Independent partitions and indiscernibility

Akito Tsuboi

University of Tsukuba

Kyoto RIMS, 2010
November 29
Outline

1. Simplicity and Independent Partitions,
 1. Definitions
 2. Examples

2. Ranks
 1. $D(\Sigma, \varphi, k)$
 2. $D(\Sigma, \varphi)$
 3. D_{inp}

3. Main Result
Settings

- T is a complete theory formulated in L.

Independent partitions and indiscernibility

Settings

- \(T \) is a complete theory formulated in \(L \).
- We work in a very saturated \(\mathcal{M} \models T \).
Independent partitions and indiscernibility

Settings

- \(T \) is a complete theory formulated in \(L \).
- We work in a very saturated \(M \models T \).
- \(a, b, \ldots \) are (finite) tuples in \(M \).
Settings

- T is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- a, b, \ldots are (finite) tuples in \mathcal{M}.
- A, B, \ldots are small sets in \mathcal{M}.
T is a complete theory formulated in L.

We work in a very saturated $\mathcal{M} \models T$.

a, b, \ldots are (finite) tuples in \mathcal{M}.

A, B, \ldots are small sets in \mathcal{M}.

I, J are sequences of tuples in \mathcal{M}.
Independent partitions and indiscernibility

Settings

- T is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- a, b, \ldots are (finite) tuples in \mathcal{M}.
- A, B, \ldots are small sets in \mathcal{M}.
- I, J are sequences of tuples in \mathcal{M}.
- $M, N, \ldots < \mathcal{M}$.
Independent partitions and indiscernibility

Settings

- T is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- a, b, \ldots are (finite) tuples in \mathcal{M}.
- A, B, \ldots are small sets in \mathcal{M}.
- I, J are sequences of tuples in \mathcal{M}.
- $\mathcal{M}, \mathcal{N}, \ldots < \mathcal{M}$.
- Formulas are denoted by φ, ψ, \ldots.
Settings

- T is a complete theory formulated in L.
- We work in a very saturated $\mathcal{M} \models T$.
- a, b, \ldots are (finite) tuples in \mathcal{M}.
- A, B, \ldots are small sets in \mathcal{M}.
- I, J are sequences of tuples in \mathcal{M}.
- $M, N, \ldots < \mathcal{M}$.
- Formulas are denoted by φ, ψ, \ldots.
- m, n, k, \ldots are natural numbers.
A **simple** theory is characterized as a theory in which the length of dividing sequence of types is bounded ($< \infty$).
A low theory is characterized by the following property: For each formula $\varphi(x, y)$ there is a number $n_\varphi \in \omega$ such that whenever

\[\{ \varphi(x, a_i) : i < m \} \]

satisfies

1. $\{ \varphi(x, a_i) : i < m \}$ is consistent, and
2. $\varphi(x, a_i)$ divides over $A_i = \{ a_j : j < i \}$ ($i < m$),

then $m \leq n_\varphi$.
Casanovas constructed a simple nonlow theory

\[T_1 = Th(M, P, P_1, P_2, ..., Q, R). \]
\(M \) is the disjoint union of \(P \) and \(Q \).
1. M is the disjoint union of P and Q.
2. P_1, P_2, ... are disjoint copies of ω.
1. M is the disjoint union of P and Q.
2. P_1, P_2, \ldots are disjoint copies of ω.
3. $P = \bigcup_{i \in \omega} P_i \cup G$, where G is a random graph.
1. M is the disjoint union of P and Q.
2. P_1, P_2, ... are disjoint copies of ω.
3. $P = \bigcup_{i \in \omega} P_i \cup G$, where G is a random graph.
4. Q is the set of all sequences $(A_1, A_2, ..., A_\omega)$, where A_n is an n-element subset of P_n and for some $a \in G$, $A_\omega \subset G$ is the set of all $g \in G$ directly connected to a.
1. M is the disjoint union of P and Q.
2. P_1, P_2, \ldots are disjoint copies of ω.
3. $P = \bigcup_{i \in \omega} P_i \cup G$, where G is a random graph.
4. Q is the set of all sequences $(A_1, A_2, \ldots, A_\omega)$, where A_n is an n-element subset of P_n and for some $a \in G$, $A_\omega \subset G$ is the set of all $g \in G$ directly connected to a.
5. $R \subset P \times Q$.
6. $R(a, (A_1, A_2, \ldots, A_\omega))$ if (i) $a \in P_n$ and $a \in A_n$ ($\exists n \in \omega$) or (ii) $a \notin \bigcup_n P_n$ and $a \in A_\omega$.
This theory T_1 is not supersimple. $R(x, y)$ defines infinitely many mutually independent partitions in the following sense: If we enumerate P_n as $P_n = \{a_{nm} : m \in \omega\}$, then
This theory T_1 is not supersimple. $R(x, y)$ defines infinitely many mutually independent partitions in the following sense: If we enumerate P_n as $P_n = \{a_{nm} : m \in \omega\}$, then

- for each $\eta \in \omega^\omega$, $\{R(a_{n\eta(n)}, y) : n = 1, 2, ...\}$ is consistent, and
- for each $n = 1, 2, ..., \{R(a_{nm}, y) : m \in \omega\}$ is $(n + 1)$-inconsistent.
By modifying T_1, Casanovas and Kim showed the existence of a supersimple nonlow theory T_2. This T_2 does not have infinitely many mutually independent partitions.
By modifying T_1, Casanovas and Kim showed the existence of a supersimple nonlow theory T_2. This T_2 does not have infinitely many mutually independent partitions.

However, for each $k \in \omega$, we can find a formula $\varphi(x, y)$ and parameter sets $A_i = \{a_{ij} : j \in \omega\}$ ($i < k$) defining k independent partitions.
\[D_{\text{inp}}(*, *) \]

Definition

\[D_{\text{inp}}(\Sigma(x), \varphi(x, y)) \] is the first cardinal \(\kappa \) such that there are no \(\kappa \)-many independent partitions \(\{ \varphi(x, a_{ij}) : j \in \omega \} \) (\(i < \kappa \)) of \(\Sigma \).
Remark

- For T_1, $D_{\text{inp}}(x = x, R(y, x)) = \omega_1$.
- For T_2, for some $\varphi(x, y)$,
 $D_{\text{inp}}(x = x, \varphi(x, y)) = \omega$.
So it is natural to ask whether there is a simple nonlow theory T such that

$$D_{\text{inp}}(x = x, \varphi(x, y)) < \omega,$$

for any φ.
First we recall definitions of basic ranks. Let $\Sigma(x)$ be a set of formulas and $\varphi(x, y)$ a formula. Let $k \in \omega$.
Definition

\[D(\Sigma(x), \varphi(x, y), k) \]

1. \(D(\Sigma(x), \varphi(x, y), k) \geq 0 \) if \(\Sigma(x) \) is consistent.
2. \(D(\Sigma(x), \varphi(x, y), k) \geq n + 1 \) if there is an indiscernible sequence \(\{b_i : i \in \omega\} \) over \(\text{dom}(\Sigma) \) such that \(D(\Sigma(x) \cup \{\varphi(x, b_i)\}, \varphi(x, y), k) \geq n \) for all \(i \in \omega \), and \(\{\varphi(x, b_i) : i \in \omega\} \) is \(k \)-inconsistent.
Independent partitions and indiscernibility

Definition

1. $D(\Sigma(x), \varphi(x, y)) \geq 0$ if $\Sigma(x)$ is consistent.
2. For a limit ordinal δ, $D(\Sigma(x), \varphi(x, y)) \geq \delta$ if $D(\Sigma(x), \varphi(x, y)) \geq \alpha$ for all $\alpha < \delta$.
3. $D(\Sigma(x), \varphi(x, y)) \geq \alpha + 1$ if there is an indiscernible sequence $\{b_i : i \in \omega\}$ over $\text{dom}(\Sigma)$ such that $D(\Sigma(x) \cup \{\varphi(x, b_i)\}, \varphi(x, y)) \geq \alpha (i \in \omega)$, and $\{\varphi(x, b_i) : i \in \omega\}$ is inconsistent.
Fact

1. \(D(\Sigma(x), \varphi(x, y), k) \geq n \) if there is a tree \(A = \{a_\nu : \nu \in \omega^{\leq n}\} \) such that (1) \(\Sigma(x) \cup \{\varphi(x, a_\eta|_i) : 1 \leq i \leq n\} \) is consistent \((\forall \eta \in \omega^n)\), and (2) \(\{\varphi(x, a_\nu \neg|_i) : i \in \omega\} \) is \(k \)-inconsistent \((\forall \nu \in \omega^{<n})\).
Fact

$D(\Sigma(x), \varphi(x, y)) \geq n$ if there is a tree $A = \{a_\nu : \nu \in \omega^{\leq n}\}$ and numbers k_0, \ldots, k_{n-1} such that (1) $\Sigma(x) \cup \{\varphi(x, a_{\eta|i}) : 1 \leq i \leq n\}$ is consistent $(\forall \eta \in \omega^n)$, and (2) $\{\varphi(x, a_{\nu\neg i}) : i \in \omega\}$ is $k_{lh(\nu)}$-inconsistent $(\forall \nu \in \omega^{<n})$.
Theorem

Suppose that the size of independent partitions is bounded in T. Then the following are equivalent:

1. T is simple.
2. T is low.
Proposition

Suppose $D_{\text{inp}}(x = x, \varphi(x, y)) = k - 1 < \omega$ and $D(x = x, \varphi(x, y)) \geq \omega$. Then T is not simple.
Proof.

Fix \(m \in \omega \).

- By \(D(x = x, \varphi(x, y)) \geq \omega \), there is a set
 \[A = \{ a_\nu : \nu \in \omega^{\leq m} \} \]
 witnessing
 \[D(x = x, \varphi(x, y)) \geq m. \]
Proof.

Fix $m \in \omega$.

- By $D(x = x, \varphi(x, y)) \geq \omega$, there is a set $A = \{a_\nu : \nu \in \omega^{\leq m}\}$ witnessing $D(x = x, \varphi(x, y)) \geq m$.

- We have
 1. $\{\varphi(x, a_{\eta|i}) : 1 \leq i \leq m\}$ is consistent ($\forall \eta \in \omega^m$),
 2. $\{\varphi(x, a_{\nu^{-i}}) : i \in \omega\}$ is $k_{lh(\nu)}$-inconsistent ($\forall \nu \in \omega^{<m}$).
We can assume that A is an indiscernible tree.
We can assume that A is an indiscernible tree.
For $\nu \in \omega^m$, let ν^* be the sequence

$$\nu(0), 0^k, \nu(1), 0^k, \ldots, \nu(\text{lh}(\nu) - 1), 0^k.$$

For $\nu = \nu_0 \overline{m}$, let

$$a_{\nu}^* = a_{\nu_0 \overline{m} 0}, a_{\nu_0 \overline{m} 0^2}, \ldots, a_{\nu_0 \overline{m} 0^k}.$$
Let $\varphi^*(x, y_1, \ldots, y_k)$ be the formula $\varphi(x, y_1) \land \ldots \land \varphi(x, y_k)$.

Claim A \(\{\varphi^*(x, a^*_\nu m) : m \in \omega\} \) is k-inconsistent.
Let $\varphi^*(x, y_1, ..., y_k)$ be the formula $\varphi(x, y_1) \land \ldots \land \varphi(x, y_k)$.

Claim A $\{\varphi^*(x, a^*_\nu _m) : m \in \omega\}$ is k-inconsistent.

Suppose this is not the case. Then there is $F = \{i_1, ..., i_k\} \subset \omega$ such that

$$\{\varphi^*(x, a^*_\nu _i_1), ..., \varphi^*(x, a^*_\nu _i_k)\}$$

is consistent.
By the definition of φ^*, in particular, the following set is consistent.

$$\{\varphi(x, a_{\nu_0}^{i_1 \ldots i_k \nu_{k-1}}), \ldots, \varphi(x, a_{\nu_0}^{i_k \ldots i_1 \nu_{k-1}})\}$$
By the definition of \(\varphi^* \), in particular, the following set is consistent.

\[
\{ \varphi(x, a_{\nu_0}^{i_1 \cdots i_k} 0^{k-1} \nu), ..., \varphi(x, a_{\nu_0}^{i_1 \cdots i_k} 0^{k-1} \nu) \}
\]

For each \(\nu \) of length \(k \), let \(\Gamma_\nu \) be the set:

\[
\{ \varphi(x, a_{\nu_0}^{i_1 \cdots i_k} 0^{k-1} \nu), ..., \varphi(x, a_{\nu_0}^{i_1 \cdots i_k} 0^{k-1} \nu) \}.
\]
Then each Γ_ν is consistent, by the indiscernibility of A.
Then each Γ_{v} is consistent, by the indiscernibility of A.

On the other hand, by our choice of the tree A, for each $l = 0, ..., k - 1$, the set

$$\{ \varphi(x, a^{*}_{v_{0} \sim i_{2} \sim 0 \sim i_{1}}) : i \in \omega \}$$

is inconsistent ($k_{lh(v_{0})+(1+l)}$-inconsistent).
Then each Γ_ν is consistent, by the indiscernibility of A.

On the other hand, by our choice of the tree A, for each $l = 0, \ldots, k - 1$, the set

$$\{\varphi(x, a^*_{\nu_0 \neg i_2 \neg 0^l \neg i}) : i \in \omega\}$$

is inconsistent ($k_{lh(\nu_0)} + (1 + l)$-inconsistent).

This yields $D_{\text{inp}}(x = x, \varphi(x, z)) \geq k$, a contradiction. (End of Proof of Claim)
By Claim A, the set \(\{ \varphi^*(x, a^*_\nu) : \nu \in \omega^m \} \) witnesses \(D(x = x, \varphi^*, k) \geq m \).
By Claim A, the set $\{\varphi^*(x, a^*_\nu) : \nu \in \omega^m\}$ witnesses $D(x = x, \varphi^*, k) \geq m$.

Since m is arbitrary, we conclude $D(x = x, \varphi^*, k) = \infty$, which means that T is not simple.