)
with A ¢ B € K. (We assume any such pair appears infinitely
many times.)
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many times.)

Using AP we can construct a sequence of finite L-structures
Mo € M1 C --- such that for any i
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L Fraissé

A Proof

Let (A, B) (i € w) be an enumeration of all the pairs (A, B)
with A ¢ B € K. (We assume any such pair appears infinitely
many times.)

Using AP we can construct a sequence of finite L-structures
Mo € Mj C --- such that for any i

m M; e K,
m A 2AcM=>dBst B =24 BC M.
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L Fraissé

A Proof

Let (A, B) (i € w) be an enumeration of all the pairs (A, B)
with A ¢ B € K. (We assume any such pair appears infinitely
many times.)

Using AP we can construct a sequence of finite L-structures
Mo € M1 C --- such that for any i
m M; e K,
m A =2AcM;=>3dBs.t. B =a BC Mj,1.

Then M = e, Mi has the required properties.
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L Fraissé

Uniqueness

For given K, a Fraissé Limit is unique up to isomorphism.
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L Fraissé

Uniqueness

For given K, a Fraissé Limit is unique up to isomorphism.

Use a back-and-forth argument. O
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Back-and-forth
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Back-and-forth

Ao
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LFra‘l'ssé

Back-and-forth

el ——————> B
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Back-and-forth

s ————> B,
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LFre\‘l'ssé

Back-and-forth

-
T

s — e
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L Fraissé

Let Kg be the class of all finite graphs. Then a (countable) random
graph is a Kg-Fraissé Limit.

Example

Let Kitg be the class of all triangle free finite graphs. Then there is
a unique Kyyg-Fraissé Limit.



00000000 Generic Structure 0000

L K with Ordered Structure

Hrushovski Amalgamation
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L K with Ordered Structure

K with Predimension

As before,
m L = {P4,..., Pn} is a (finite) relational language.
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L K with Ordered Structure

K with Predimension

As before,

m L = {P4,..., Pn} is a (finite) relational language.
For simplicity, we only consider L-structures with

B Pi(X1, X2y 00y Xny) = Ajzk Xj # Xk

| Pi(Xl, X2y eeey Xni) - Pi(XO-(]_), ooy Xo'(ni)), where o is a
permutation of {1, ..., n;}.
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L K with Ordered Structure

Let L = {Py1,..., Pn}.
Let ay, ..., @y be positive real numbers.



00000000 Generic Structure 0000

L K with Ordered Structure

Let L = {Py1,..., Pn}.
Let ay, ..., @y be positive real numbers. Mainly 0 < a; < 1.



00000000 Generic Structure 0000

L K with Ordered Structure

Let L = {Py1,..., Pn}.
Let ay, ..., @y be positive real numbers. Mainly 0 < a; < 1.

Definition
For a finite L-structure A, the predimension of A (with respect to
@1, ..., @) is defined by:

8(A) = D 1Al - ailPi(A)l,

where P;(A) is the set of all nj-element subsets B C A satisfying
Pi.
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L K with Ordered Structure

Example — Graph Case

6(A) = |A] — a(the # of edges in A)
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L K with Ordered Structure

Example — Graph Case

6(A) = |A] — a(the # of edges in A)

8(A) = 3-3a, 8(B) = 4 - 6a.
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L K with Ordered Structure

Relative Predimension

Let A and B be subsets of a larger finite L-structure.

6(A/B) = 6(AB) — 6(B),
where AB denotes A U B.
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L K with Ordered Structure

Relative Predimension

Let A and B be subsets of a larger finite L-structure.

Definition

6(A/B) = 6(AB) — 6(B),
where AB denotes A U B.
Notice that 6(A/B) = 6(A \ B/B).
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L K with Ordered Structure

From now on we assume L = {R}. This is for simplicity only.
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L K with Ordered Structure

Lemma

Let AN B =0.
8(A/B) = 6(A) - aIR(A, B),
where R(A, B) denotes the set of all edges between A and B.

(Monotonicity)
Bo € B = 6(A/B) < 6(A/By).
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L K with Ordered Structure

Lemma

Let AN B =0.
8(A/B) = 6(A) - aIR(A, B),
where R(A, B) denotes the set of all edges between A and B.

(Monotonicity)
Bo € B = 6(A/B) < 6(A/By).

From this, we know thatif AN B = An Cand B c Cthen 6(A/B) > 6(A/C).
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L K with Ordered Structure

6(A/B) = 6(A) — a|R(A, B)|
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6(A/B) = 6(A) — a|R(A, B)|

5(A/B) = 6(AB) — §(B)



00000000 Generic Structure 0000

L K with Ordered Structure

6(A/B) = 6(A) — a|R(A, B)|

5(A/B) = 6(AB) — §(B)
= |AB| — @|R(AB)| - (IBl — a|R(B)I)
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L K with Ordered Structure

6(A/B) = 6(A) — a|R(A, B)|

8(A/B) = 6(AB) — §(B)
= |AB| — a|R(AB)| - (IBl - aIR(B)I)
= [Al = a(I(R(A)l + IR(B)I + IR(A, B)I) + aIR(B)I
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L K with Ordered Structure

6(A/B) = 6(A) — a|R(A, B)|

6(A/B) = 6(AB) — 6(B)

= |AB| — «|R(AB)| - (IB] — aIR(B)])

= |Al = a(I((R(A)] + IR(B)] + |R(A, B)|) + aIR(B)I
A = |Al - «|R(A)l - «|R(A, B)|
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L K with Ordered Structure

6(A/B) = 6(A) — a|R(A, B)|

6(A/B) = 6(AB) — 6(B)

= |AB| — «|R(AB)| - (IB] — aIR(B)])

= |Al = a(I((R(A)] + IR(B)] + |R(A, B)|) + aIR(B)I
A = |Al - «|R(A)l - «|R(A, B)|

= 6(A) — alR(A, B)I.
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L K with Ordered Structure

Monotonicity
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Monotonicity

Bo ¢ B implies R(A, By) ¢ R(A, B).
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Monotonicity
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L K with Ordered Structure

Monotonicity

Bo c B implies R(A, Bo) ¢ R(A, B).
By part 1, we conclude 6(A/Bg) > 6(A/B).
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L K with Ordered Structure

Strong Subset

Let A c B be finite L-structures. We write A < B if

AcCcB=§C/A) >0 (VC).
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L K with Ordered Structure

Strong Subset

Let A c B be finite L-structures. We write A < B if

AcCcB=§C/A) >0 (VC).

If A < B, we say (i) Ais a strong subset of B or (ii) Ais closed in
B.
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L K with Ordered Structure

L = {R}. 6(A) = |A] — a|R(A)|.
Ke={A:0< A

Clearly Ky, is closed under substructures. We consider K, with <
(strong subset relation).
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L K with Ordered Structure

Properties of (K, <)

Lemma

<is an order on K.

HoO0<A

A<B,CcB=>AnC<C

In particular, A<B,AcCcB=> A<C
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L K with Ordered Structure

<isanorderon K,.

It suffices to prove transitivity.

Let Ag < A1 < Azand Ag c X C Ay
0(X/A0) = 6(X/X N A1) + 6(X N Ar/Ao)
B > §6(X/X N Ag)

> 6(X/A1) (Monotonicity)

A =0

So Ap £ As.
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L K with Ordered Structure

A<B,CcB=>AnC<C

Assume A < B, C c B.

Let ANCc XcC.
O(X/ANC)=6X\A/ANC)
> O6(X N\ A)

A >0.

B This shows AN C < C.
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L K with Ordered Structure

Amalgamation Property

Lemma

Let A< BeK,and A< Ce€K,. Then D = B&a C has the
following properties:

D € K,
B<DandC< D.
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L K with Ordered Structure

B< Dand C < D.

We want to show B < D.
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B< Dand C < D.
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Let B c X ¢ D. We show 6(X/B) > 0.
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L K with Ordered Structure

B< Dand C < D.

We want to show B < D.
Let B c X ¢ D. We show 6(X/B) > 0.
6(X/B) = 6(X \ B) — a|R(X \ B, B)|
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L K with Ordered Structure

B< Dand C < D.

We want to show B < D.

Let B c X ¢ D. We show 6(X/B) > 0.
6(X/B) = 6(X \ B) — a|R(X \ B, B)|

A = 6(X \ B) — ¢|R(X \ B, A)| (by freeness)
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L K with Ordered Structure

B< Dand C < D.

We want to show B < D.

Let B c X ¢ D. We show 6(X/B) > 0.
6(X/B) = 6(X \ B) — a|R(X \ B, B)|

A = 6(X \ B) — ¢|R(X \ B, A)| (by freeness)
=6(X\B/A)=0.(by A<C)
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L K with Ordered Structure

Let X ¢ D. We want to show 6(X) > 0.
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L K with Ordered Structure

Let X ¢ D. We want to show 6(X) > 0.
8(X) = 6(X \ B/X N B) + 6(X N B)
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L K with Ordered Structure

Let X ¢ D. We want to show 6(X) > 0.
8(X) = 6(X \ B/X N B) + 6(X N B)
> §(X N\ B/XNB) (by XN B € Ky)
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L K with Ordered Structure

Let X ¢ D. We want to show 6(X) > 0.
8(X) = 6(X N\ B/X N B) + 6(X N B)

> §(X N\ B/XNB) (by XN B € Ky)
> 0(by B < D).
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L K with Ordered Structure

(Kqs <)-generic structure

There is a countable structure M having the following properties:
Any finite X ¢ M is a member of K.

If A< B e Kand A £ M then there is a copy B’ < M such
that B =5 B’.

A < M is an abbreviation of the statement A < F (YF Cgn M).
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L K with Ordered Structure

(Kqs <)-generic structure

Theorem
There is a countable structure M having the following properties:
Any finite X ¢ M is a member of K.

If A< B e Kand A £ M then there is a copy B’ < M such
that B =5 B’.

A < M is an abbreviation of the statement A < F (YF Cgn M).
A countable structure M having the propeties 1 and will be referred as a
(Kas <)-generic structure.
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L K with Ordered Structure

Existence

The existence of (K, <)-generic structure can be shown exactly
the same way as in the case of random graph.
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L K with Ordered Structure

Existence

Remark

The existence of (K, <)-generic structure can be shown exactly
the same way as in the case of random graph. The point is that
(Kqs <) has the AP.
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L K with Ordered Structure

Conclusion

Let (K, <) be a subclass of (K, <) with the AP. Then there is a
(K, <)-generic structure.
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L K with Ordered Structure

Conclusion

Or more generally:

Theorem

Let (K, <) be a class of finite L-structures satisfying AP (+ some
necessary conditions on <). Then there is a (K, <)-generic
structure M such that

Any finite X € M is a member of K.

If A< B e KandA < M then there is a copy B < M such
that B =5 B’.
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L K with Ordered Structure

Uniqueness

Closed Finite Sets

For showing the uniquenss of a (countable) (K, <)-generic
structure, we need to construct a tower of parital isomorphisms
between closed finite subsets.
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L K with Ordered Structure

Uniqueness

Closed Finite Sets

For showing the uniquenss of a (countable) (K, <)-generic
structure, we need to construct a tower of parital isomorphisms
between closed finite subsets.

Again we assume K c K,.
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L K with Ordered Structure

Let M be an L-structure such that every finite A ¢ M belongs to

Definition

|x

Let A c M. Ais called a closed subset of M if for any finite
Bc M,

ANnB<B.
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L K with Ordered Structure

Let M be an L-structure such that every finite A ¢ M belongs to

Definition

|x

Let A c M. Ais called a closed subset of M if for any finite
Bc M,
ANB<B.

If Aq is finite then Agis closed <= Ay < M. So, even if A is infinite, we write
A < Mif Aisclosed in M.
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L K with Ordered Structure

M itself is a closed set.

HC <MandC, < MthenCinC; £ M.

Given A c M, there is a minimum set C ¢ M such that
A c C < M. This Cis denoted byz (the closure of A).
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A Suppose that there is no infinite sequence
Ag C A C Ay-...of K-sets such that

0(Ag) > 6(A1) > ---.
Then, forany N = M,

A Ciin N = Z Csin N.
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Finite Closure Property

For @ € Q, K, has the finite closure property.

Suppose that there is an increasing function f : w — R such
that

B lim L. f(N) = oo
m Ae K= 6(A) = F(JAD).

Then K has the finite closure property.
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Conclusion

Theorem

Let (K, <) be a class of finite L-structures satisfying AP+ Finite

Closure Property. Then there is a unique (K, <)-generic structure
M:
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Conclusion

Theorem

Let (K, <) be a class of finite L-structures satisfying AP+ Finite

Closure Property. Then there is a unique (K, <)-generic structure
M:

Any finite X € M is a member of K,.

If A< B e Kand A £ M then there is a copy B’ £ M such
that B = B’.
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On Saturation of Generic Structures

A generic structure need not to be w-saturated.
We assume that (K, <) has AP and Finite Closure Propery.
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Theorem

Let M be a (K, <)-generic structure. The following conditions are
equivalent:
M is w-saturated.
Forany N = M, A< N, A< B e Kandn € w, there is
B’ <, N suchthat B =5 B’.

X Zn Y (n-closedness) is the statement that X < XZ for any Z c Y with |Z] < n.
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1 implies that any N is n-generic.

Proof: 1 = 2.

Suppose that 2 is not the case.
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1 implies that any N is n-generic.

Proof: 1 = 2.

Suppose that 2 is not the case.

For some n € w, A < B € K, The following set I'(X) is
consistent with T = Th(M).
m X = Ais aclosed set
m (X,Y) = (A, B) = Yis not n-closed, for any Y.
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1 implies that any N is n-generic.

Proof: 1 = 2.

Suppose that 2 is not the case.
For some n € w, A < B € K, The following set I'(X) is
consistent with T = Th(M).
m X = Ais aclosed set
m (X,Y) = (A,B) = Y is not n-closed, for any Y.
By saturation, there is A’ ¢ M realizing I'. But then M is not
a generic structure.
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2 implies that M is saturated.

Proof: 2 = 1.

Condition 2 implies that any w-saturated model N of T has the
following property:

A<BeK, A<N= 3B <N,B=zB.
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A < M and A; < N can be extendedtoo™ : M = N,
o*(M) < N.
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2 implies that M is saturated.

Proof: 2 = 1.

Condition 2 implies that any w-saturated model N of T has the
following property:

A<BeK, A<N= 3B <N,B=zB.

So any finite partial isomorphism o between closed sets
A < M and A; < N can be extendedtoo™ : M = N,
o*(M) < N.

This shows that M is w-saturated.
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Conclusion

If a generic structure M is w-saturated, then any x-saturated
N = M has the following property:

A<N,A<Be*K|Bl<x= 3B < N,B’ =, B.



00000000 Generic Structure 0000

LDimenseion

Let M be a (K, <)-generic structure, where (K, <) has the finite
closure property. Let N = M.
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Definition (Dimension)

Let A c N be a finite set.

d(A) = inf{6(B) : A c B Cin N} = 6(A)
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Definition (Relative Dimension)

d(a/A) := d(aA) — d(A) (Ais finite).
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Lemma (Monotonicity)

A c B = d(A) < d(B).
ac b= d(a/A) < d(b/A).
A c B = d(a/A) < d(a/B).
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A c B = d(A) < d(B).

d(A) = inf{8(X) : A c X}, d(B) = inf{6(X) : B c X}.



00000000 Generic Structure 0000

LDimenseion

A c B = d(A) < d(B).

d(A) = inf{6(X) : A c X}, d(B) =inf{6(X) : B c X}.
Since A € B, {6(X) : Ac X} D {6(X): B c X}.
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A c B = d(A) < d(B).

d(A) = inf{6(X) : A c X}, d(B) =inf{6(X) : B c X}.
Since A € B, {6(X) : Ac X} D {6(X): B c X}.
So we conclude d(A) < d(B).
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A c B = d(a/A) < d(a/B).

We can assume K = Aand E = B.
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A c B = d(a/A) < d(a/B).

We can assume K = Aand E = B.
d(a/A) = 6(Aa) — 6(A) > 6(Aa) — 8(Aan B)
= 6(Aa/Aan B)
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A c B = d(a/A) < d(a/B).

We can assume K = Aand E = B.
d(a/A) = 6(Aa) — 6(A) > 6(Aa) — 8(Aan B)
= §(Aa/Aan B) > 6(Aa/B).
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By monotonicity, for not necessarily finite A, we can define

d(a/A) = inf{d(a/Ao) : Ao Ciin Al.
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Lemma

Let A, B, C be closed finite sets with A = B n C. Suppose
d(B/C) = d(B/A). Then BC = B@&a C and BC is closed.
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d(BC) = d(B/C) + d(C)
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d(BC) = d(B/C) + d(C)
= d(B/A) + d(C)
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d(BC) = d(B/C) + d(C)
= d(B/A) + d(C)
= d(B) + d(C) — d(A)
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= d(B) + d(C) - d(A)
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d(BC) = d(B/C) + d(C)
= d(B/A) + d(C)

= d(B) + d(C) - d(A)
@ = §(B) + 6(C) - 8(A)

> §(BC).
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d(BC) = d(B/C) + d(C)

= d(B/A) + d(C)

= d(B) + d(C) — d(A)

A = 6(B) + 6(C) — 6(A)

> §(BC).

A Since d(BC) < §(BC), we have d(BC) < 6(BC), hence BCis
closed.
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d(BC) = d(B/C) + d(C)

= d(B/A) + d(C)

= d(B) + d(C) — d(A)

A = 6(B) + 6(C) — 6(A)

> §(BC).

A Since d(BC) < §(BC), we have d(BC) < 6(BC), hence BCis
closed.

By 6(B) + 6(C) — 6(A) = 8(BC), R(BC) c R(B) U R(C), s0
BC = B@x C.
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d(BC) = d(B/C) + d(C)
= d(B/A) + d(C)

= d(B) + d(C) - d(A)
B = 6(B) +6(C) - 6(A)

> §(BC).

A Since d(BC) < §(BC), we have d(BC) < 6(BC), hence BCis
closed.

By 6(B) + 6(C) — 6(A) = 6(BC), R(BC) c R(B) U R(C), so
BC=B®aC.

a > 0is necessary.
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By an € — 6 type argument, for not necessarily finite A and
Ao € A, we have the following:

(*) Suppose
d(a/Ao) = d(a/A) and Agan A = Ag.

Then



00000000 Generic Structure 0000

LDimenseion

Let M be an w-saturated (K, <)-generic structure. Then
T = Th(M) is stable.
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Theorem

Let M be an w-saturated (K, <)-generic structure. Then
T = Th(M) is stable.

We work in a sufficiently saturated N = M.
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Proof of Stability

Let A be a closed subset of N with |A] = 22.

We show that [S(A)] = 2.

Let tp(a/A) € S(A). We can choose a countable closed Ag
such that d(a/Ao) = d(a/A) and Agan A = Aq.

B Then Aa= Aja@® a, A < N.

So the information of tp(a/A) is completely included in
tp(a/Ao).

B So [S(A)l = |A®] x |S(Ao)l = 2¢.
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Hrushovski's pseudoplane

Hrushovski constructed an w-categorical merely stable
pseudoplane.
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Hrushovski's pseudoplane

Hrushovski constructed an w-categorical merely stable
pseudoplane. | explain how he constructed the structure.
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What is pseudoplane?
What is K in this case?
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Pseudoplane

A pseudoplane is a triple (P, L, I) with the following properties:
m Every line | € L has infinitely many points p € P.
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m Every line | € L has infinitely many points p € P.
m (Its dual) Every point p € P lies on infinitely many lines | € L.
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Pseudoplane

A pseudoplane is a triple (P, L, I) with the following properties:
m Every line | € L has infinitely many points p € P.
m (Its dual) Every point p € P lies on infinitely many lines | € L.

m For any distinct points p # g € P, at most finite number of
lines | € L pass both pand g.

m (Its dual)
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For defining K (a class of finite graphs), Hrushovski defined a
function f : @ = R and @ € R such that

f increases very slowly.
lim f = o
f(4) > 4 - 4a = §(O).
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function f : @ = R and @ € R such that

f increases very slowly.
lim f = o
f(4) > 4 - 4a = §(O).

K is the class of all finite graphs A such that, for every Ag C A,
f(1Aol) < 6(Ao).
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For defining K (a class of finite graphs), Hrushovski defined a
function f : @ = R and @ € R such that

f increases very slowly.

lim f = o

f(4) > 4 - 4a = §(O).
K is the class of all finite graphs A such that, for every Ag C A,
f(1Aol) < 6(Ao).
From 1, we have the (free) AP.
From 2, we have the finite closure property and w-categoricity.
From 3, there is no box in K.
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