Schröder-Bernstein property in a category of countable models

田中 勇一(筑波大学数理物質研究科D1)

Preliminary

- *T* for a complete theory
- •M, N for models of T
- •*a*, *b*, *c* ••• for elements
- •x for a variable
- •*p* for a type
- for a formula

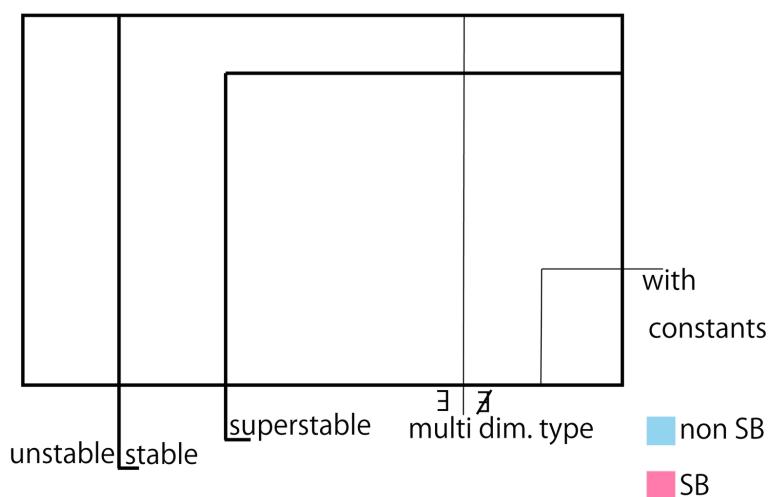
Schröder-Bernstein property

<u>Def.1.</u>

T has the Shröder-Bernstein property(SB) if any models *M*,*N* of *T* are isomorphic whenever they are elementary bi-embeddable.

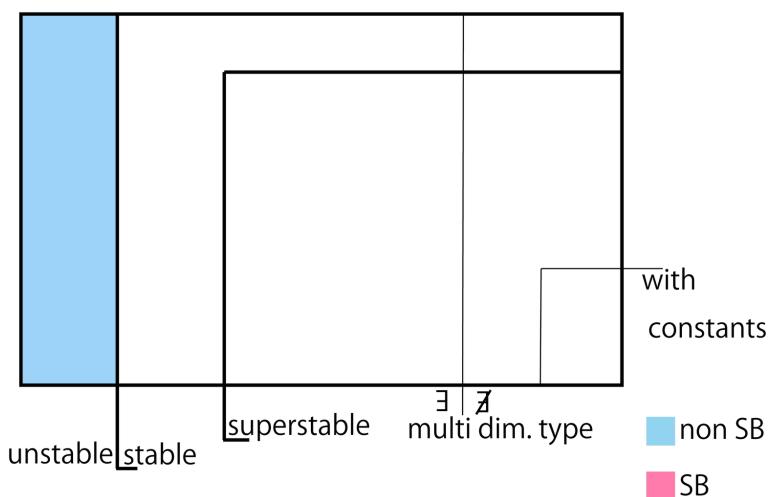
$$\begin{array}{c} M \prec N, N \prec M \\ & \downarrow \\ M \cong N \end{array}$$

Background



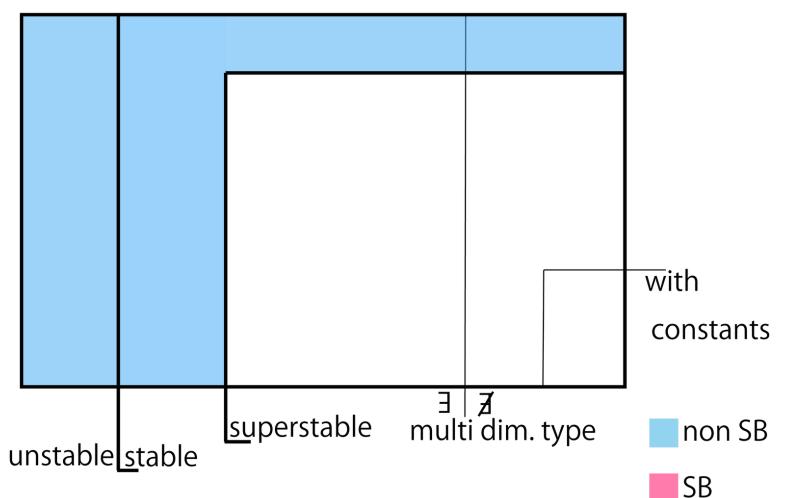
Thm.2.(S. Shelah)

Unstable theories do not have SB.



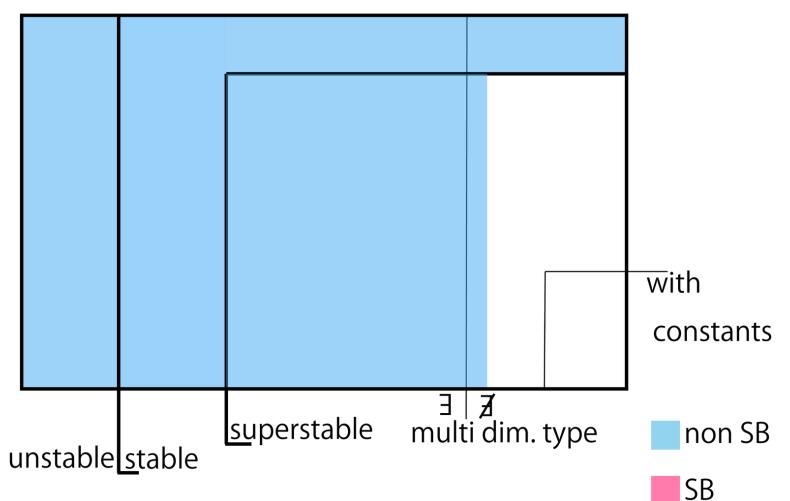
Thm.3.(L. Harrington,2007)

Strictly stable theories do not have SB.



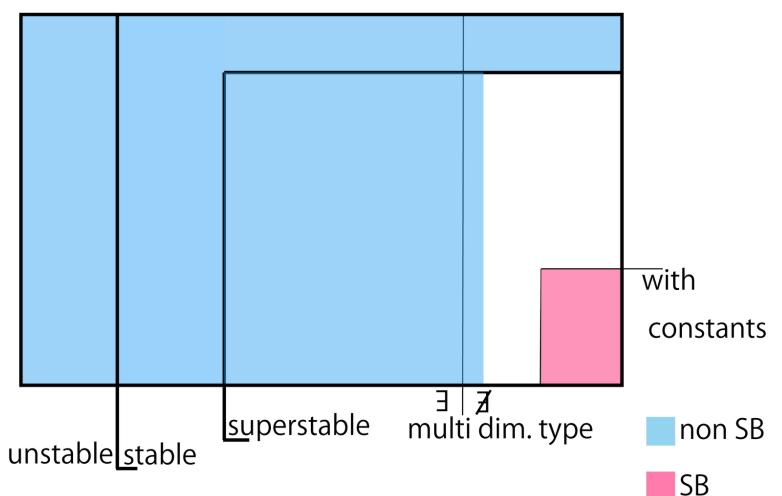
Thm.4.(J. Goodrick,2007)

Superstable theories with a nomadic type do not have SB.



Thm.5.(J. Goodrick and M. C. Lastowski,2012)

Superstable theories without nomadic types have SB after adding a-model as constants.



Cardinality of counter examples

• unstable

at least
$$2^{\aleph_0}$$

• strictly stable

at least \aleph_1

• superstable with a nomadic type at least R_{ω}

Cardinality of counter examples

<u>Q.</u> Can we make a countable example for non SB?

Cardinality of counter examples

Q. Can we make a countable example for non SB?

Suppose that *T* is a countable theory.

Schröder-Bernstein property for countable models

<u>Def.6.</u>

- T has the Shröder-Bernstein property for countable models(ctbl SB)
- if any **countable** models *M*,*N* of *T* are isomorphic whenever they are elementary bi-embeddable.

Schröder-Bernstein property for countable models

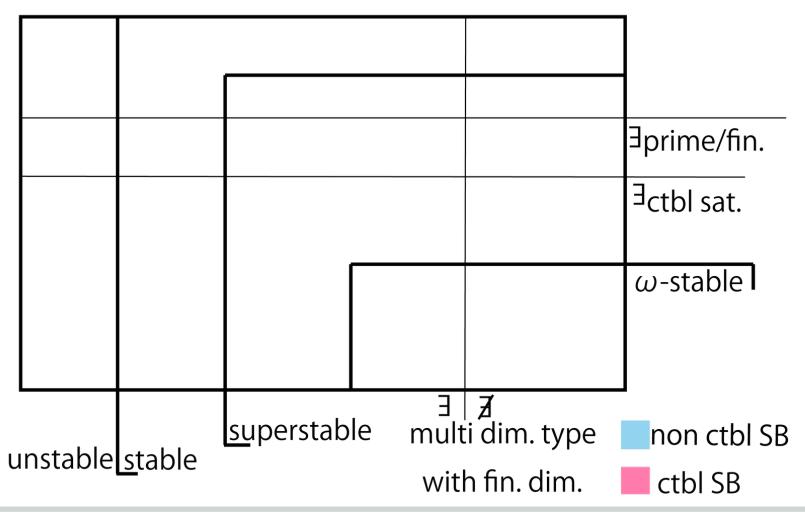
<u>Def.6.</u>

T has the Shröder-Bernstein property for countable models(ctbl SB)

if any **countable** models *M*,*N* of *T* are isomorphic whenever they are elementary bi-embeddable.

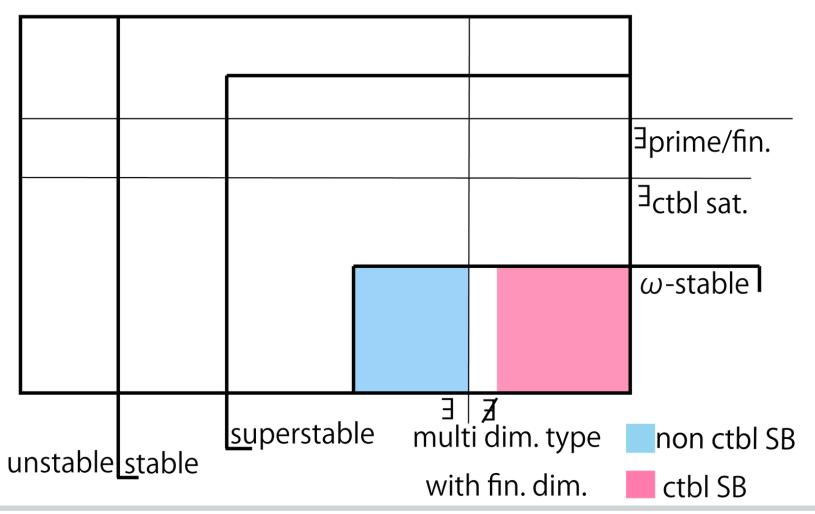
Clearly, a ω -categorical theory has ctbl SB.

Background and Results



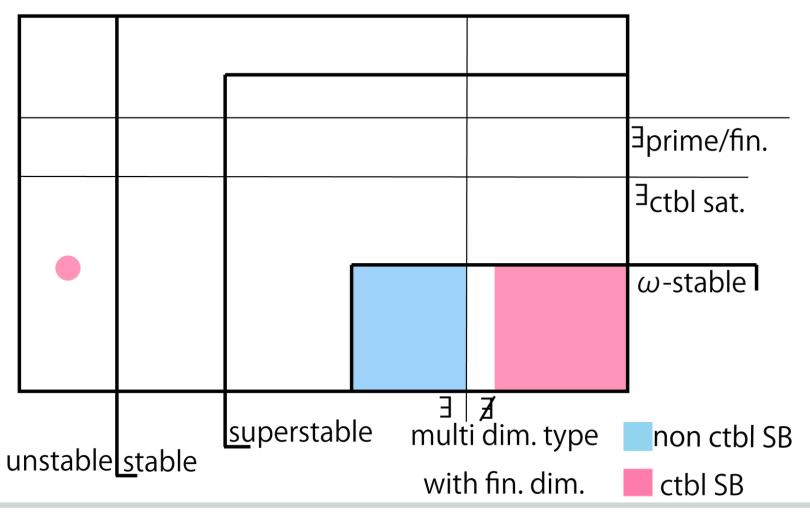
Thm.7.(T. A. Nurmagambetov,1989)

There is a characterization of ctbl SB in ω -stable case.



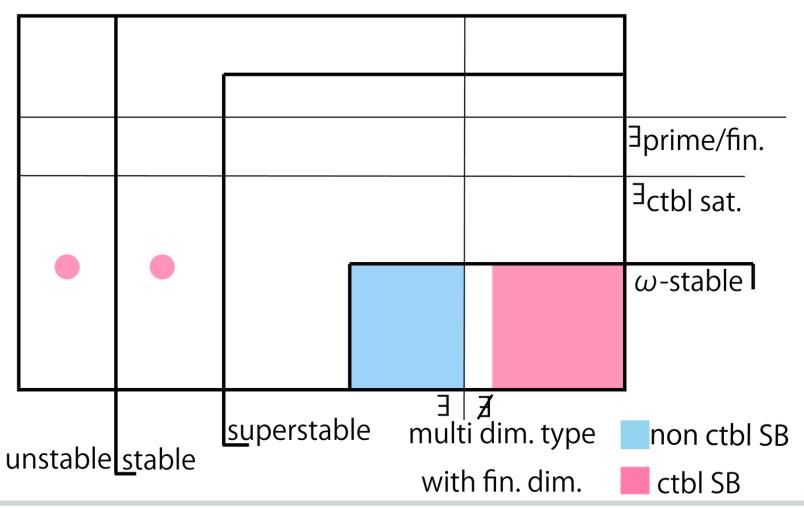
Ex.8.

The theory of a dense linear order has ctbl SB.



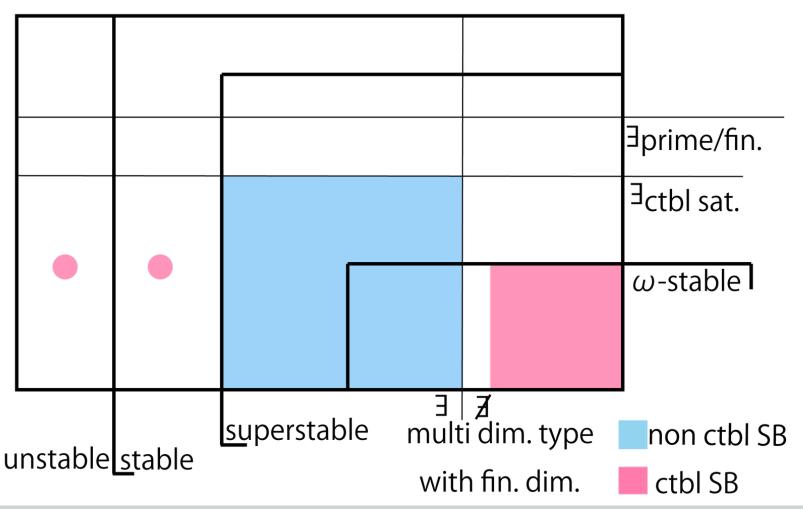
<u>Ex.9.</u>

There is a strictly stable ω -categorical theory.



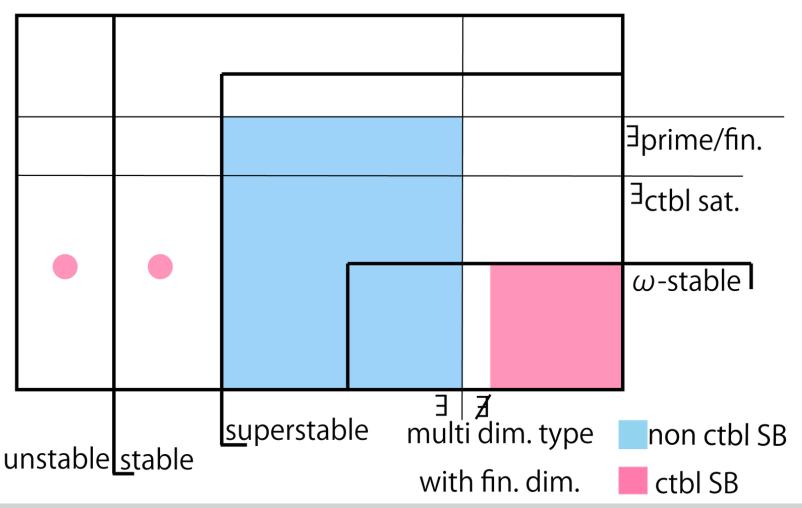
Prop.10.(A.Tsuboi)

Superstable small theories with a multi dim'l type, which has fintite dim'l in some model, do not have ctbl SB.



<u>Prop.11.(T.)</u>

Superstable theories, which have prime model over any finite set, with a multi dim'l type ... do not have ctbl SB.



Further preliminaries for prop.11.

$\underbrace{\text{Notation.}}{p \in S(a), a \equiv b \rightarrow p_b \in S(b) \text{ means copy of } p.}$

<u>Def.12.</u>

p is a multi dimensional type if $p\perp \phi$

Precious statement of prop.11.

Prop.11.

Let *T* be a superstable countable theory which has prime models over each finite set.

Suppose *T* has a multi dimensional type with finite dimension for some model of *T*.

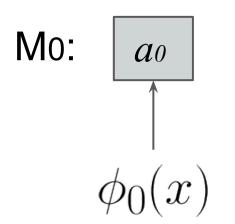
Then T does not have ctbl SB.

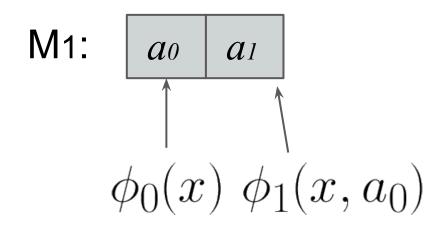
Precious statement of prop.11.

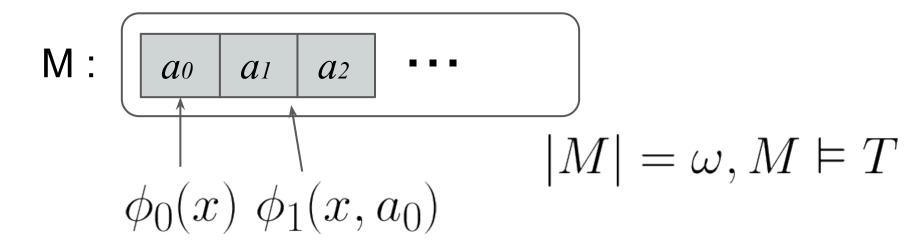
Prop.11.

Let *T* be a superstable countable theory which has prime models over each finite set. Suppose *T* has a multi dimensional type with finite dimension for some model of *T*. Then *T* does not have ctbl SB.

we need two models of T which elementary biembeddable and non isomorphic.

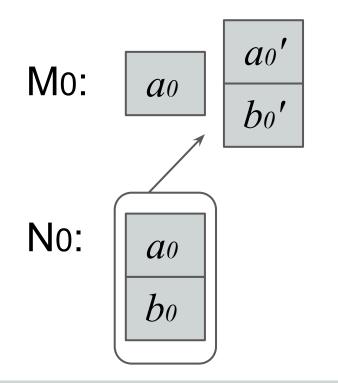


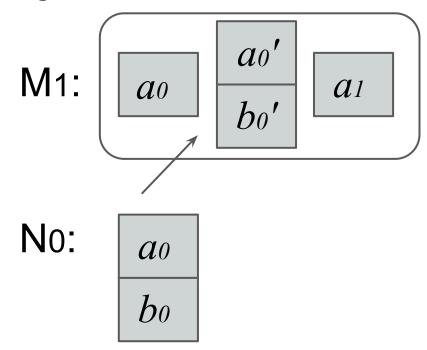


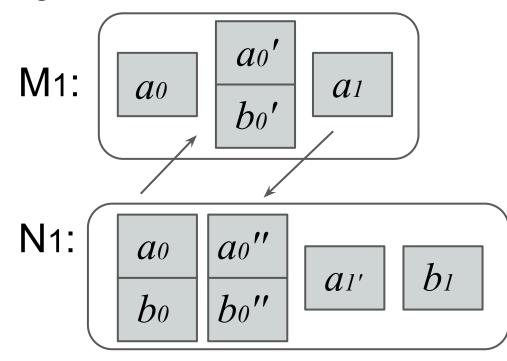


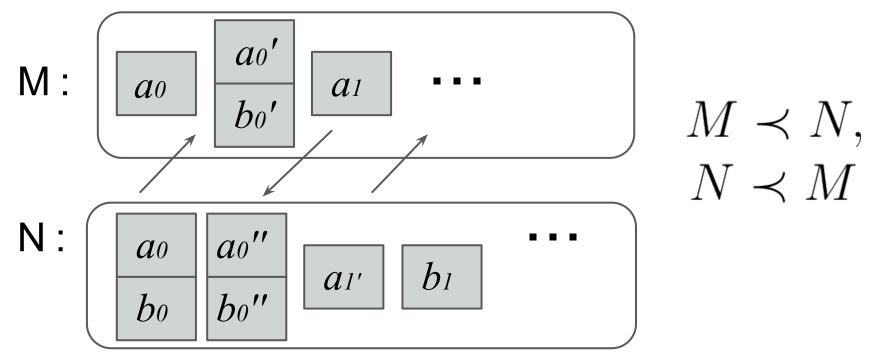
We construct two models by back and forth argument and downward Lowenheim-Skolem argument.

*a*0 *b*0









Let *p* in *S*(*a*) be a multi dimensional regular type with finite dimension in some model.

To make a gap of models M, N, in each step, 1. we increase dimension in M of p_b for each bin M,which equivalent to a;

2. we preserve dimension in N of p.

Then dim(M, p_b) = ω and dim(N,p)< ω .

 $M \not\cong N$

Let *p* in *S*(*a*) be a multi dimensional regular type with finite dimension in some model.

We will define tuples $\langle M_l, N_l, f_l \rangle_{l \in \omega}$ M_l, N_l are finite fragments of models. $f_l : N_{l-1} \to M_l$ is an elementary map.

(0).
$$N_{l-1} = M_0 = \emptyset, N_0 = \{a\}$$

 $M_l \subset M_{l+1}, \dots, f_l \subset f_{l+1}$

Induction hypothesis of $\langle M_l, N_l, f_l \rangle_{l \in \omega}$ (1). $a \downarrow M_l, N_l = aM_l\bar{c}$ where $tp(\bar{c}/M_la)$ is isolated.

(2).there exists a realization of $p_b|M_l$ in M_{l+1} for each $b \in M_l$ with $a \equiv b$.

-Construction of M_{l+1} : Let M_{l+1} be $M_l \bar{d} \bar{e}$ with witness of some fml, where

(1-1). \bar{d} is a tuple of realizations of $\{p_b: M_l \in b, a \equiv b\}$ satisfying $\bar{d} \downarrow a M_l = M_l$.

(1-2). \bar{e} is a tuple satisfying $\bar{e} \downarrow_{M_l \bar{d}} a$ and

 $tp(\bar{e}, f_l(N_{l-1})) = tp(N_l - N_{l-1}, N_{l-1}).$

- •Checking ind. hyp. for M_{l+1} : By (1-1), ind. hyp. of (2) holds. By (1-1),(1-2) and taking wittness of a fml to be independently, we get $a \downarrow M_{l+1}$.
- -Construction of f_{l+1} : Let f_{l+1} be $f_l \cup < N_l - N_{l-1}, \bar{e} > -$

•Construction of N_{l+1} : By ind. hyp. of (2), $N_l = aM_l\bar{c}$. By fixing construction of M_{l+1} , we may assume that $tp(\bar{c}/aM_{l+1})$ is isolated.

We can take a realization c' of some fml such that $tp(\bar{c}c'/aM_{l+1})$ is isolated.

So let N_{l+1} be $aM_{l+1}\bar{c}c'$. Cleary, ind.hyp. (2) holds.

$$M = \bigcup_l M_l, N = \bigcup_l N_l, f = \bigcup_l f_l$$

Then *M*,*N* are countable models of *T* which are elementary bi-embeddable.

Clearly $dim(M, p_b) = \omega$ for each $b \in Ms.t.a \equiv b$

We will show $dim(N,p) < \omega$.

We may assume dim(M[a], p) = 0 where M[a] is a prime model over a.

Suppose $\exists i \in N, i \models p$. So there is $l \text{ s.t.} i \in N_l$ Since $N_l = aM_l\bar{c}$, $tp(i/aM_l)$ is isolated. Then $i \not \downarrow M_l$ because dim(M[a], p) = 0 and the open mapping theorem.

On the other hand, $i \downarrow M_l$ follows from $p \perp \emptyset$ and $a \downarrow M_l$.

This is a contradiction. So $\not\exists i \in N, i \vDash p$ i.e. dim(N, p) = 0.

Then $M \ncong N$.

References

[1]J. Baldwin, Fundamental Stability Theory, Springer, 1988
[2]J. Goodrick and M.C. Lastowski, The Schroder Bernstein property for a-saturated models, preprint, 2012
[3]J. Goodrick, What are elementarily bi-embeddable models isomorphic?, Ph.D. Thesis, 2007
[4]T.A. Nurmagambetov, The mutual embeddability of models, Theory of Algebraic Structures, 1985, pp.109-115.
[5]E. Hrushovski, A stable ω-categorical pseudoplane, preprint, 1988