On Small Models

Akito Tsuboi

University of Tsukuba

東海大学山中湖セミナーハウス 2012/8/30

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ

୬ <u>୦</u> ୦ 1/23

- 1. Indiscernible Sequence
- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

1. Indiscernible Sequence

- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

- 1. Indiscernible Sequence
- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

- 1. Indiscernible Sequence
- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

- 1. Indiscernible Sequence
- 2. Indiscernible Array
- 3. Indiscernible Tree
- 4. Applications and Examples

Notations

- 1. T is a countable theory formulated in the language L.
- 2. We work in a very saturated model \mathcal{M} . Models are elementary submodels of \mathcal{M} .
- 3. a, b, ...: finite tuples from \mathcal{M} .
- 4. A, B, ...: (small) subsets of \mathcal{M} .
- 5. φ , ψ ,...: *L*-formulas (possibly with parameters).
- 6. *p*, *q*, ... : complete types.

Definition

- A finite tuple *a* is said to be almost atomic over *A*, if for each finite set A₀ ⊂ *A*, there is a finite A₁ ⊂ *A* with A₀ ⊂ A₁ such that tp(*a*/A₁) is an isolate type.
- 2. A set **B** is said to be almost atomic over **A**, if every finite tuple **a** from **B** is almost atmic over **A**.

Remark

There is a stronger version of "begin almost atomic":

► *a* is almost atomic over *A* (in a stronger sense) \iff $\exists A_0 \subset_{fin} A \forall A_1 \subset_{fin} A$ with $A_0 \subset A_1$, $tp(a/A_1)$ is an isolated type.

If T is superstable, these two notions are equivalent. (Use the open mapping theorem)

The following lemma is essentially due to Tanović.

Proposition

Let A be a countable set. Then there is a countable model $M \supset A$ that is almost atomic over A.

For proving Propositon above, we can use

Lemma

Let $B \supset A$ be a countable set almost atomic over A. Let $\varphi(x)$ be a consistent L(B)-formula. Then there is an element b satisfying $\varphi(x)$ such that Bb is almost atomic over A.

Proof.

First choose an increasing sequence $\{B_i : i \in \omega\}$ of finite subsets of B such that $B = \bigcup_{i \in \omega} B_i$. We assume B_0 contains the parameters of φ . Then choose an increasing sequence $\{A_i : i \in \omega\}$ of finite subsets of A such that $\operatorname{tp}(B_i/A_i)$ is isolated. Next we find isolated types $p_i \in S(A_iB_i)$ such that (i) $\varphi(x) \in p_0$ and (ii) $p_i \subset p_j$ if i < j. Let $b \models \bigcup_{i \in \omega} p_i$.

Claim *Bb* is almost atomic over *A*.

Let $X \subset B$ be a finite set. Choose $i \in \omega$ such that $Xb \subset A_iB_ib$. Then, by the transitivity, $tp(A_iB_ib/A_i)$ is isolated. So $tp(Xb/A_i)$ is isolated.

Relative Isolation

Definition

- Let r(x) ⊂ p(x) be two complete types. We say that p(x) is isolated modulo r(x), if there is φ(x) ∈ p(x) such that r(x) ∪ {φ(x)} ⊢ p(x).
- 2. We say that $p(x) \in S(A)$ is *-isolated if there is an increasing sequence $\{A_n\}_{n \in \omega}$ of finite subsets of A such that every $p|A_n$ is isolated modulo $p|A_0$.
- 3. d is *-isolated over A if tp(d/A) is *-isolated.

- Relative Isolation

Fact

Let $r \subset p \subset q$. Suppose that q is a nonforking extension of p. If q is isolated modulo r, then p is isolated modulo r. -Relative Isolation

Proof.

By the isolation modulo r, there is a formula $\varphi(x) \in q$ such that $r(x) \cup \{\varphi(x)\} \vdash q(x)$. By the open mapping theorem, the set $\{s | \operatorname{dom}(p) : \varphi(x) \in s(x)\}$ is an open set of $S(\operatorname{dom}(p))$. So there are $L(\operatorname{dom}(p)$ -formulas $\theta_i(x)$ ($i \in I$) such that $\{s | \operatorname{dom}(p) : \varphi(x) \in s(x) \in S(\operatorname{dom}(q))\} = \bigcup_{i \in I} U_{\theta_i}$.

$$\{s|\operatorname{dom}(p): r(x)\cup\{\varphi(x)\}\subset s(x)\}=\bigcup_{i\in I}\{t(x)\in U_{\theta_i}: r(x)\subset t(x)\}$$

However the left hand side is the singleton $\{p\}$, so there is θ_i such that $\{p\} = \{t(x) \in U_{\theta_i} : r(x) \subset t(x)\}$. In other words, p(x) is isolated modulo r.

- Relative Isolation

Lemma

Let $A \subset B$ be countable sets. Suppose that B is *-isolated over A, i.e., every finite subset of B is *-isolated over A. Let $r(x) \in S(\overline{b})$, where \overline{b} is a finite tuple from B. Then there is d realizing r such that Bd is *-isolated over A.

-Relative Isolation

Proof.

A similar proof as before.

- Relative Isolation

Proposition

Let *T* be a small theory. Let *A* be a countable set. Then there is a saturated model $M \supset A$ such that *M* is *-isolated over *A*. - Some Application

Proposition

Let T be a small theory with a non-isolated multidimensional type. Then T does not have the SB-property for countable models.

-Some Application

Proof.

Let *M* be a countable saturated model Let $p_a(x)$ be a non-isolated type witnessing the multidimensionality. We can assume that *a* and *M* are independent. Let *N* be a countable almost atomic model over *Ma*. Since *M* is saturated, *M* and *N* are bi-embeddable.

Claim $p_a(x)$ is not realized in *N*.

By way of contradiction, suppose that $d \in N$ realizes p_a . Since N is almost atomic over Ma, there is a finite set $M_0 \subset M$ such that $\operatorname{tp}(d/M_0a)$ is an isolated type. By the fact that M_0 and a are independent, using $p_a \perp \emptyset$, we deduce that $\operatorname{tp}(d/M_0a)$ does not fork over \emptyset . By the open mapping theorem, we have that $p_a = \operatorname{tp}(d/a)$ is an isolated type. This is a contradiction.

20/23

-Some Application

Definition

Let $\varphi(x)$ be a formula (with parameters) and let $p(x) \in S(A)$ be a type containing $\varphi(x)$. We say that (p, φ) is a strongly regular type if whenever $A \subset B$, $p^*(x) \in S(B)$ and $\varphi(x) \in p^*(x)$ then either (i) $p^*(x)$ is a nonforking extension of p(x) or (ii) $p^*(x) \perp p(x)$. - Some Application

Proposition

Let T be a multidimensional small theory witnessed by a non-isolated strongly regular type. Then there are infinitely many non-isomorphic countable universal models.

- Some Application

References

- 1. Tanović, On Kueker's conjecture, preprint.
- 2. Y. Tanaka, personal communication.
- 3. Nurmagambetov, Characterization of ω -stable theories with bounded dimension,