Equivariant definable Morse functions in definably complete structures

Tomohiro Kawakami

Wakayama University

August 29, 2012

Tomohiro Kawakami (Wakayama University)Equivariant definable Morse functions in defin

• Let $\mathcal{N} = (R, +, \cdot, <, \dots)$ be an expansion of a real closed field R.

 Let N = (R, +, ·, <, ...) be an expansion of a real closed field R. We say that N is *o-minimal* (*weakly o-minimal*) if every definable subset of R is a finite union of points and open intervals (a finite union of convex sets).

 Let N = (R, +, ·, <, ...) be an expansion of a real closed field R. We say that N is *o-minimal* (*weakly o-minimal*) if every definable subset of R is a finite union of points and open intervals (a finite union of convex sets).

We say that \mathcal{N} is *definably complete* if every nonempty definable subset A of R, $\sup A$, $\inf A \in R \cup \{\pm \infty\}$. Every o-minimal expansion of R is definably complete.

- Let N = (R, +, ·, <, ...) be an expansion of a real closed field R. We say that N is *o-minimal* (*weakly o-minimal*) if every definable subset of R is a finite union of points and open intervals (a finite union of convex sets).
 - We say that \mathcal{N} is *definably complete* if every nonempty definable subset A of R, $\sup A$, $\inf A \in R \cup \{\pm \infty\}$. Every o-minimal expansion of R is definably complete.

A weakly o-minimal structure is not always definably complete. For example $(\mathbb{R}_{alg}, +, \cdot, <, (-\pi, \pi) \cap \mathbb{R}_{alg})$ is weakly o-minimal but not definably complete.

- Let N = (R, +, ·, <, ...) be an expansion of a real closed field R. We say that N is *o-minimal* (*weakly o-minimal*) if every definable subset of R is a finite union of points and open intervals (a finite union of convex sets).
 - We say that \mathcal{N} is *definably complete* if every nonempty definable subset A of R, $\sup A$, $\inf A \in R \cup \{\pm \infty\}$. Every o-minimal expansion of R is definably complete.

A weakly o-minimal structure is not always definably complete. For example $(\mathbb{R}_{alg}, +, \cdot, <, (-\pi, \pi) \cap \mathbb{R}_{alg})$ is weakly o-minimal but not definably complete.

If R is the field $\mathbb R$ of real numbers, then every expansion

 $\mathcal{M}=(\mathbb{R},+,\cdot,<,\dots)$ of the standard structure $\mathcal{R}=(\mathbb{R},+,\cdot,<)$ is definably complete.

- Let N = (R, +, ·, <, ...) be an expansion of a real closed field R. We say that N is *o-minimal* (*weakly o-minimal*) if every definable subset of R is a finite union of points and open intervals (a finite union of convex sets).
 - We say that \mathcal{N} is *definably complete* if every nonempty definable subset A of R, $\sup A$, $\inf A \in R \cup \{\pm \infty\}$. Every o-minimal expansion of R is definably complete.

A weakly o-minimal structure is not always definably complete. For example $(\mathbb{R}_{alg}, +, \cdot, <, (-\pi, \pi) \cap \mathbb{R}_{alg})$ is weakly o-minimal but not definably complete.

If R is the field \mathbb{R} of real numbers, then every expansion

 $\mathcal{M}=(\mathbb{R},+,\cdot,<,\dots)$ of the standard structure $\mathcal{R}=(\mathbb{R},+,\cdot,<)$ is definably complete.

In this presentation everything is considered in ${\boldsymbol{\mathcal{M}}}$ and every definable map is continuous unless otherwise stated.

An o-minimal expansion *M* = (ℝ, +, ·, <, ...) of *R* is *polynomially bounded* if for every function *f* : ℝ → ℝ definable in *M*, there exist an integer *N* ∈ ℕ and a real number *x*₀ such that |*f*(*x*)| < *x^N* for all *x* > *x*₀.

An o-minimal expansion M = (ℝ, +, ·, <,...) of R is polynomially bounded if for every function f : ℝ → ℝ definable in M, there exist an integer N ∈ ℕ and a real number x₀ such that |f(x)| < x^N for all x > x₀.
We say that M is exponential if the exponential function ℝ → ℝ, x ↦ e^x is definable in M.

An o-minimal expansion M = (ℝ, +, ·, <, ...) of R is polynomially bounded if for every function f : ℝ → ℝ definable in M, there exist an integer N ∈ ℕ and a real number x₀ such that |f(x)| < x^N for all x > x₀.
We say that M is exponential if the exponential function ℝ → ℝ, x ↦ e^x is definable in M.

Theorem (Miller 1994)

Every o-minimal expansion of $\mathcal{M} = (\mathbb{R}, +, \cdot, <, ...)$ of \mathcal{R} is either polynomially bounded or exponential.

• Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be definable open sets and $2 \leq r \leq \infty$. A C^r map $f: U \to V$ is a *definable* C^r map if the graph of f is definable. • Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be definable open sets and $2 \leq r \leq \infty$. A C^r map $f: U \to V$ is a *definable* C^r map if the graph of f is definable.

A C^r diffeomorphism between definable open sets is a *definable* C^r *diffeomorphism* if its graph is definable.

• Let $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ be definable open sets and $2 \leq r \leq \infty$. A C^r map $f: U \to V$ is a *definable* C^r map if the graph of f is definable.

A C^r diffeomorphism between definable open sets is a *definable* C^r *diffeomorphism* if its graph is definable.

In this presentation, we assume that $2 \leq r \leq \infty$ unless otherwise stated.

Definition

A Hausdorff space X is an *n*-dimensional definable C^r manifold if there exist a finite open cover $\{U_\lambda\}_{\lambda\in\Lambda}$ of X, finite open sets $\{V_\lambda\}_{\lambda\in\Lambda}$ of \mathbb{R}^n , and finite homeomorphisms $\{\phi_\lambda: U_\lambda \to V_\lambda\}_{\lambda\in\Lambda}$ such that for any λ, ν with $U_\lambda \cap U_\nu \neq \emptyset$, $\phi_\lambda(U_\lambda \cap U_\nu)$ is definable and $\phi_\nu \circ \phi_\lambda^{-1}: \phi_\lambda(U_\lambda \cap U_\nu) \to \phi_\nu(U_\lambda \cap U_\nu)$ is a definable C^r diffeomorphism.

• This pair $(U_{\lambda}, \phi_{\lambda})$ of sets and homeomorphisms is called a *definable* C^{r} coordinate system.

Definition

A Hausdorff space X is an *n*-dimensional definable C^r manifold if there exist a finite open cover $\{U_\lambda\}_{\lambda\in\Lambda}$ of X, finite open sets $\{V_\lambda\}_{\lambda\in\Lambda}$ of \mathbb{R}^n , and finite homeomorphisms $\{\phi_\lambda: U_\lambda \to V_\lambda\}_{\lambda\in\Lambda}$ such that for any λ, ν with $U_\lambda \cap U_\nu \neq \emptyset$, $\phi_\lambda(U_\lambda \cap U_\nu)$ is definable and $\phi_\nu \circ \phi_\lambda^{-1}: \phi_\lambda(U_\lambda \cap U_\nu) \to \phi_\nu(U_\lambda \cap U_\nu)$ is a definable C^r diffeomorphism.

- This pair $(U_{\lambda}, \phi_{\lambda})$ of sets and homeomorphisms is called a *definable* C^{r} coordinate system.
- A definable C^r manifold is *affine* if it is definably C^r diffeomorphic to a definable C^r submanifold of some \mathbb{R}^n .

A C[∞] manifold definable in R = (ℝ, +, ·, <) is called a Nash manifold.

A C[∞] manifold definable in R = (ℝ, +, ·, <) is called a Nash manifold.

A Nash manifold is *affine* if it is Nash diffeomorphic to a Nash submanifold of some \mathbb{R}^n .

A C[∞] manifold definable in R = (ℝ, +, ·, <) is called a Nash manifold.

A Nash manifold is *affine* if it is Nash diffeomorphic to a Nash submanifold of some \mathbb{R}^n .

Theorem (Shiota (1986))

Any compact C^{∞} manifold of positive dimension admits uncountably many nonaffine Nash manifold structures.

Example

(1) The n-dimensional unit sphere $S^n = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} | \sum_{i=1}^{n+1} x_i^2 = 1\}$ is an n-dimensional definable C^{∞} manifold. (2) $T^2 = S^1 \times S^1$ is a 2-dimensional definable C^{∞} manifold. (3) Every nonsingular algebraic set is a definable C^{∞} manifold.

Example

(1) The n-dimensional unit sphere $S^n = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} | \sum_{i=1}^{n+1} x_i^2 = 1\}$ is an n-dimensional definable C^{∞} manifold. (2) $T^2 = S^1 \times S^1$ is a 2-dimensional definable C^{∞} manifold. (3) Every nonsingular algebraic set is a definable C^{∞} manifold.

• The above examples are affine Nash manifolds.

Example

(1) The n-dimensional unit sphere $S^n = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} | \sum_{i=1}^{n+1} x_i^2 = 1\}$ is an n-dimensional definable C^{∞} manifold. (2) $T^2 = S^1 \times S^1$ is a 2-dimensional definable C^{∞} manifold. (3) Every nonsingular algebraic set is a definable C^{∞} manifold.

The above examples are affine Nash manifolds.
 If *M* is exponential, then the graph of the exponential function e^x is a definable C[∞] submanifold of ℝ².

Theorem ((2005))

For every o-minimal expansion \mathcal{M} of \mathcal{R} , every definable C^r manifold is affine when $0 \leq r < \infty$.

Theorem ((2005))

For every o-minimal expansion \mathcal{M} of \mathcal{R} , every definable C^r manifold is affine when $0 \leq r < \infty$.

Theorem (Fischer (2008))

For every exponential o-minimal expansion \mathcal{M} of \mathcal{R} , Every definable C^{∞} manifold is affine.

Theorem ((2005))

For every o-minimal expansion \mathcal{M} of \mathcal{R} , every definable C^r manifold is affine when $0 \leq r < \infty$.

Theorem (Fischer (2008))

For every exponential o-minimal expansion \mathcal{M} of \mathcal{R} , Every definable C^{∞} manifold is affine.

• The assumption that \mathcal{M} is exponential is necessary for Fischer's theorem.

• Let X be an n-dimensional definable C^r manifold and $f:X
ightarrow\mathbb{R}$ a definable C^r function.

• Let X be an n-dimensional definable C^r manifold and $f: X \to \mathbb{R}$ a definable C^r function. We say that a point $p \in X$ is a *critical point* of f if the differential of f at p is zero. Let X be an n-dimensional definable C^r manifold and f : X → R a definable C^r function.
We say that a point p ∈ X is a critical point of f if the differential of f at p is zero.
If p is a critical point of f, then f(p) is called a critical value of f.

Let p be a critical point of f and (U, u) a definable C^r coordinate system on X at p (i.e. U is a definable open subset of X containing p and u is a definable C^r diffeomorphism from U onto a definable open subset of Rⁿ with u(p) = 0).

- Let p be a critical point of f and (U, u) a definable C^r coordinate system on X at p (i.e. U is a definable open subset of X containing p and u is a definable C^r diffeomorphism from U onto a definable open subset of \mathbb{R}^n with u(p) = 0). The critical point p is *nondegenerate* if the Hessian matrix of
 - $f \circ u^{-1}$ at 0 is nonsingular.

• Let p be a critical point of f and (U, u) a definable C^r coordinate system on X at p (i.e. U is a definable open subset of X containing p and u is a definable C^r diffeomorphism from U onto a definable open subset of \mathbb{R}^n with u(p) = 0).

The critical point p is *nondegenerate* if the Hessian matrix of $f \circ u^{-1}$ at 0 is nonsingular.

Direct computations show that the notion of nondegeniricity does not depend on the choice of a local coordinate system.

• Let p be a critical point of f and (U, u) a definable C^r coordinate system on X at p (i.e. U is a definable open subset of X containing p and u is a definable C^r diffeomorphism from U onto a definable open subset of \mathbb{R}^n with u(p) = 0).

The critical point p is *nondegenerate* if the Hessian matrix of $f \circ u^{-1}$ at 0 is nonsingular.

Direct computations show that the notion of nondegeniricity does not depend on the choice of a local coordinate system.

In the non-equivariant setting, Y. Peterzil and S. Starchenko (2007) introduced definable C^r Morse functions in an o-minimal expansion of the standard structure of a real closed field.

• A (resp. An affine) definable C^r manifold G is a (resp. an affine) definable C^r group if the group operations $G \times G \to G, G \to G$ are definable C^r maps A (resp. An affine) definable C^r manifold G is a (resp. an affine) definable C^r group if the group operations G × G → G, G → G are definable C^r maps
A pair (X, φ) consisting of a definable C^r manifold X and a group action φ : G × X → X is a definable C^rG manifold if φ is a definable C^r map.
We simply write X to mean a definable C^rG manifold

• A representation of a definable C^r group G means a definable C^r group homomorphism from G to some orthogonal group $O_n(\mathbb{R})$ and the representation space of this representation is \mathbb{R}^n with the orthogonal action induced from the representation.

In this presentation, we always assume that every representation is orthogonal.

- A representation of a definable C^r group G means a definable C^r group homomorphism from G to some orthogonal group $O_n(\mathbb{R})$ and the representation space of this representation is \mathbb{R}^n with the orthogonal action induced from the representation.
 - In this presentation, we always assume that every representation is orthogonal.
 - A G invariant definable C^r submanifold of a representation space of G is called a *definable* C^rG submanifold.

- A representation of a definable C^r group G means a definable C^r group homomorphism from G to some orthogonal group $O_n(\mathbb{R})$ and the representation space of this representation is \mathbb{R}^n with the orthogonal action induced from the representation.
 - In this presentation, we always assume that every representation is orthogonal.
 - A G invariant definable C^r submanifold of a representation space of G is called a *definable* C^rG submanifold.
 - A definable C^rG manifold is *affine* if it is definably C^rG diffeomorphic to some definable C^rG submanifold of a representation space of G.

Theorem ((1999))

Let G be a compact affine definable C^{∞} group. Then every compact definable $C^{\infty}G$ manifold is affine.

• Let G be a definable C^r group, X a definable C^rG manifold and $f: X \to \mathbb{R}$ a G invariant definable C^r function on X.

Let G be a definable C^r group, X a definable C^rG manifold and f: X → ℝ a G invariant definable C^r function on X. A closed definable C^rG submanifold Y of X is called a critical manifold (resp. a nondegenerate critical manifold) of f if each p ∈ Y is a critical point (resp. a nondegenerate critical point) of f.

Let G be a definable C^r group, X a definable C^rG manifold and f: X → ℝ a G invariant definable C^r function on X. A closed definable C^rG submanifold Y of X is called a critical manifold (resp. a nondegenerate critical manifold) of f if each p ∈ Y is a critical point (resp. a nondegenerate critical point) of f. We say that f is an equivariant definable Morse function if the critical locus of f is a finite union of nondegenerate critical manifolds of f without interior.

Theorem (A)

Let G be a compact affine definable C^r group and f an equivariant definable Morse function on a compact affine definable C^rG manifold X. If f has no critical value in [a, b], then $f^a := f^{-1}((-\infty, a])$ is definably C^rG diffeomorphic to $f^b := f^{-1}((-\infty, b])$.

• Let $Def^r(\mathbb{R}^n)$ denote the set of definable C^r functions on \mathbb{R}^n and $0 \leq r < \infty$.

• Let $Def^r(\mathbb{R}^n)$ denote the set of definable C^r functions on \mathbb{R}^n and $0 \leq r < \infty$. For each $f \in Def^r(\mathbb{R}^n)$ and for each positive definable function $\epsilon : \mathbb{R}^n \to \mathbb{R}$, the ϵ -neighborhood $N(f; \epsilon)$ of f in $Def^r(\mathbb{R}^n)$ is

defined by $\{ h \in Def^r(\mathbb{R}^n) || \partial^{\alpha}(h-f) | < \epsilon \}$

 $\{h \in Def^{r}(\mathbb{R}^{n}) || \partial^{\alpha}(h-f)| < \epsilon, \forall \alpha \in (\mathbb{N} \cup \{0\})^{n}, |\alpha| \leq r \},$ where $\alpha = (\alpha_{1}, \ldots, \alpha_{n}) \in (\mathbb{N} \cup \{0\})^{n}, |\alpha| = \alpha_{1} + \cdots + \alpha_{n}, \partial^{\alpha}F = \frac{\partial^{|\alpha|}F}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}}.$ We call the topology defined by these ϵ -neighborhoods the *definable* C^{r} topology.

Theorem (La Le Loi (2006))

Let X be a definable C^r submanifold of \mathbb{R}^n and $2 \leq r < \infty$. Then the set of definable C^r functions on \mathbb{R}^n which are Morse functions on X and have distinct critical values are open and dense in $Def^r(\mathbb{R}^n)$ with respect to the definable C^r topology.

Theorem (La Le Loi (2006))

Let X be a definable C^r submanifold of \mathbb{R}^n and $2 \leq r < \infty$. Then the set of definable C^r functions on \mathbb{R}^n which are Morse functions on X and have distinct critical values are open and dense in $Def^r(\mathbb{R}^n)$ with respect to the definable C^r topology.

• Remark that the definable C^r topology and the C^r Whitney topology do not coincide in general when $0 \le r < \infty$.

Theorem (La Le Loi (2006))

Let X be a definable C^r submanifold of \mathbb{R}^n and $2 \leq r < \infty$. Then the set of definable C^r functions on \mathbb{R}^n which are Morse functions on X and have distinct critical values are open and dense in $Def^r(\mathbb{R}^n)$ with respect to the definable C^r topology.

• Remark that the definable C^r topology and the C^r Whitney topology do not coincide in general when $0 \le r < \infty$. If X is compact and $0 \le r < \infty$, then these topologies of the set $Def^r(X)$ of definable C^r functions on X are the same (Shiota (1997)).

Density of equivariant Morse functions

A nondegenerate critical manifold of an equivariant Morse function on a definable $C^{r}G$ manifold is called a *nondegenerate critical orbit* if it is an orbit.

A nondegenerate critical manifold of an equivariant Morse function on a definable C^rG manifold is called a *nondegenerate critical orbit* if it is an orbit.

Theorem (B-(1))

Let G be a compact definable C^r group and X a compact affine definable C^rG manifold.

(1) The set $Def_{equi-Morse,o}(X)$ of equivariant definable Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense in the set $C^r_{inv}(X)$ of G invariant C^r functions on X with respect to the C^r Whitney topology. Moreover $Def_{equi-Morse,o}(X)$ is open and dense in the set $Def^r_{inv}(X)$ of Ginvariant definable C^r functions with respect to the definable C^r topology.

Theorem (B-(2))

Let G be a compact definable C^{∞} group and X a compact affine definable $C^{\infty}G$ manifold. (2) If \mathcal{M} is exponential, then the set $Def_{equi-Morse,o}(X)$ of equivariant definable Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense in the set $C^{\infty}_{inv}(X)$ of G invariant C^{∞} functions on X with respect to the C^{r} Whitney topology. Moreover $Def_{equi-Morse,o}(X)$ is open and dense in the set $Def^{\infty}_{inv}(X)$ of G invariant definable C^{∞} functions with respect to the definable C^{r} topology.

Definable G CW complexes

Definable $G \ CW$ complexes are introduced in 2004.

Definable $G \ CW$ complexes are introduced in 2004. Let G be a definable group. A *definable* G *set* is a G invariant definable subset of a representation space of G. This action is orthogonal. Definable G CW complexes are introduced in 2004.

Let G be a definable group. A *definable* G set is a G invariant definable subset of a representation space of G. This action is orthogonal.

A definable set with a definable G action is a pair (X, θ) consisting of a definable set X and a group action $\theta : G \times X \to X$ such that θ is a definable map. This action is not necessarily linear (orthogonal).

- Definable G CW complexes are introduced in 2004.
- Let G be a definable group. A *definable* G set is a G invariant definable subset of a representation space of G. This action is orthogonal.
- A definable set with a definable G action is a pair (X, θ) consisting of a definable set X and a group action $\theta : G \times X \to X$ such that θ is a definable map. This action is not necessarily linear (orthogonal). A definable G space is a pair (X, θ) consisting of a definable space X and a group action $\theta : G \times X \to X$ such that θ is a definable map. We simply write X instead of (X, θ) .

Definable G CW complexes

Definition

Let G be a compact definable group.

(1) An open definable $G \ CW$ complex is a pair of $(X, \{c_i | i \in I\})$ consisting of a Hausdorff definable G space X and a finite family of open G cells $\{c_i | i \in I\}$ such that

(a) The underlying space |X| of X is a definable set with a definable G action.

(b) The orbit space X/G is a definable subset of some \mathbb{R}^n .

(c) For each open G n-cell c_i , there exist a definable subgroup H_{c_i} of Gand the characteristic map $f_{c_i}: G/H_{c_i} \times \Delta \to \overline{c_i} \subset X$ such that $f_{c_i}|G/H_{c_i} \times Int \Delta \to c_i$ is a definable G homeomorphism and the boundary ∂c_i is equal to $f_{c_i}(G/H_{c_i} \times \partial \Delta)$, where Δ is a subset of the standard compact n-simplex Δ^n obtained by removing some open lower dimensional faces of Δ^n , $\overline{c_i}$ denotes the closure of c_i in X, Int Δ means the interior of Δ and $\partial \Delta = \Delta - Int \Delta$.

(d) For each c_i , $\overline{c_i} - c_i$ is a finite union of open G cells.

Definition

(2) An open definable $G \ CW$ complex is called a complete definable $G \ CW$ complex if every Δ is a standard compact simplex.

Note that a complete definable $G\ CW$ complex is a compact finite $G\ CW$ complex.

Theorem (2004, 2008)

Let \mathcal{M} be an o-minimal expansion of \mathcal{R} . Let G be a compact definable group and X a definable G manifold.

- (1) X is definably G homeomorphic to an open definable G CW complex.
- (2) If X is compact, then X is definably G homeomorphic to a complete definable G CW complex. In particular, X is G homeomorphic to a finite G CW complex.

Remark

In the above theorem, the assumption that \mathcal{M} is o-minimal is necessary. If $\mathcal{M} = (\mathbb{R}, +, \cdot, <, \mathbb{Z})$, then the above theorem does not hold even when G is the trivial group because a definable set \mathbb{Z} is not homeomorhic to a finite union of open cells.

Theorem (C)

Let X be an n-dimensional compact definable C^r manifold having a definable Morse function $f: X \to \mathbb{R}$ with only two critical points. Then X is definably homeomorphic to the n-dimensional unit sphere S^n . If $n \leq 6$, then X is definably C^r diffeomorphic to S^n . If \mathcal{M} is exponential, then we can take $r = \infty$.

Theorem (C)

Let X be an n-dimensional compact definable C^r manifold having a definable Morse function $f: X \to \mathbb{R}$ with only two critical points. Then X is definably homeomorphic to the n-dimensional unit sphere S^n . If $n \leq 6$, then X is definably C^r diffeomorphic to S^n . If \mathcal{M} is exponential, then we can take $r = \infty$.

Remark that if n = 7, then there exsits a C^{∞} manifold which is homeomorphic to S^7 , but not C^{∞} diffeomorphic to S^7

Theorem (A)

Let G be a compact affine definable C^r group and f an equivariant definable Morse function on a compact definable C^rG manifold X. If f has no critical value in [a, b], then $f^a := f^{-1}((-\infty, a])$ is definably C^rG diffeomorphic to $f^b := f^{-1}((-\infty, b])$.

Theorem (A)

Let G be a compact affine definable C^r group and f an equivariant definable Morse function on a compact definable C^rG manifold X. If f has no critical value in [a, b], then $f^a := f^{-1}((-\infty, a])$ is definably C^rG diffeomorphic to $f^b := f^{-1}((-\infty, b])$.

We cannot apply the classical proof because the integration of a definable C^r function is not necessarily definable.

We prove the following theorem.

Theorem

Let X and Y be compact affine definable C^rG manifolds possibly with boundary. Then X and Y are C^1G diffeomorphic if and only if they are definably C^rG diffeomorphic. If \mathcal{M} is exponential, then we can take $r = \infty$. The following theorem is useful to prove the above theorem.

Theorem

Let G be a compact definable C^r group and X a compact affine definable C^rG manifold and $1 \leq r < \infty$. Suppose that A, B are Ginvariant definable disjoint closed subsets of X. Then there exists a Ginvariant definable C^r function $f: X \to \mathbb{R}$ such that f|A = 1 and f|B = 0. If \mathcal{M} is exponential, we can take $r = \infty$.

To prove this theorem, we need the assumption that $\mathcal M$ is exponential if $r=\infty.$

Theorem (B-(1))

Let G be a compact definable C^r group and X a compact affine definable C^rG manifold. (1) The set $Def_{equi-Morse,o}(X)$ of equivariant definable Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense in the set $C^r_{inv}(X)$ of G invariant C^r functions on X with respect to the C^r Whitney topology. Moreover $Def_{equi-Morse,o}(X)$ is open and dense in the set $Def^r_{inv}(X)$ of G invariant definable C^r functions with respect to the definable C^r topology.

Theorem (B-(2))

Let G be a compact definable C^{∞} group and X a compact affine definable $C^{\infty}G$ manifold. (2) If \mathcal{M} is exponential, then the set $Def_{equi-Morse,o}(X)$ of equivariant definable Morse functions on X whose critical loci are finite unions of nondegenerate critical orbits is dense in the set $C^{\infty}_{inv}(X)$ of G invariant C^{∞} functions on X with respect to the C^{r} Whitney topology. Moreover $Def_{equi-Morse,o}(X)$ is open and dense in the set $Def^{\infty}_{inv}(X)$ of G invariant definable C^{∞} functions with respect to the definable C^{r} topology. Let G be a compact definable C^r group. Let f be a map from a C^rG manifold X to a representation Ω of G. Denote the Haar measure of Gby dg and let $C^r(X, \Omega)$ denote the set of C^r maps from X to Ω . Define

$$A: C^r(X,\Omega)
ightarrow C^r(X,\Omega), A(f)(x) = \int_G g^{-1}f(gx)dg.$$

We call A the averaging function. In particular, if $G = \{g_1 \dots, g_n\}$, then $A(f)(x) = \frac{1}{n} \sum_{i=1}^n g_i^{-1} f(g_i x)$.

To prove Theorem B, we use the following proposition.

Proposition

Let G be a compact definable C^r group.

- (1) A(f) is equivariant, and A(f) = f if f is equivariant.
- (2) If $f \in C^{r}(X, \Omega)$, then $A(f) \in C^{r}(X, \Omega)$.
- (3) If f is a polynomial map, then so is A(f).

(4) If X is compact, then $A : C^{r}(X, \Omega) \to C^{r}(X, \Omega)$ is continuous in the C^{r} Whitney topology.

(5) If G is a finite group, X is a definable C^rG manifold and f is a definable C^r map, then A(f) is a definable C^rG map.

To extend in the real closed field case.

Thank you very much.