Schroder-Bernstein property
in a category of countable models
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Schroder-Bernstein property

Def.1.

T has the Shroder-Bernstein property(SB)
iIf any models M N of T are isomorphic
whenever they are elementary bi-embeddable.
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Thm.2.(S. Shelah)

Unstable theories do not have SB.
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Thm.3.(L. Harrington.2007)

Strictly stable theories do not have SB.
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Thm.4.(J. Goodrick,2007)

Superstable theories with a nomadic type do not have SB.
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Thm.5.(J. Goodrick and M. C. Lastowski,2012)

Superstable theories without nomadic types have SB after
adding a-model as constants.
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Cardinality of counter examples

e unstable
at least 9o

e strictly stable
at least Y\,

e superstable with a nomadic type
at least n



Cardinality of counter examples

Q.
Can we make a countable example for non SB?



Cardinality of counter examples

Q.
Can we make a countable example for non SB?

Suppose that T'is a countable theory.



Schroder-Bernstein property
for countable models

Def.6.

T has the Shroder-Bernstein property for
countable models(ctbl SB)

If any countable models M,N of T are isomorphic
whenever they are elementary bi-embeddable.




Schroder-Bernstein property
for countable models

Def.6.

T has the Shroder-Bernstein property for
countable models(ctbl SB)

If any countable models M,N of T are isomorphic
whenever they are elementary bi-embeddable.

Clearly, a w-categorical theory has ctbl SB.



Background and Results
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Thm.7.(T. A. Nurmagambetov,1989)
There Is a characterization of ctbl SB in w-stable case.
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Ex.8.

The theory of a dense linear order has ctbl SB.
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Ex.9.

There is a strictly stable w-categorical theory.
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Prop.10.(A.Tsuboi)

Superstable small theories with a multi dim'l type, which
has fintite dim'l in some model, do not have ctbl SB.
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Prop.11.(T.)

Superstable theories,which have prime model over any
finite set, with a multi dim'l type ... do not have ctbl SB.
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Further preliminaries for prop.11.

Notation.

D < S(a),a = b — Py € S(b) means copy of p.

Def.12.

p Is a multi dimensional type

prJ_Q



Precious statement of prop.11.

Prop.11.

_et 7' be a superstable countable theory which
nas prime models over each finite set.
Suppose 7T has a multi dimensional type with
finite dimension for some model of T.

Then T does not have ctbl SB.




Precious statement of prop.11.

Prop.11.
_et 7' be a superstable countable theory which
nas prime models over each finite set.

Suppose 7T has a multi dimensional type with
finite dimension for some model of T.

Then T does not have ctbl SB.

we need two models of T which elementary bi-
embeddable and non isomorphic.



Outline of Proof:

We construct two models by back and forth
argument and downward Lowenheim-Skolem
argument.
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Outline of Proof:

We construct two models by back and forth
argument and downward Lowenheim-Skolem
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Outline of Proof:

We construct two models by back and forth
argument and downward Lowenheim-Skolem
argument.
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Outline of Proof:

We construct two models by back and forth
argument and downward Lowenheim-Skolem
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Outline of Proof:

We construct two models by back and forth
argument and downward Lowenheim-Skolem
argument.
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Outline of Proof:

We construct two models by back and forth
argument and downward Lowenheim-Skolem

argument.
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Outline of Proof:

We construct two models by back and forth
argument and downward Lowenheim-Skolem

argument.
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Outline of Proof:

We construct two models by back and forth
argument and downward Lowenheim-Skolem

argument.
a2 : )
ao
M : ao al
bo’
\___/ / /
/ /S
-
N : ao ||lao”
ar | | bi
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M < N,
N < M



Outline of Proof:

Let p In S(a) be a multi dimensional regular type
with finite dimension in some model.

To make a gap of models M, N, in each step,

1. we increase dimension in M of pv for each b
In M,which equivalent to a ;

2. we preserve dimension in N of p.

Then dim(M,pv) = w and dim(N,p)< w.
M2 N



Proof of prop.11.

Let p In S(a) be a multi dimensional regular type
with finite dimension in some model.

We will define tuples < Mj, Ny, [1 >1cw
M;, N; are finite fragments of models.

f1: N;_{ — M;isan elementary map.

0). Nj_1=My=2, Ny = {CL}
My C Mgy, J1 C f14



Proof of prop.11.

Induction hypothesis of < M;, Ny, f; >1c.
(1). al M;, Ny =aMjc
where tp(¢/Mja) is isolated.

(2).there exists a realization of py|M; in M, 4
foreach ¢ A with (o = .



Proof of prop.11.

* Construction of M4
Let g, 1 be M,de with witness of some fml,

where
(1-1). 7 is atuple of realizations of

d
{py: My € b,a = b} satisfying A¢[1 a

(1-2).  is a tuple satisfying ¢ + @ and
M;d

tp(e, f1(N;_1)) = tp(N;—N;_1, N;_1).



Proof of prop.11.

* Checking ind. hyp. for Mg :

By (1-1), ind. hyp. of (2) holds.

By (1-1),(1-2) and taking wittness of a fml to be
independently, we get al M

 Construction of f :
Let be o 5
111 N <Ny = Nj_p,e>



Proof of prop.11.

- Construction of Ny

By ind. hyp. of (2), N, = aMc

By fixing construction of AM;,; , we may
assume that tp(c/aMp. ) IS Isolated.

We can take a realizationcl of some fml such
that tp(ec’ /aM, ) is isolated.

So let Nlee aM;., e
Cleary, ind.hyp. (2) holds.



Proof of prop.11.

M =UM;,N = UN;, f=U;f;

Then M N are countable models of T"which are
elementary bi-embeddable.

Clearly dim(M,p,) = wforeach b € Ms.t.a=1b



Proof of prop.11.

We will show dim(N,p) < w.

We may assume dim(Mal, p) = 0 where
M alis a prime model over a.

Suppose Ji € N,iF p.Sothereis /s.t.. € N
Since N; = aM;c , tp(i/aM;)Iis isolated.

Then ; VM, because dim(M]Jal,p) =0 and
the opefi mapping theorem.



Proof of prop.11.

On the other hand, ¢ . M; follows from

This is a contradiction. Sozfz'. € N,iEp le.
dim(N,p) =0.

Then M 2% N .
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