On the Cauchy Problem for Hyperbolic Operators with Double Characteristics whose Principal Parts Have Time Dependent Coefficients

Seiichiro WAKABAYASHI

Abstract

In this paper we investigate the Cauchy problem for hyperbolic operators with double characteristics in the framework of the space of C^1 functions. In the case where the coefficients of their principal parts depend only on the time variable and are real analytic, we give a sufficient condition for C^1 well-posedness, which is also a necessary one when the space dimension is less than 3 or the coefficients of the principal parts are semi-algebraic functions (e.g., polynomials) of the time variable.

1. Introduction

We say that a (partial differential) operators has time dependent coefficients if the coefficients depend only on the time variable. In [13] we studied the Cauchy problem for hyperbolic operators with double characteristics which have time dependent coefficients, and gave sufficient conditions for the Cauchy problem to be C^∞ well-posed, assuming that the coefficients of the principal parts are real analytic functions of the time variable.

In this paper we shall study the Cauchy problem for hyperbolic operators with double characteristics in the case where the principal parts have time dependent coefficients and the coefficients of the lower order terms depend on

2000 Mathematics Subject Classification. Primary 35L30; Secondary 35L25.

Key Words and Phrases. Cauchy problem, Hyperbolic, C^∞ well-posed, Double characteristics.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 16K05222), Japan Society for the Promotion of Science.
both the time variable and the space variables. And we shall give sufficient conditions for \(C^\infty \) well-posedness under the assumptions that the coefficients of the principal parts and the subprincipal symbols are real analytic in the time variable. These conditions are also necessary conditions if the space dimension is less than 3, or if the coefficients of the principal parts and the subprincipal symbols are semi-algebraic functions (e.g., polynomials) with respect to the time variable. Our results are extensions of the results given in [12] to higher-order hyperbolic operators. For some examples and further literatures we refer to [12] and [13].

Let \(m \in \mathbb{N} \) and \(P(t, x, \tau, \xi) \equiv \tau^m + \sum_{j=1}^{m} \sum_{|\alpha| \leq j} a_{j, \alpha}(t, x) \tau^{m-j} \xi^\alpha \) be a polynomial of \(\tau \) and \(\xi = (\xi_1, \cdots, \xi_n) \) of degree \(m \) whose coefficients \(a_{j, \alpha}(t, x) \) belonging to \(C^\infty([0, \infty) \times \mathbb{R}^n) \). Here \(\alpha = (\alpha_1, \cdots, \alpha_n) \in (\mathbb{Z}_+)^n \) is a multi-index, \(|\alpha| = \sum_{j=1}^{n} \alpha_j \) and \(\xi^\alpha = \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n} \), where \(\mathbb{Z}_+ = \mathbb{N} \cup \{0\} \) (\(= \{0, 1, 2, 3, \cdots\} \)). We consider the Cauchy problem

\[
\begin{align*}
(P(t, x, D_t, D_x) u(t, x) &= f(t, x) \quad \text{in } [0, \infty) \times \mathbb{R}^n, \\
D_t^j u(t, x)|_{t=0} &= u_j(x) \quad \text{in } \mathbb{R}^n \quad (0 \leq j \leq m - 1)
\end{align*}
\]

in the framework of the space of \(C^\infty \) functions, where \(D_t = -i \partial/\partial t \) (= \(-i \partial_t \)), \(D_x = (D_1, \cdots, D_n) = -(i(\partial/\partial x_1, \cdots, \partial/\partial x_n), f(t, x) \in C^\infty([0, \infty) \times \mathbb{R}^n) \) and \(u_j(x) \in C^\infty(\mathbb{R}^n) \) (\(0 \leq j \leq m - 1 \)).

Definition 1.1. The Cauchy problem (CP) is said to be \(C^\infty \) well-posed if the following conditions (E) and (U) are satisfied:

- **(E)** For any \(f \in C^\infty([0, \infty) \times \mathbb{R}^n) \) and \(u_j \in C^\infty(\mathbb{R}^n) \) (\(0 \leq j \leq m - 1 \)) there is \(u \in C^\infty([0, \infty) \times \mathbb{R}^n) \) satisfying (CP).

- **(U)** If \(s > 0 \), \(u \in C^\infty([0, \infty) \times \mathbb{R}^n) \), \(D_t^j u(t, x)|_{t=0} = 0 \) (\(0 \leq j \leq m - 1 \)) and \(P(t, x, D_t, D_x) u(t, x) \) vanishes for \(t < s \), then \(u(t, x) \) also vanishes for \(t < s \).

We assume throughout the paper that

- **(A-1)** \(a_{j, \alpha}(t, x) \equiv a_{j, \alpha}(t) \) and \(a_{j, \alpha}(t) \) is real analytic in \([0, \infty)\) if \(1 \leq j \leq m \) and \(|\alpha| = j \).

From (A-1) there are a complex neighborhood \(\Omega \) of \([0, \infty) \) (in \(\mathbb{C} \)) and \(\delta_0 > 0 \) such that \([-\delta_0, \infty) \subset \Omega, \Omega \cap \{\lambda \in \mathbb{C}; \text{Re} \lambda \leq T\} \) is compact for any \(T > 0 \) and \(a_{j, \alpha}(t) \) \((1 \leq j \leq m, |\alpha| = j) \) are regarded as analytic functions defined in \(\Omega \). Put

\[
p(t, \tau, \xi) = \tau^m + \sum_{j=1}^{m} a_j^0(t, \xi) \tau^{m-j} \quad (= P_m(t, \tau, \xi)),
\]
We also assume that the following conditions are satisfied:

\(a^0_j(t, \xi) = \sum_{|\alpha|=j} a_{j,\alpha}(t) \xi^\alpha, \)

\(P_k(t, x, \tau, \xi) = \sum_{j=m-k}^m \sum_{|\alpha|=k+j-m} a_{j,\alpha}(t, x) \tau^{m-j} \xi^\alpha \quad (0 \leq k \leq m-1). \)

We also assume that the following conditions are satisfied:

(H) \(p(t, \tau, \xi) \) is hyperbolic with respect to \(\psi = (1, 0, \ldots, 0) \in \mathbb{R}^{n+1} \) for \(t \in [-\delta_0, \infty) \), i.e.,
\[p(t, \tau - i, \xi) \neq 0 \quad \text{for any} \quad (t, \tau, \xi) \in [-\delta_0, \infty) \times \mathbb{R} \times \mathbb{R}^n. \]

(A-2) \(a_{j,\alpha}(t, x) \in C^\infty([-\delta_0, \infty) \times \mathbb{R}^n) \) (\(1 \leq j \leq m, |\alpha| = j - 1 \)), and for any \(R > 0 \) there are \(C_R > 0 \) and \(A_R > 0 \) such that
\[|\partial_i^k a_{j,\alpha}(t, x)| \leq C_R A_R^k k! \]
if \(1 \leq j \leq m, |\alpha| = j - 1, k \in \mathbb{Z}_+, t \in [-\delta_0, R], x \in \mathbb{R}^n \) and \(|x| \leq R \)

(D) The characteristic roots are at most double, i.e.,
\[\partial_i^2 p(t, \tau, \xi) \neq 0 \]
if \((t, \tau, \xi) \in [0, \infty) \times \mathbb{R} \times S^{n-1} \) and \(p(t, \tau, \xi) = \partial_t p(t, \tau, \xi) = 0, \)
where \(S^{n-1} = \{ \xi \in \mathbb{R}^n; |\xi| = 1 \}. \)

Note that the assumption (A-2) is satisfied if \(a_{j,\alpha}(t, x) \) (\(1 \leq j \leq m, |\alpha| = j - 1 \)) are real analytic in \([-\delta_0, \infty) \times \mathbb{R}^n\). Let \(\Gamma(p(t, \cdot, \cdot), \vartheta) \) be the connected component of the set \(\{(\tau, \xi) \in \mathbb{R}^{n+1} \setminus \{0\}; p(t, \tau, \xi) \neq 0\} \) which contains \(\vartheta \), and define the genralized flows \(K^\pm_{(t_0, x^0)} \) for \(p(t, \tau, \xi) \) by
\[K^\pm_{(t_0, x^0)} = \{(t(s), x(s)) \in [0, \infty) \times \mathbb{R}^n; \pm s \geq 0 \} \text{ and } \{(t(s), x(s)) \} \text{ is a Lipschitz continuous curve in } [0, \infty) \times \mathbb{R}^n \text{ satisfying}
\]
\[(d/ds)(t(s), x(s)) \in \Gamma(p(t, \cdot, \cdot), \vartheta)^* \quad (\text{a.e. } s) \quad \text{and} \]
\[(t(0), x(0)) = (t_0, x^0), \]
where \((t_0, x^0) \in [0, \infty) \times \mathbb{R}^n \) and \(\Gamma^* = \{(t, x) \in \mathbb{R}^{n+1}; t\tau + x \cdot \xi \geq 0 \text{ for any } (\tau, \xi) \in \Gamma\}. \)
\(K^+_{(t_0, x^0)} \) (resp. \(K^-_{(t_0, x^0)} \)) gives an estimate of the influence domain (resp. the dependence domain) of \((t_0, x^0) \) (see Theorem 1.2 below).

To describe conditions on the lower order terms we define the polynomials \(h_j(t, \tau, \xi) \) of \((\tau, \xi) \) by
\[|p(t, \tau - i\gamma, \xi)|^2 = \sum_{j=0}^m \gamma^{2j} h_{m-j}(t, \tau, \xi) \]
for $(t, \tau, \xi) \in [0, \infty) \times \mathbb{R} \times \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}$.

Since $|p(t, \tau - i\gamma, \xi)|^2 = \prod_{j=1}^{m_{\tau}} ((\tau - \lambda_j(t, \xi))^2 + \gamma^2)$, we have

$$h_k(t, \tau, \xi) = \sum_{1 \leq j_1 < j_2 < \cdots < j_k \leq m} \prod_{l=1}^{k} ((\tau - \lambda_j(t, \xi))^2 + 2 \gamma),$$

where $p(t, \tau, \xi) = \prod_{j=1}^{m_{\tau}} (\tau - \lambda_j(t, \xi))$. Let $\mathcal{R}(\xi)$ be a set-valued function, whose values are discrete subsets of \mathbb{C}, defined for $\xi \in S^{n-1}$ satisfying the following:

For any $T > 0$ there is $N_T \in \mathbb{Z}_+$ such that

$$\#\{ \lambda \in \mathcal{R}(\xi); \Re \lambda \in [0, T]\} \leq N_T \quad \text{for } \xi \in S^{n-1}.$$

Here $\#A$ denotes the number of the elements of a set A. The following condition is corresponding to a so-called Levi condition:

(L) For any $T > 0$ and $x \in \mathbb{R}^n$ there is $C > 0$ satisfying

$$\min\{ \min_{s \in \mathcal{R}(\xi)} |t - s|, 1 \} \min \sigma(P)(t, x, \tau, \xi) | \leq Ch_{m-1}(t, \tau, \xi)^{1/2}$$

for $(t, \tau, \xi) \in [0, T] \times \mathbb{R} \times S^{n-1},$

where $\min_{s \in \mathcal{R}(\xi)} |t - s| = 1$ if $\mathcal{R}(\xi) = \emptyset$.

Here $\min \sigma(P)(t, x, \tau, \xi)$ denotes the subprincipal symbol of $P(t, x, D_t, D_x)$, i.e.,

$$\min \sigma(P)(t, x, \tau, \xi) = P_{m-1}(t, x, \tau, \xi) + \frac{i}{2} \partial_t \partial \sigma(P)(t, \tau, \xi).$$

Concerning sufficiency of C^∞ well-posedness, we have the following

Theorem 1.2. Assume that the conditions (A-1), (A-2), (H), (D) and (L) are satisfied. Then the Cauchy problem (CP) is C^∞ well-posed. Moreover, if $(t_0, x^0) \in (0, \infty) \times \mathbb{R}^n$ and $u \in C^\infty([0, \infty) \times \mathbb{R}^n)$ satisfies (CP), $u_j(x) = 0$ near $\{x \in \mathbb{R}^n; (0, x) \in K_{(t_0, x^0)}(0 \leq j \leq m-1)\}$ and $f = 0$ near $K_{(t_0, x^0)}$ (in $[0, \infty) \times \mathbb{R}^n$), then $(t_0, x^0) \notin \text{supp } u$.

Remark. (i) The condition (L) depends on the choice of a set-valued function $\mathcal{R}(\xi)$. However, if (L) is satisfied for a set-valued function $\mathcal{R}(\xi)$, then (L)$_0$, which is defined in Theorem 1.3 below, is also satisfied (see the remark of Theorem 1.3). (ii) If $m \leq 2$, then the theorem is valid under the assumptions (A-1), (H)$_0$, (D) and (L), where the condition (H)$_0$ is defined below (see [12]).
Next we shall give results on necessity for C^∞ well-posedness. Instead of the condition (H) we assume that

\[(H)' \quad p(t, \tau, \xi) \text{ is hyperbolic with respect to } \vartheta \text{ for } t \in [0, \infty).\]

Write

\[p(t, \tau, \xi) = \prod_{j=1}^{m}(\tau - \lambda_j(t, \xi)),\]
\[\mu_{j,k}(t, \xi) = (\lambda_j(t, \xi) - \lambda_k(t, \xi))^2,\]

where $\lambda_1(t, \xi) \leq \lambda_2(t, \xi) \leq \cdots \leq \lambda_m(t, \xi)$. Define $\{D_{\mu}(t, \xi)\}_{1 \leq \mu \leq M}$ by

\[\prod_{1 \leq j < k \leq m} (\tau - \mu_{j,k}(t, \xi)) = \tau^M + \sum_{l=1}^{M} (-1)^l D_l(t, \xi) \tau^{M-l},\]

where $M = \binom{m}{2}$. Note that $D_M(t, \xi)$ (\equiv $D(t, \xi)$) is the discriminant of $p(t, \tau, \xi) = 0$ in τ. Putting $D_0(t, \xi) \equiv 1$, for each $\xi \in S^{n-1}$ there is $r(\xi) \in \mathbb{Z}_+$ such that $0 \leq r(\xi) \leq M$ and

\[D_M(t, \xi) \equiv \cdots \equiv D_{M-r(\xi)+1}(t, \xi) \equiv 0 \text{ in } t,\]
\[D_{M-r(\xi)}(t, \xi) \neq 0 \text{ in } t.\]

We define

\[\mathcal{R}_0(\xi) = \{ (\text{Re } \lambda)_+; \ \lambda \in \Omega, \ D_{M-r(\xi)}(\lambda, \xi) = 0 \} \text{ for } \xi \in S^{n-1},\]

where $a_+ = \max\{0, a\}$ for $a \in \mathbb{R}$. By Lemma 2.2 below we may assume that for any $T > 0$ there is $N_T \in \mathbb{Z}_+$ satisfying

\[\#(\mathcal{R}_0(\xi) \cap [0, T]) \leq N_T \text{ for } \xi \in S^{n-1},\]

modifying Ω if necessary. Let U be a semi-algebraic set in \mathbb{R}, and let $h(t)$ be a function defined in U. For the definition of semi-algebraic sets we refer to [14], for example. We say that $h(t)$ is semi-algebraic in U if the graph $\{(t, h(t)) \in \mathbb{R}^2; t \in U\}$ is a semi-algebraic set. For basic properties of semi-algebraic functions we refer to [14] and [15].

Theorem 1.3. Assume that the condition (A-1), (A-2), (H)' and (D) are satisfied. Moreover, we assume that the $a_{j,\alpha}(t, x)$ ($1 \leq j \leq m$, $|\alpha| = j, j-1$) are semi-algebraic in $[0, \infty)$ for each $x \in \mathbb{R}^n$ when $n \geq 3$. Then the condition
for any $T > 0$ and $x \in \mathbb{R}^n$ there is $C > 0$ such that

$$\min \left\{ \min_{s \in R_0(\xi)} |t - s|, 1 \right\} \operatorname{sub} \sigma(P)(t, x, \tau, \xi) \leq Ch_{m-1}(t, \tau, \xi)^{1/2}$$

for $(t, \tau, \xi) \in [0, T] \times \mathbb{R} \times S^{n-1}$

is satisfied if the Cauchy problem (CP) is C^∞ well-posed.

Remark. (i) We directly prove that the condition $(L)_0$ is satisfied if the condition (L) is satisfied (see Lemma 4.1). (ii) If $m \leq 2$ and $n \leq 2$, then the theorem is valid under the assumptions (A-1), (H)' and (D) (see [12]). Moreover, if $m \leq 2$ and $n \geq 3$, the theorem is valid under the assumptions (A-1), (H)', and (D) and the assumption that $a_{j\alpha}(t, x)$ ($0 \leq j \leq m - 1$, $|\alpha| = j$) are semi-algebraic in $[0, \infty)$ for each $x \in \mathbb{R}^n$.

The remainder of this paper is organized as follows. §2 and §3 will be divided into subsections. In §2 we shall prove Theorem 1.2. Theorem 1.3 will be proved in §3. In §4 we shall give some remarks.

2. Proof of Theorem 1.2

In this section we shall give the proof of Theorem 1.2, deriving microlocal energy estimates. To obtain local energy estimates from microlocal ones we shall adopt ideas used in [7], although we can not directly use the results in [7]. Assume that the conditions (A-1), (A-2), (H), (D) and (L) are satisfied.

2.1. Preliminaries

Let U be an open set in \mathbb{R}^n, and let $a(t, \xi)$ be a real analytic function defined in $[-\delta, \delta] \times \overline{U}$, where $\delta > 0$. Lemma 2.2 below is a key lemma. To prove Lemma 2.2 we need the following

Lemma 2.1. Let S be a subset of $(\mathbb{Z}_+)^n$, and let $\beta^0 \in S$. Assume that there is $\beta^1 \in S$ satisfying $\beta^0 \not\subset \beta^1$, i.e., there is $k \in \mathbb{N}$ with $k \leq n$ such that $\beta^0_k > \beta^1_k$. Then there are $\nu^0 \in (\mathbb{Z}_+)^n$ and $\alpha^0 \in S$ such that $\alpha^0 \neq \beta^0$ and

$$\alpha^0 \cdot \nu^0 < \alpha \cdot \nu^0 \text{ for } \alpha \in S \setminus \{\alpha^0\}. \tag{2.1}$$

Proof. Let us prove the lemma by induction. If $n = 1$, then, choosing $\alpha^0 (= \alpha^1_0) = \min_{\alpha \in S} \alpha$ ($\in \mathbb{Z}_+$) and $\nu^0 = 1$ ($\in \mathbb{Z}_+$), we can show that the lemma is valid. Let $l \in \mathbb{N}$, and suppose that the lemma is valid when $n = l$.

Let \(n = l + 1 \). By assumption on \(S \) there are \(\beta^1 \in S \) and \(k \in \mathbb{N} \) with \(k \leq n \) such that \(\beta^0_k \neq \beta^1_k \). We may assume that \(k = n \), i.e., \(\beta^0_n = \beta^1_n \). Put

\[
S_1 = \{ \alpha \in S; \ \alpha_n = \min_{\beta \in S} \beta_n \ (\neq \beta^0_n) \}.
\]

Note that \(\beta^0 \notin S_1 \). Let us first consider the case where there is \(\alpha^0 \in S_1 \) such that \(\alpha^0 \leq \alpha \) for any \(\alpha \in S_1 \). If we chose \(\nu^0 = (1, \ldots, 1, l) \in (\mathbb{Z}_+)^n \), with \(l = \sum_{i=1}^{n-1} \alpha^0_k + 1 \), then \(\alpha^0 \neq \beta^0 \) and (2.1) is satisfied. Indeed, it is obvious that \(\alpha^0 \cdot \nu^0 < \alpha \cdot \nu^0 \) for \(\alpha \in S_1 \setminus \{ \alpha^0 \} \). For \(\alpha \in S \setminus S_1 \) we have

\[
\alpha \cdot \nu^0 \geq l\alpha^0_n + l > l\alpha_n^0 + \sum_{k=1}^{n-1} \alpha^0_k = \alpha^0 \cdot \nu^0.
\]

Next consider the case where for any \(\beta \in S_1 \) there is \(\alpha \in S_1 \) satisfying \(\beta \leq \alpha \). Fix \(\beta^0 \in S_1 \). Then there is \(\beta^1 \in S_1 \) such that \(\beta^0 \leq \beta^1 \). We write \(\alpha' = (\alpha_1, \ldots, \alpha_{n-1}) \) for \(\alpha = (\alpha_1, \ldots, \alpha_n) \), and put \(S'_1 = \{ \alpha' \in (\mathbb{Z}_+)^{n-1}; \ \alpha \in S_1 \} \). Then we have \(S'_1 \subset (\mathbb{Z}_+)^{n-1}, \ \beta^0_v, \beta^1_v \in S'_1 \) and \(\beta^0_v \leq \beta^1_v \). So, by induction assumption there are \(\tilde{\nu}^{0_v} \in (\mathbb{Z}_+)^{n-1} \) and \(\tilde{\alpha}^{0_v} \in S'_1 \) such that \(\tilde{\alpha}^{0_v} \neq \beta^0_v \) and

\[
\tilde{\alpha}^{0_v} \cdot \tilde{\nu}^{0_v} < \alpha' \cdot \tilde{\nu}^{0_v} \quad \text{for } \alpha' \in S'_1 \setminus \{ \tilde{\alpha}^{0_v} \}.
\]

Taking \(\nu^0 = (\tilde{\nu}^{0_v}, 1), \ l = \tilde{\alpha}^{0_v} \cdot \tilde{\nu}^{0_v} + 1 \) and \(\alpha^0 = (\tilde{\alpha}^{0_v}, \beta^0_n) \), we have

\[
\alpha^0 \cdot \nu^0 < \alpha \cdot \nu^0 \quad \text{for } \alpha \in S_1 \setminus \{ \alpha^0 \},
\]

\[
\alpha \cdot \nu^0 \geq l\beta^0_n + l > \alpha^0 \cdot \nu^0 \quad \text{for } \alpha \in S \setminus S_1.
\]

This proves the lemma. \(\Box \)

Put

\[
\kappa(\xi) = \int_0^\delta |a(t, \xi)|^2 \, dt \ (\geq 0).
\]

Lemma 2.2. There are \(m_0 \in \mathbb{N} \) and \(C_k > 0 \ (k \in \mathbb{Z}_+) \) such that for any \(\xi \in \overline{U} \) there are \(m(\xi) \in \mathbb{Z}_+ \) and \(a_k(\xi) \in \mathbb{R} \ (1 \leq k \leq m(\xi)) \) satisfying \(m(\xi) \leq m_0 \) and

\[
C_0^{-1} \sqrt{\kappa(\xi)} |t^{m(\xi)} + a_1(\xi)t^{m(\xi)-1} + \cdots + a_{m(\xi)}(\xi)| \leq |a(t, \xi)| \leq C_0 \sqrt{\kappa(\xi)},
\]

\[
|\partial^k_t a(t, \xi)| \leq C_k \sqrt{\kappa(\xi)} \quad (k \in \mathbb{Z}_+)
\]

for \(t \in [-\delta, \delta] \), with a modification of \(\delta \) if necessary.

Remark. (i) Let \(\xi^0 \in \overline{U} \). It is obvious that \(a(t, \xi^0) \neq 0 \) in \(t \) if and only if \(\kappa(\xi^0) \neq 0 \). So, if \(\kappa(\xi^0) \neq 0 \), then one can apply the Weierstrass preparation.
Theorem to $a(t, \xi)$ at $(t, \xi) = (0, \xi^0)$ to prove the lemma with U replaced by a neighborhood of ξ^0. (ii) $a(t, \xi)$ is regarded as an analytic function defined in a complex neighborhood of $[-\delta, \delta] \times \overline{U}$. Then from Lemma 2.2 and its proof there is $\delta' > 0$ satisfying

$$\# \{ \lambda \in \mathbb{C}; \ Re \lambda \in [-\delta - \delta', \delta + \delta'], \ |Im \lambda| \leq \delta' \ and \ a(\lambda, \xi) = 0 \} \leq m_0$$

if $\xi \in U$ and $a(t, \xi) \neq 0$ in t.

(iii) Assume that $a(t, \xi) \geq 0$ for $(t, \xi) \in [-\delta, \delta] \times \overline{U}$. Then we can prove the lemma with $\sqrt{\kappa(\xi)}$ replaced by

$$\tilde{\kappa}(\xi) = \int_0^\delta a(t, \xi) \ dt,$$

using $\tilde{\kappa}(\xi)$ instead of $\kappa(\xi)$ in the proof below.

Proof. If $\kappa(\xi) \equiv 0$, then the lemma becomes trivial. So we may assume that $\kappa(\xi) \neq 0$. Let $\xi^0 \in U$. We apply Hironaka’s resolution theorem to $\kappa(\xi)$ (see [1]). Then there are an open neighborhood $U(\xi^0)$ of ξ^0, a real analytic manifold $\tilde{U}(\xi^0)$, a proper analytic mapping $\varphi \equiv \varphi(\xi^0)$: $\tilde{U}(\xi^0) \ni \tilde{u} \mapsto \varphi(\tilde{u})(\equiv \varphi(\tilde{u}; \xi^0)) \in U(\xi^0)$ satisfying the following:

(i) φ: $\tilde{U}(\xi^0) \setminus \tilde{A} \to U(\xi^0) \setminus A$ is an isomorphism, where $A = \{ \xi \in \overline{U}; \kappa(\xi) = 0 \}$ and $\tilde{A} = \varphi^{-1}(A)$.

(ii) For each $p \in \tilde{U}(\xi^0)$ there are local analytic coordinates $X (= X^p) = (X_1, \cdots, X_n) (= (X^p_1, \cdots, X^p_n))$ centered at $p, r(p) \in \mathbb{Z}_+$ with $r(p) \leq n, s_k(p) \in \mathbb{N}$ $(1 \leq k \leq r(p))$, a neighborhood $\tilde{U}(\xi^0; p)$ of p and a real analytic function $e(X)$ in $\tilde{V}(\xi^0; p)$ such that $e(X) > 0$ for $X \in \tilde{V}(\xi^0; p)$ and

$$\kappa(\varphi(\tilde{u})) = e(X(\tilde{u})) \prod_{k=1}^{r(p)} X_k(\tilde{u}) \cdot 2^{s_k(p)}(\ \tilde{u} \in \tilde{U}(\xi^0; p),$$

where $\tilde{V}(\xi^0; p) = \{ X(\tilde{u}); \tilde{u} \in \tilde{U}(\xi^0; p) \}$ and $\prod_{k=1}^{r(p)} \cdots = 1$ if $r(p) = 0$.

Here $\tilde{V}(\xi^0; p)$ is a neighborhood of 0 in \mathbb{R}^n and we have used the fact that $\kappa(\xi) \geq 0$. Define $\hat{\varphi}(\equiv \hat{\varphi}(\xi^0, p)) : \tilde{V}(\xi^0; p) \to U(\xi^0)$ by $\hat{\varphi}(X(\tilde{u}))(= \varphi(X^p(\tilde{u}; \xi^0))) = \varphi(\tilde{u})(= \varphi(\tilde{u}; \xi^0))$ for $\tilde{u} \in \tilde{U}(\xi^0; p)$. Let $U_0(\xi^0)$ be a compact neighborhood of ξ^0 in $U(\xi^0)$, and put $U_0(\xi^0) = \varphi^{-1}(U_0(\xi^0))$. Fix $p \in U_0(\xi^0)$, and put

$$\alpha(p) = (s_1(p), \cdots, s_{r(p)}(p), 0, \cdots, 0) \in (\mathbb{Z}_+)^n.$$
We write \(a(t, \tilde{\varphi}(X)) \) as

\[
(2.3) \quad a(t, \tilde{\varphi}(X)) = \sum_{\alpha} c_\alpha(t; p) X^\alpha, \quad c_\alpha(t; p) = \frac{1}{\alpha!} \partial_X^\alpha a(t, \tilde{\varphi}(X))|_{X=0}
\]

Put

\[
S_p = \{ \alpha \in (\mathbb{Z}_+)^n; \ c_\alpha(t; p) \neq 0 \text{ in } t \}.
\]

It follows from (2.2) that for \(\nu = (\nu_1, \cdots, \nu_n) \in (\mathbb{Z}_+)^n \)

\[
(2.4) \quad \int_0^\delta |a(t, \tilde{\varphi}(X))|^2 dt|_{X_k=s^\nu_k (1 \leq k \leq n)} = O(s^{2\alpha(p)\nu}) \quad \text{as } s \downarrow 0.
\]

Suppose that there is \(\beta^1 \in S_p \) satisfying \(\alpha(p) \not\equiv \beta^1 \). Then Lemma 2.1 with \(S = S_p \cup \{ \alpha(p) \} \) and \(\beta^0 = \alpha(p) \) implies that there are \(\nu^0 \in (\mathbb{Z}_+)^n \) and \(\alpha^0 \in S_p \) such that \(\alpha^0 \not\equiv \alpha(p) \) and

\[
(2.5) \quad \alpha^0 \cdot \nu^0 < \alpha \cdot \nu^0 \quad \text{for } \alpha \in S_p \cup \{ \alpha(p) \} \setminus \{ \alpha^0 \}.
\]

(2.4) and (2.5) with \(\alpha \in S_p \) yield \(\alpha^0 \cdot \nu^0 \geq \alpha(p) \cdot \nu^0 \), which contradicts (2.5) with \(\alpha = \alpha(p) \). Therefore, for \(\alpha \in S_p \) we have \(\alpha \geq \alpha(p) \). This, together with (2.2) and (2.3), gives \(\alpha(p) \in S_p \). So we can write

\[
(2.6) \quad a(t, \tilde{\varphi}(X)) = X^{\alpha(p)}(c_{\alpha(p)}(t; p) + b(t, X; p)),
\]

where \(b(t, X; p) \) is real analytic in \((t, X)\) and satisfies \(b(t, 0; p) = 0 \). Putting

\[
a(t, X; p) = c_{\alpha(p)}(t; p) + b(t, X; p),
\]

we can apply the Weierstrass preparation theorem to \(a(t, X; p) \) at \((t, X) = (0, 0)\). Therefore, there are \(\delta(p) > 0 \), a neighborhood \(\tilde{V}(p) \) of 0 in \(\tilde{V}(\xi^0; p) \), \(m(p) \in \mathbb{Z}_+ \), a real analytic function \(c(t, X; p) \) in \([-\delta(p), \delta(p)] \times \tilde{V}(p) \) and real analytic functions \(a_k(X; p) \) in \(\tilde{V}(p) \) (\(1 \leq k \leq m(p) \)) such that \(c(t, X; p) \neq 0 \) and

\[
(2.7) \quad a(t, X; p) = c(t, X; p)(t^{m(p)} + a_1(X; p)t^{m(p)-1} + \cdots + a_{m(p)}(X; p))
\]

in \([-\delta(p), \delta(p)] \times \tilde{V}(p) \). Note that \(\delta(p), \tilde{V}(p), m(p), c(t, X; p) \) and the \(a_k(X; p) \) also depend on \(\xi^0 \). Put \(\tilde{U}(p) = (X^p)^{-1}(\tilde{V}(p)) \subset \tilde{U}(\xi^0; p) \). Since \(\tilde{U} \) is compact, there are \(N \in \mathbb{N} \) and \(\xi^j \in \tilde{U} \) (\(1 \leq j \leq N \)), such that \(\tilde{U} \subset \bigcup_{j=1}^N \tilde{U}_0(\xi^j) \). Here \(\hat{A} \) denotes the interior of \(A \) (\(\subset \mathbb{R}^n \)). Since \(\tilde{U}_0(\xi^j) \) is compact, there are \(P_j \in \mathbb{N} \) and \(p^{jk} \in \tilde{U}_0(\xi^j) \) (\(1 \leq k \leq P_j \)) such that
\[\tilde{U}_0(\xi^j) \subset \bigcup_{k=1}^{P_j} \tilde{U}(p^{j,k}) \]. Let \(1 \leq j \leq N \) and \(1 \leq k \leq P_j \). (2.2), (2.6) and (2.7) for \(p = p^{j,k} \) give, with \(C_0 > 0 \),

\[
C_0^{-1} \sqrt{\kappa(\varphi(X;\xi^j,p^{j,k}))} |p^{m(p^{j,k})} + a_1(X;p^{j,k})p^{m(p^{j,k})-1} + \cdots + a_m(p^{j,k})(X;p^{j,k})| \\
\leq |a(t,\varphi(X;\xi^j,p^{j,k}))| \leq C_0 \sqrt{\kappa(\varphi(X;\xi^j,p^{j,k}))},
\]

\[
|\partial^k a(t,\varphi(X;\xi^j,p^{j,k}))| \leq C_k \sqrt{\kappa(\varphi(X;\xi^j,p^{j,k}))} \quad (k \in \mathbb{Z}_+)
\]

for \((t,X) \in [\delta(p^{j,k}),\delta(p^{j,k})] \times \tilde{V}(p^{j,k}) \), which proves the lemma. \(\square \)

Let \(\kappa, \kappa' \in \mathbb{R} \), and let \(I \) be an interval of \(\mathbb{R} \). We say that \(a(t,x,\xi) \in S_{\rho,\delta}^\kappa(I \times T^*\mathbb{R}^n) \) if \(a(t,x,\xi) \in C^\infty(I \times T^*\mathbb{R}^n) \) and

\[
|D_i^I D_\alpha^\sigma \partial^\lambda \xi a(t,x,\xi)| \leq C_{j,\alpha,\beta} \langle \xi \rangle^{\kappa-\rho|\alpha|+|\beta|}|
\]

for \((t,x,\xi) \in I \times T^*\mathbb{R}^n \) and any \(j \in \mathbb{Z}_+ \) and \(\alpha, \beta \in (\mathbb{Z}_+)^n \), where \(\langle \xi \rangle = (1 + |\xi|^2)^{1/2} \) and \(0 \leq \rho, \delta \leq 1 \). When \(a(t,\xi;\varepsilon) \) also depends on a parameter \(\varepsilon \), we say that \(a(t,\xi;\varepsilon) \in S_{\rho,\delta}^\kappa(I \times T^*\mathbb{R}^n) \) uniformly in \(\varepsilon \) if the \(C_{j,\alpha,\beta} \) in (2.8) with \(a(t,x,\xi) \) replaced by \(a(t,\xi;\varepsilon) \) can be chosen so that they do not depend on \(\varepsilon \). Moreover, we say that a symbol \(a(t,x,\tau,\xi) \in S_{1,0}^{\kappa,\kappa'} \) if \(a(t,x,\tau,\xi) = \sum_{j=0}^{|\kappa|} a_j(t,x,\xi)\tau^j \) and the \(a_j(t,x,\xi) \) are classical symbols and \(a_j(t,x,\xi) \in S_{1,0}^{\kappa,\kappa'}(\mathbb{R} \times T^*\mathbb{R}^n) \), where \(|\kappa| \) denotes the largest integer \(\leq \kappa \) and \(S_{1,0}^{\kappa,\kappa'} = \{0\} \) if \(\kappa < 0 \). We also write \(S_{1,0}^\kappa = S_{1,0}^{\kappa,0} \) and \(S_{1,0}^{\kappa,-\infty} = \bigcap_{\kappa' \in \mathbb{R}} S_{1,0}^{\kappa,\kappa'} \).

When \(a(t,x,\tau,\xi;\varepsilon) = \sum_{j=0}^{|\kappa|} a_j(t,x,\xi;\varepsilon)\tau^j \) depends on a parameter \(\varepsilon \), we say that \(a(t,x,\tau,\xi;\varepsilon) \in S_{1,0}^{\kappa,\kappa'} \) uniformly on \(\varepsilon \) if the \(a_j(t,x,\xi;\varepsilon) \) are classical symbols and \(a_j(t,x,\xi;\varepsilon) \in S_{1,0}^{\kappa,\kappa'-j}(\mathbb{R} \times T^*\mathbb{R}^n) \) uniformly in \(\varepsilon \). From the assumption (D) there are \(\delta_0 > 0 \), \(N_0 \in \mathbb{N} \), open conic sets \(C_j \) and \(C_{j,0} \) in \(\mathbb{R}^n \setminus \{0\} \), \(r_j \in \mathbb{Z}_+ \) \((1 \leq j \leq N_0) \), \(\tilde{p}_{j,k}(t,\tau,\xi) \in S_{1,0}^2 \) \((1 \leq j \leq N_0, 1 \leq k \leq r_j) \) and \(\tilde{p}_{j,r_j+1}(t,\tau,\xi) \in S_{1,0}^{n-2r_j} \) \((1 \leq j \leq N_0) \) such that \(2r_j \leq m \), the \(\tilde{p}_{j,k}(t,\tau,\xi) \) are positively homogeneous in \((\tau,\xi) \) for \(|\xi| \geq 1/4, 3\delta_1 \leq \delta_0 \), \(\bigcup_{i=0}^{N_0} C_{i,0} \supset S_{1,0}^{n-1} \), \(C_{j,0} \subset C_j \), and

\[
p(t,\tau,\xi) = \prod_{k=1}^{r_{j+1}} \tilde{p}_{j,k}(t,\tau,\xi)
\]

for \((t,\tau,\xi) \in [-2\delta_1,4\delta_1] \times \mathbb{R} \times \overline{C}_j \) with \(|\xi| \geq 1/4 \),

\[
\{ \tau \in \mathbb{C}; \tilde{p}_{j,k}(t,\tau,\xi) = 0 \} \cap \{ \tau \in \mathbb{C}; \tilde{p}_{j,l}(t,\tau,\xi) = 0 \} = \emptyset
\]

if \(k \neq l \), \((t,\xi) \in [-2\delta_1,4\delta_1] \times \overline{C}_j \) and \(|\xi| \geq 1/4 \),

\[
\partial_{r_j} \tilde{p}_{j,r_j+1}(t,\tau,\xi) \neq 0
\]

if \((t,\tau,\xi) \in [-2\delta_1,4\delta_1] \times \mathbb{R} \times \overline{C}_j \), \(|\xi| \geq 1/4 \) and \(\tilde{p}_{j,r_j+1}(t,\tau,\xi) = 0 \)
(1 \leq j \leq N_0)$, where $\tilde{p}_{j,r_j+1}(t,\tau,\xi) = 1$ if $m - 2r_j = 0$ and $p(t,\tau,\xi) = \tilde{p}_{j,r_j+1}(t,\tau,\xi)$ if $r_j = 0$. Here $A \subset B$ means that the closure \overline{A} of A is compact and included in the interior \mathring{B} of B for a bounded subset A and a subset B of \mathbb{R}^n. For conic sets C_1 and C_2 in \mathbb{R}^n, $C_1 \subset C_2$ means that $C_1 \cap S^{n-1} \subset C_2$. Denote by $p_{j,k}(t,\tau,\xi)$ the principal symbol of $\tilde{p}_{j,k}(t,\tau,\xi)$ (1 \leq j \leq N_0, 1 \leq k \leq r_j + 1). So we have

\[\tilde{p}_{j,k}(t,\tau,\xi) = p_{j,k}(t,\tau,\xi) \quad \text{for } |\xi| \geq 1/4. \]

We assume that $p_{j,k}(t,\tau,\xi)$ (1 \leq k \leq r_j) are not strictly hyperbolic in τ for some $(t,\xi) \in [-2\delta_1, 4\delta_1] \times (\overline{C}_j \cap S^{n-1})$, and that

\[
\begin{align*}
\{ \tau \in \mathbb{C}; & \; (t,\xi) \in [-2\delta_1, 4\delta_1] \times (\overline{C}_j \cap S^{n-1}), \; p_{j,k}(t,\tau,\xi) = 0 \\
\cap & \{ \tau \in \mathbb{C}; \; (t,\xi) \in [-2\delta_1, 4\delta_1] \times (\overline{C}_j \cap S^{n-1}), \; p_{j,l}(t,\tau,\xi) = 0 \} = \emptyset
\end{align*}
\]

for 1 \leq k < l \leq r_j + 1, modifying δ_1 and C_j if necessary. Moreover, we can write

\[p_{j,k}(t,\tau,\xi) = (\tau - b_{j,k}(t,\xi))^2 - a_{j,k}(t,\xi) \quad (1 \leq k \leq r_j), \]

where $a_{j,k}(t,\xi) \geq 0$ and the $b_{j,k}(t,\xi)$ are real-valued. Choose $\Theta(t) \in \mathcal{E}^{(3/2)}(\mathbb{R})$ so that

\[\Theta(t) = \begin{cases} 1 & (t \leq 3/2), \\ 0 & (t \geq 2). \end{cases} \]

Here $f(x) \in \mathcal{E}^{(s)}(D)$ (\subset \mathcal{C}^{\infty}(D)) means that for any compact subset K of D there are positive constants C and A satisfying

\[|\partial^a f(x)| \leq CA^{(|\alpha| + s)} \quad \text{for } \alpha \in (\mathbb{Z}_+)^n \text{ and } x \in K, \]

where D is an open subset of \mathbb{R}^n and $s \geq 1$. For $h > 0$ we define $\Theta_h(t) = \Theta(t/h)$ and $\Theta_h(\xi) = \Theta_h(|\xi|)$. Choose $\rho(x) \in \mathcal{E}^{(3/2)}(\mathbb{R}^n)$ so that $\text{supp } \rho \subset \{ x \in \mathbb{R}^n; \; |x| \leq 1 \}$, $\rho(x) \geq 0$ and $\int_{\mathbb{R}^n} \rho(x) dx = 1$. We put $\rho_\varepsilon(x) = \varepsilon^{-n} \rho(\varepsilon^{-1} x)$, and define

\[a_{j,\alpha}(t,x;R,\varepsilon) = \Theta_{\delta_1}(-t) \int_{\mathbb{R}^n} \rho_\varepsilon(x-y) \Theta(|y| - R) a_{j,\alpha}(t,y) dy \]

for $(t,x) \in \mathbb{R}^{n+1}$, $R \geq 1$ and $\varepsilon \in (0,1]$ when $1 \leq j \leq m$ and $|\alpha| = j - 1$. Fix $R \geq 1$. It is easy to see that $a_{j,\alpha}(t,x;R,\varepsilon) \in \mathcal{E}^{(3/2)}(\mathbb{R}^{n+1})$, supp$a_{j,\alpha}(t,\cdot;R,\varepsilon) \subset \{ x \in \mathbb{R}^n; \; |x| \leq R + 2 + \varepsilon \}$ and for $T \geq R + 2$ there are positive constants $C(R,T)$ and A, which are independent of ε, such that

\[|\partial^a \partial^b_\gamma a_{j,\alpha}(t,x;R,\varepsilon)| \leq C(R,T) A^{k} \frac{1}{\gamma!} \frac{1}{(\varepsilon!)^{3/2}} \]

11
for \(\varepsilon \in (0, 1] \), \(k \in \mathbb{Z}_+ \), \(\beta \in (\mathbb{Z}_+)^n \), \(t \in [-3\delta_1/2, T] \) and \(x \in \mathbb{R}^n \), where 1 \(\leq j \leq m \), \(|\alpha| = j - 1 \) and \(A_T \) is the constant in (A-2). We also choose \(\rho_1(t) \in \mathcal{E}^{(3/2)}(\mathbb{R}) \) so that supp \(\rho_1 \subseteq \{t \in \mathbb{R}; 0 \leq t \leq 1\} \), \(\rho_1(t) \geq 0 \) and \(\int_{-\infty}^{\infty} \rho_1(t) \, dt = 1 \). Put \(\rho_1(t) = \varepsilon^{-1} \rho_1(\varepsilon^{-1} t) \). When \(2 \leq j \leq m \) and \(|\alpha| \leq j - 2 \), we extend \(a_{j,\alpha}(t, x) \) for \(t \leq 0 \) as \(a_{j,\alpha}(t, x) \in C^\infty(\mathbb{R}^{n+1}) \), and define

\[
a_{j,\alpha}(t, x; R, \varepsilon) = \Theta_{\delta_1}(-t) \int_{\mathbb{R}^{n+1}} \rho_1^\varepsilon(-t + s) \rho_1(x - y) \Theta(|y| - R) a_{j,\alpha}(s, y) \, dsdy
\]

for \((t, x) \in \mathbb{R}^{n+1} \). Then we have \(a_{j,\alpha}(t, x; R, \varepsilon) \in \mathcal{E}^{(3/2)}(\mathbb{R}^{n+1}) \) and supp \(a_{j,\alpha}(t, x; R, \varepsilon) \) \(\subseteq \{x \in \mathbb{R}^n; |x| \leq R + 2 + \varepsilon\} \) if \(2 \leq j \leq m \) and \(|\alpha| \leq j - 2 \). Put

\[
P_m(t, x, \tau, \xi; R, \varepsilon) = \hat{p}(t, \tau, \xi) \equiv \prod_{k=1}^{m} (\tau - \Theta_{\delta_1}(-t) \lambda_k(t, \xi)),
\]

\[
P_{m-1}(t, x, \tau, \xi; R, \varepsilon) = \Theta_{\delta_1}(t) \sum_{j=1}^{m} \sum_{|\alpha| = j-1} a_{j,\alpha}(t, x; R, \varepsilon) \tau^{m-j} \xi^\alpha
\]

\[
+ \frac{i}{2} (\Theta_{\delta_1}(t) \Theta_{\delta_1}(-t) \chi_{R,\varepsilon}(x) - 1) \partial_\tau \partial_\tau \hat{p}(t, \tau, \xi),
\]

\[
P_k(t, x, \tau, \xi; R, \varepsilon) = \Theta_{\delta_1}(t) \sum_{j=m-k}^{m} \sum_{|\alpha| = k + j - m} a_{j,\alpha}(t, x; R, \varepsilon) \tau^{m-j} \xi^\alpha
\]

\[
(0 \leq k \leq m - 2),
\]

\[
P(t, x, \tau, \xi; R, \varepsilon) = \sum_{j=0}^{m} P_{m-j}(t, x, \tau, \xi; R, \varepsilon),
\]

where \(\chi_{R,\varepsilon}(x) = \int_{\mathbb{R}^n} \rho_1(x - y) \Theta(|y| - R) \, dy \). It is easy to see that, for any \(k \in \mathbb{Z}_+ \) and \(\beta \in (\mathbb{Z}_+)^n \),

(2.11) \(\partial_t^k \partial_x^\beta a_{j,\alpha}(t, x; R, \varepsilon) \rightarrow \partial_t^k \partial_x^\beta (\Theta_{\delta_1}(-t) \Theta(|x| - R) a_{j,\alpha}(t, x)) \) uniformly in \((-\infty, 2\delta_1) \times \mathbb{R}^n \) as \(\varepsilon \downarrow 0 \),

(2.12) \(\partial_x^\beta \chi_{R,\varepsilon}(x) \rightarrow \partial_x^\beta \Theta(|x| - R) \) uniformly in \(\mathbb{R}^n \) as \(\varepsilon \downarrow 0 \),

where \(1 \leq j \leq m \) and \(|\alpha| < j \). We also put

\[
P(t, x, \tau, \xi; R) = \hat{p}(t, \tau, \xi) + \sum_{j=1}^{m} P_{m-j}(t, x, \tau, \xi; R),
\]

\[
P_{m-1}(t, x, \tau, \xi; R) = \Theta_{\delta_1}(t) \Theta_{\delta_1}(-t) \Theta(|x| - R) P_{m-1}(t, x, \tau, \xi)
\]

\[
+ \frac{i}{2} (\Theta_{\delta_1}(t) \Theta(|x| - R) - 1) \partial_\tau \partial_\tau \hat{p}(t, \tau, \xi)
\]

12
\[P_k(t, x, \tau; \xi; R) = \Theta_{\delta_1}(t)\Theta_{\delta_1}(-t)\Theta(|x| - R)P_k(t, x, \tau, \xi) \quad (0 \leq k \leq m - 2). \]

Note that

\[
P(t, x, \tau, \xi; R) = \begin{cases}
P(t, x, \tau, \xi) & \text{if } 0 \leq t \leq 3\delta_1/2 \text{ and } |x| \leq R + 3/2, \\
\rho(t, \tau, \xi) - \frac{i}{2} \partial_\tau p(t, \tau, \xi) & \text{if } t \geq 2\delta_1 \text{ or } "t \geq -3\delta_1/2 \text{ and } |x| \geq R + 2", \\
P(t, x, \tau, \xi; R, \varepsilon) & \text{if } t \geq 2\delta_1 \text{ or } "t \geq -3\delta_1/2 \text{ and } |x| \geq R + 2 + \varepsilon",
\end{cases}
\]

(2.13) \quad sub \sigma(P(\cdot; R, \varepsilon))(t, x, \tau, \xi)

\[
= \Theta_{\delta_1}(t) \int_R^n \rho_\varepsilon(x - y)\Theta(|y| - R)\sigma(P)(t, y, \tau, \xi) \, dy
\]

if \(t \geq -3\delta_1/2. \)

We factorized \(p(t, \tau, \xi) \) as (2.9). By the factorization theorem we can write

(2.14) \quad P(t, x, \tau, \xi; R, \varepsilon) = P_{j, 1}(t, x, \tau, \xi; R, \varepsilon) \circ P_{j, 2}(t, x, \tau, \xi; R, \varepsilon) \circ \\
\cdots \circ P_{j, r_j + 1}(t, x, \tau, \xi; R, \varepsilon) + R_j(t, x, \tau, \xi; R, \varepsilon)

for \(1 \leq j \leq N_0, \ (t, x, \tau, \xi) \in [-3\delta_1/2, 4\delta_1] \times \mathbb{R}^n \times \mathbb{R} \times (\mathcal{C}_j \setminus \{0\}) \) and \(\varepsilon \in (0, 1], \) where \(P_{j, k}(t, x, \tau, \xi; R, \varepsilon) \in \mathcal{S}_{1, 0}^k \) uniformly in \(\varepsilon \) (\(1 \leq k \leq r_j \)) and \(P_{j, r_j + 1}(t, x, \tau, \xi; R, \varepsilon) \in \mathcal{S}_{1, 0}^{m - 2r_j} \) uniformly in \(\varepsilon, \) the principal symbol of \(P_{j, k}(t, x, \tau, \xi; R, \varepsilon) \) is equal to \(p_{j, k}(t, \tau, \xi) \) and \(R_j(t, x, \tau, \xi; R, \varepsilon) \in \mathcal{S}_{1, 0}^{m - 1, -\infty} \) uniformly in \(\varepsilon \) (see, e.g., [8]). Here we denote by \(a(t, x, \tau, \xi) \circ b(t, x, \tau, \xi) \) the symbol of \(a(t, x, D_t, D_x)b(t, x, D_t, D_x). \) Since the \(P_{j, k}(t, x, \tau, \xi; R, \varepsilon) \) are given by using contour integrals in \(\mathbb{C}, \) “uniformly in \(\varepsilon \)” follows from this construction. Indeed, let \(m_1, m_2 \in \mathbb{N}, \) and let \(p_j(\tau) = \prod_{k=1}^{m_j}(\tau - \lambda_{j, k}) \) (\(j = 1, 2 \)) be polynomials of \(\tau. \) Assume that

\[
\bigcap_{j=1}^2 \{\lambda_{j, k}; \ 1 \leq k \leq m_j\} = \emptyset.
\]

In the construction, for a given polynomial \(f(\tau) \) of degree \(m_1 + m_2 - 1 \) we must find polynomials \(g_j(\tau) \) (\(j = 1, 2 \)) of degree \(m_j - 1 \) satisfying \(p_1(\tau)g_2(\tau) + p_2(\tau)g_1(\tau) = f(\tau). \) Choose rectifiable simple closed curves \(\gamma_j \) (\(j = 1, 2 \)) in \(\mathbb{C} \) so that \(\{\lambda_{j, k}; \ 1 \leq k \leq m_j\} \subset (\gamma_j) \) and the \(\lambda_{j, k} \) do not belong to (\(\gamma_{j+1} \)
(j = 1, 2), where (γ_j) denotes the domain enclosed by γ_j and γ_3 = γ_1. Then
g_j(τ) (j = 1, 2) are given by
\[
g_j(τ) = (2πi)^{-1} \oint_{γ_j} (p_j(τ) − p_j(λ))f(λ)((τ − λ)p_1(λ)p_2(λ))^{-1} dλ
\]
for τ ∈ C (see Lemma 5.10 of [6]). Let us consider the relation between
sub σ(P(·; R, ε))(t, x, τ, ξ) and sub σ(P_{j,k}(·; R, ε))(t, x, τ, ξ). Write
\[
P_{j,k}(t, x, τ, ξ; R, ε) ≠ \tilde{p}_{j,k}(t, τ, ξ) + q_{j,k}(t, x, τ, ξ; R, ε),
\]
\[
q_{j,k}(t, x, τ, ξ; R, ε) = q^{1}_{j,k,0}(t, x, τ, ξ; R, ε)τ + q^{1}_{j,k,1}(t, x, τ, ξ; R, ε)
\]
for 1 ≤ j ≤ N_0, 1 ≤ k ≤ r_j and t ≥ −3δ_1/2, where q^{1}_{j,k,l}(t, x, τ, ξ; R, ε) ∈ S_{1,0}^1(R × T^∗R^n) uniformly in ε (l = 0, 1), q^{0}_{j,k,l}(t, x, τ, ξ; R, ε) ∈ S_{1,0}^{-1} uniformly in ε and q^{0}_{j,k,l}(t, x, τ, ξ; R, ε) (l = 0, 1) are positively homogeneous of degree l
for |ξ| ≥ 1/4. We also write
\[
P_{j,r_j+1}(t, x, τ, ξ; R, ε) = \tilde{p}_{j,r_j+1}(t, τ, ξ) + q_{j,r_j+1}(t, x, τ, ξ; R, ε)
\]
for 1 ≤ j ≤ N_0 and t ≥ −3δ_1/2, where q_{j,r_j+1}(t, x, τ, ξ; R, ε) ∈ S_{1,0}^{m-2r_j-1}
uniformly in ε.

Lemma 2.3. For 1 ≤ j ≤ N_0 and (t, x, τ, ξ) ∈ [0, 3δ_1] × R^n × R × (C_j ∩ S^{n-1})
we have
\[
sub σ(P(·; R, ε))(t, x, τ, ξ)
\]
\[
= \sum_{k=1}^{r_j+1} sub σ(P_{j,k}(·; R, ε))(t, x, τ, ξ) \prod_{1 ≤ l ≤ r_j+1, l≠k} p_{j,l}(t, τ, ξ)
\]
\[
\quad + \frac{i}{2} \sum_{1 ≤ k, l ≤ r_j+1} \{p_{j,l}(t, τ, ξ, p_{j,k}(t, τ, ξ)) \prod_{1 ≤ μ ≤ r_j+1, μ≠k,l} p_{j,μ}(t, τ, ξ),
\]
where \{a(t, τ, ξ), b(t, τ, ξ)\} = ∂_τ a(t, τ, ξ) · ∂_ξ b(t, τ, ξ) − ∂_τ a(t, τ, ξ) · ∂_ξ b(t, τ, ξ).

Proof. We can prove by induction on r that
\[
(2.15) \quad P_1(t, x, τ, ξ) ∘ P_2(t, x, τ, ξ) ∘ \cdots ∘ P_r(t, x, τ, ξ)
\]
\[
- \left\{ \prod_{k=1}^{r} \tilde{p}_k(t, τ, ξ) + \sum_{k=1}^{r} q^0_{k}(t, x, τ, ξ) \prod_{1 ≤ l ≤ r, l≠k} \tilde{p}_l(t, τ, ξ)
\right.
\]
\[
- \sum_{1 ≤ k < l ≤ r} i∂_τ \tilde{p}_k(t, τ, ξ) · ∂_ξ \tilde{p}_l(t, τ, ξ) · \prod_{1 ≤ μ ≤ r, μ≠k,l} \tilde{p}_μ(t, τ, ξ) \right\}
\]
14
\[\in \mathfrak{S}^{m-1,-1}_{1,0}, \]

where \(m_1, \ldots, m_r \in \mathbb{N} \), \(m = m_1 + \cdots + m_r \), \(P_k(t, x, \tau, \xi) = \tilde{p}_k(t, \tau, \xi) + q_k(t, x, \tau, \xi) \in \mathfrak{S}^m_{1,0} \), \(\tilde{p}_k(t, \tau, \xi) \) and \(q_k(t, x, \tau, \xi) \) coincide with the principal symbols of \(P_k(t, x, \tau, \xi) \) and \(q_k(t, x, \tau, \xi) \) for \(|\xi| \geq 1/4 \), respectively, and \(\prod_{1 \leq \mu \leq \tau, \mu \neq k, l} \cdots = 1 \) if \(r = 2 \). Since

\[
\begin{align*}
\frac{i}{2} \partial_t \partial_\tau \prod_{k=1}^{r} \tilde{p}_k(t, \tau, \xi) &= \frac{i}{2} \sum_{k=1}^{r} \partial_t \partial_\tau \tilde{p}_k(t, \tau, \xi) \cdot \prod_{1 \leq \mu \leq \tau, \mu \neq k} \tilde{p}_\mu(t, \tau, \xi) \\
&+ \frac{i}{2} \sum_{1 \leq k < l \leq \tau} (\partial_t \tilde{p}_k(t, \tau, \xi) \cdot \partial_\tau \tilde{p}_l(t, \tau, \xi) + \partial_\tau \tilde{p}_k(t, \tau, \xi) \cdot \partial_t \tilde{p}_l(t, \tau, \xi)) \\
&\times \prod_{1 \leq \mu \leq \tau, \mu \neq k, l} \tilde{p}_\mu(t, \tau, \xi),
\end{align*}
\]

(2.15) proves the lemma.

Let \(1 \leq j \leq N_0 \), and write

\[p_{j,k}(t, \tau, \xi) = \prod_{\mu=1}^{2} (\tau - \lambda_{j,k,\mu}(t, \xi)) \quad (1 \leq k \leq r_j), \]

\[p_{j,r_j+1}(t, \tau, \xi) = \prod_{\mu=1}^{m-2r_j} (\tau - \lambda_{j,r_j+1,\mu}(t, \xi)), \]

and put

(2.16) \quad \text{if} \quad \{ \mu, \nu \} = \{ 1, 2 \}, \quad \text{for} \quad 1 \leq k \leq r_j

(2.17) \quad p_{j,r_j+1,\mu}(t, \tau, \xi) = \prod_{1 \leq \nu \leq m-2r_j, \nu \neq \mu} (\tau - \lambda_{j,r_j+1,\nu}(t, \xi))

\[\text{for} \quad 1 \leq \mu \leq m - 2r_j. \]

Moreover, we put

\[d_0 = \min \{|\lambda_{j,k,\mu}(t, \xi) - \lambda_{j,l,\nu}(t, \xi)|; 1 \leq k < l \leq r_j + 1, 1 \leq \mu \leq m_{j,k}, 1 \leq \nu \leq m_{j,l}, t \in [0, 3\delta_j] \text{ and } \xi \in \mathcal{U}_j \cap \mathfrak{S}^{m-1}\}, \]

where \(m_{j,k} = 2 \) if \(1 \leq k \leq r_j \) and \(m_{j,r_j+1} = m - 2r_j \). From (2.10) we have \(d_0 > 0 \). Let \(1 \leq k \leq r_j \). It follows from Lemma 2.3 that

(2.18) \quad \text{sub} \sigma(P_{j,k}(\cdot; R, \varepsilon))(t, x, b_{j,k}(t, \xi)) \prod_{1 \leq l \leq r_j + 1, l \neq k} p_{j,l}(t, b_{j,k}(t, \xi), \xi)
Then we have

\[
\sum_{1 \leq \ell \leq r_j + 1, \ell \neq k} \sum_{1 \leq \mu \leq r_j + 1, \mu \neq k, l} a_{j,k}(t, \xi) \prod_{1 \leq \mu \leq r_j + 1, \mu \neq k, l} p_{j,\mu}(t, b_{j,k}(t, \xi), \xi)
\]

for \(t \in [0, 3\delta_1] \). Note that

\[
\frac{\partial}{\partial r} p_{j,k}(t, \tau, \xi)|_{\tau = b_{j,k}(t, \xi)} = 0,
\]

\[
\frac{\partial}{\partial \xi} a_{j,k}(t, \xi)|_{\tau = b_{j,k}(t, \xi)} = -\frac{\partial}{\partial \xi} a_{j,k}(t, \xi).
\]

We may assume that \(d_k \equiv \inf \{|b_{j,k}(t, \xi) - \lambda_{j,l,\mu}(t, \xi)|; 1 \leq l \leq r_j + 1, 1 \leq \mu \leq m_{j,l} \text{ and } (t, \xi) \in [0, 3\delta_1] \times (\tilde{C}_j \cap \mathcal{S}^{n-1}) > 0 \), modifying \(C_j \) if necessary. Put

\[
\delta_0 = \min\{d_0, d_1, \ldots, d_{r_j}\}.
\]

Then we have

\[
\prod_{1 \leq \ell \leq r_j + 1, \ell \neq k} p_{j,l}(t, b_{j,k}(t, \xi), \xi)|^{-1} \leq \delta_0^{-m+2} |\xi|^{-m+2}
\]

for \(t \in [0, 3\delta_1] \) and \(\xi \in (\tilde{C}_j \setminus \{0\}) \). From (2.18) – (2.21) we have the following

Lemma 2.4. There are symbols \(c_{j,k,0}(t, x, \xi), c_{j,k,1}(t, \xi) \in S_{1,0}^{-1}(\mathbb{R} \times T^*\mathbb{R}^n) \)

\((1 \leq j \leq N_0, 1 \leq k \leq r_j) \) such that

\[
\sum_{1 \leq \ell \leq r_j + 1, \ell \neq k} \sum_{1 \leq \mu \leq r_j + 1, \mu \neq k, l} a_{j,k}(t, \xi) \prod_{1 \leq \mu \leq r_j + 1, \mu \neq k, l} p_{j,\mu}(t, b_{j,k}(t, \xi), \xi)
\]

\[
+ c_{j,k,0}(t, x, \xi) a_{j,k}(t, \xi) + c_{j,k,1}(t, \xi) \frac{\partial}{\partial \xi} a_{j,k}(t, \xi)
\]

for \(1 \leq j \leq N_0, 1 \leq k \leq r_j \) and \((t, \tau, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n \times \tilde{C}_j \) with \(|\xi| \geq 1\).
Let O_0 be the ring of (convergent) power series centered at $t = 0$ in one variable. We note that O_0 is a principal ideal ring. Define
\[
M_0 = \{(\beta_{j,a}(t))_{j+|a|=m-1} \in O_0^{M'} : \text{there are } C > 0 \text{ and } \delta > 0 \text{ such that} \]
\[
\min_{s \in R(\xi)} |t - s|, 1 \right| \sum_{j+|a|=m-1} \beta_{j,a}(t) \tau^j \xi^a \leq C h_{m-1}(t, \tau, \xi)^{1/2} \]
\[
\text{for } t \in [0, \delta], \tau \in R \text{ and } \xi \in S^{n-1},
\]
where $M' = \left(\frac{m+n}{m-1}\right)$. Note that each O_0-submodule of $O_0^{M'}$ is finitely generated (see, e.g., §6.3 of [5] and [3]). Therefore, there are $r_0 \in N$ and $\beta^\mu(t) \equiv (\beta^\mu_{j,a}(t))_{j+|a|=m-1} \in M_0$ $(1 \leq \mu \leq r_0)$ such that
\[
M_0 = \left\{ \sum_{\mu=1}^{r_0} c_\mu(t) \beta^\mu(t) : c_\mu(t) \in O_0 \ (1 \leq \mu \leq r_0) \right\}.
\]
By the assumption (L) there are $c_\mu(t, x) \in C^\infty([0, 3\delta_1] \times R^n) \ (1 \leq \mu \leq r_0)$ such that
\[
(2.22) \quad \text{sub } \sigma(P)(t, x, \tau, \xi) = \sum_{\mu=1}^{r_0} c_\mu(t, x) \beta^\mu(t, \tau, \xi),
\]
where $\beta^\mu(t, \tau, \xi) = \sum_{j+|a|=m-1} \beta^\mu_{j,a}(t) \tau^j \xi^a$, modifying δ_1 if necessary. Here $c_\mu(t, x) \in C^\infty([0, \infty) \times R^n) \ (1 \leq \mu \leq r_0)$ follows from the construction of the $\beta^\mu(t, \tau, \xi)$ (see [3] and the proof of Lemma 3.1 of [12]). Moreover, we may assume that
\[
\min\{ \min_{s \in R(\xi)} |t - s|, 1 \right| \beta^\mu(t, \tau, \xi) \right\} \leq C h_{m-1}(t, \tau, \xi)^{1/2}
\]
for $(t, \tau, \xi) \in [0, 3\delta_1] \times R \times S^{n-1}$. Instead of the Cauchy problem (CP) we consider
\[
(\text{CP}') \quad \left\{ \begin{array}{l}
P(t, x, D_t, D_x)u(t, x) = f(t, x) \quad \text{in } [0, \infty) \times R^n, \\
P_j^t u(t, x)|_{t=0} = 0 \quad \text{in } R^n \ (j \in Z_+), \end{array} \right.
\]
where $f(t, x) \in C^\infty([0, \infty) \times R^n)$ satisfies $P_j^t f(t, x)|_{t=0} = 0 \ (j \in Z_+)$. It is easy to see that (CP) is also solvable in $C^\infty([0, \infty) \times R^n)$ if (CP)$'$ is solvable in $C^\infty([0, \infty) \times R^n)$ for any $f(t, x) \in C^\infty([0, \infty) \times R^n)$ with $P_j^t f(t, x)|_{t=0} = 0 \ (j \in Z_+)$. Let $f(t, x) \in C^\infty([0, \infty) \times R^n)$ satisfy $P_j^t f(t, x)|_{t=0} = 0 \ (j \in Z_+)$, and let $R \geq 1$ and $\varepsilon \in (0, 1]$. Put $\hat{f}(t, x) = \begin{cases} f(t, x) & (t \geq 0), \\
0 & (t < 0). \end{cases}$ We define
\[
(2.23) \quad f_{R, \varepsilon}(t, x) = \Theta_{2\delta_1}(t) \int_{R^{n+1}} \rho^*_\varepsilon(t - s) \rho_\varepsilon(x - y) \Theta(|y| - R) \hat{f}(s, y) ds dy.
\]
Then we have \(f_{R,\varepsilon} \in \mathcal{E}^{(3/2)}(\mathbb{R}^{n+1}) \) and
\[
\text{supp} f_{R,\varepsilon} \subset \{(t, x) \in \mathbb{R}^{n+1}; \ 0 \leq t \leq 4\delta_1 \text{ and } |x| \leq R + 2 + \varepsilon\}.
\]
Moreover, we have
\[
(2.24) \quad f_{R,\varepsilon}(t, x) \to \Theta_{2\delta_1}(t)\Theta(|x| - R)\tilde{f}(t, x) \text{ in } C^\infty_0(\mathbb{R}^{n+1}) \text{ as } \varepsilon \downarrow 0.
\]
To construct solutions to \((\text{CP})^\prime\) we first consider
\[
(\text{CP})_{R,\varepsilon} \quad \begin{cases}
 P(t, x, D_t, D_x; R, \varepsilon)v_{R,\varepsilon}(t, x) = f_{R,\varepsilon}(t, x), \\
 \text{supp } v_{R,\varepsilon} \subset [0, \infty) \times \mathbb{R}^n.
\end{cases}
\]
It is well-known that \((\text{CP})_{R,\varepsilon}\) has a unique solution \(v_{R,\varepsilon}\) in \(\mathcal{E}^{(3/2)}(\mathbb{R}^{n+1})\), and that \((t_0, x^0) \notin \text{supp } v_{R,\varepsilon}\) if \((t_0, x^0) \in (0, \infty) \times \mathbb{R}^n\) and \(f_{R,\varepsilon}(t, x) = 0\) near \(K_{(t_0, x^0)} \cap [0, \infty) \times \mathbb{R}^n\) (see, e.g., [9]). We shall derive energy estimates for \(P(t, x, D_t, D_x; R, \varepsilon)\). Let \(v(t, x) \in C^\infty(\mathbb{R}; H^\infty(\mathbb{R}^n_x))\) satisfy \(v|_{t \leq 0} = 0\), and put
\[
g_{R,\varepsilon} = P(t, x, D_t, D_x; R, \varepsilon)v.
\]
Here \(H^s(\mathbb{R}^n)\) denotes the Sobolev space of order \(s\) and \(H^\infty(\mathbb{R}^n) = \bigcap_{s \in \mathbb{R}} H^s(\mathbb{R}^n)\). Note that
\[
P(t, x, D_t - i\gamma, D_x; R, \varepsilon)(e^{-\gamma t}v) = e^{-\gamma t}g_{R,\varepsilon},
\]
where \(\gamma \geq 1\). Let \(\chi_j(t) \in C^\infty(\mathbb{R})\ (j = 0, 1)\) satisfy
\[
\chi_0(t) = \begin{cases}
 1 & \text{if } -\delta_1 \leq t \leq 3\delta_1, \\
 0 & \text{if } t \leq -2\delta_1 \text{ or } t \geq 4\delta_1,
\end{cases}
\]
\[
\chi_1(t) = \begin{cases}
 1 & \text{if } t \leq 4\delta_1, \\
 0 & \text{if } t \geq 5\delta_1.
\end{cases}
\]
Then we have
\[
(2.25) \quad P(t, x, D_t - i\gamma, D_x; R, \varepsilon)(e^{-\gamma t}\chi_1(t)v) = e^{-\gamma t}\chi_1(t)g_{R,\varepsilon} + [P(t, x, D_t - i\gamma, D_x; R, \varepsilon), \chi_1(t)](e^{-\gamma t}v),
\]
where \([A, B] = AB - BA\) for operators \(A\) and \(B\). Let us estimate \(\Theta_{\gamma}(D_x)(e^{-\gamma t} \times \chi_0(t)v)\). Put
\[
C_0 = \max \{4|\lambda_j(t, \xi)|; \ t \in [-2\delta_1, 4\delta_1], \ \xi \in S^{n-1} \text{ and } 1 \leq j \leq m\}.
\]
Suppose that \(t \in [-2\delta_1, 4\delta_1] \) and \(|\xi| \leq 2\gamma \). If \(|\tau| \leq C_0\gamma \), then there is \(C_1 > 0 \), which is independent of \(\gamma \) and \(\varepsilon \in (0, 1] \), satisfying

\[
|P(t, x, \tau - i\gamma; \xi; R, \varepsilon)| \geq |\hat{p}(t, \tau - i\gamma; \xi)| - \sum_{j=1}^{m} |P_{m-j}(t, x, \tau - i\gamma; \xi; R, \varepsilon)| \\
\geq \gamma^m - C_1\gamma^{m-1}.
\]

Hereafter the constants do not depend on \(\gamma \geq 1 \) and \(\varepsilon \in (0, 1] \) unless stated. Therefore, we have

\[
|P(t, x, \tau - i\gamma; \xi; R, \varepsilon)| \geq \gamma^m/2 \quad \text{if} \quad |\tau| \leq C_0\gamma \quad \text{and} \quad \gamma \geq 2C_1.
\]

Moreover, there is \(C_2 > 0 \) satisfying

\[
|P(t, x, \tau - i\gamma; \xi; R, \varepsilon)| \geq 2^{-m}(\tau^2 + \gamma^2)^{m/2} - C_2(\tau^2 + \gamma^2)^{(m-1)/2} \\
\geq 2^{-m-1}(\tau^2 + \gamma^2)^{m/2}
\]

if \(|\tau| \geq C_0\gamma \) and \(\gamma \geq 2^{m+1}C_2 \). Therefore, there is \(c_0 > 0 \) such that

\[
|P(t, x, \tau - i\gamma; \xi; R, \varepsilon)| \geq c_0(|(\tau, \xi)|^m \\
\text{for} \quad (t, x, \tau, \xi) \in [-2\delta_1, 4\delta_1] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \quad \text{with} \quad |\xi| \leq 2\gamma,
\]

where \(\langle (\tau, \xi), \rangle = (\tau^2 + |\xi|^2)^{1/2} \). (2.26) implies that \(P(t, x, \tau - i\gamma; \xi; R, \varepsilon) \) is elliptic in \(\{ (t, x, \tau, \xi) \in [-2\delta_1, 4\delta_1] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n; |\xi| \leq 2\gamma \} \). It is obvious that, with some positive constants \(C_{j,k,\alpha,\beta} \) and \(C_\alpha \),

\[
|D^k_t D^\beta_x \partial^\alpha_{\tau} \partial^\alpha_{\xi} P(t, x, \tau - i\gamma; \xi; R, \varepsilon)^{-1}| \leq C_{j,k,\alpha,\beta} \langle (\tau, \xi) \rangle^{-m-j-|\alpha|} \\
\text{for} \quad (t, x, \tau, \xi) \in [-2\delta_1, 4\delta_1] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \quad \text{with} \quad |\xi| \leq 2\gamma,
\]

\[
|\partial^\alpha_{\tau} \Theta_\gamma(\xi)| \leq C_\alpha \langle \xi \rangle^{-|\alpha|},
\]

where \(\langle \xi \rangle = (\gamma^2 + |\xi|^2)^{1/2} \). Define, inductively,

\[
E_0(t, x, \tau, \xi; \gamma; R, \varepsilon) = \chi_0(t)\Theta_\gamma(\xi)P(t, x, \tau - i\gamma; \xi; R, \varepsilon)^{-1}, \\
E_k(t, x, \tau, \xi; \gamma; R, \varepsilon) \\
= - \sum_{\tilde{\alpha} \in (\mathbb{Z}_+)^{n+1}, |\tilde{\alpha}| + \mu = k} \frac{1}{\tilde{\alpha}!} E^{(\tilde{\alpha})}_\mu(t, x, \tau, \xi; \gamma; R, \varepsilon)P(\tilde{\alpha}_\beta)(t, x, \tau - i\gamma; \xi; R, \varepsilon) \\
\times P(t, x, \tau - i\gamma; \xi; R, \varepsilon)^{-1} \quad (k = 1, 2, \cdots),
\]

where \(f^{(\tilde{\alpha})}_{\beta}(t, x, \tau, \xi) = D^{(\tilde{\alpha})}_x \partial^\beta_{\tau} \partial^\alpha_{\xi} f(t, x, \tau, \xi) \) for \(\tilde{\alpha} = (j, \alpha) \in (\mathbb{Z}_+)^{n+1} \) and \(\tilde{\beta} = (l, \beta) \in (\mathbb{Z}_+)^{n+1} \). Then it is easy to see that, with \(C_{k,\tilde{\alpha},\tilde{\beta}} > 0 \),

\[
|E^{(\tilde{\alpha})}_{k,\tilde{\beta}}(t, x, \tau, \xi; \gamma; R, \varepsilon)| \leq C_{k,\tilde{\alpha},\tilde{\beta}} \langle (\tau, \xi) \rangle^{-m-j-|\alpha|}
\]
for \(k \in \mathbb{Z}_+ \), \(\tilde{\alpha} = (j, \alpha) \in (\mathbb{Z}_+)^{n+1} \), \(\tilde{\beta} = (l, \beta) \in (\mathbb{Z}_+)^{n+1} \) and \((t, x, \tau, \xi) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \). Define a Riemannian metric \(g_0 \) in \(\mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \) by

\[
g_0(t, x, \tau, \xi) = (dt)^2 + |dx|^2 + \langle (\tau, \xi) \rangle^{-2}(d\tau)^2 + \langle \xi \rangle^{-2}|d\xi|^2.
\]

We can easily prove that \(g_0 \) is uniformly \(\sigma \) temperate in \(\gamma \). Here we refer to [4] for the definition of \(\sigma \) temperate. And \(\text{uniformly in } \gamma \), \(\text{uniformly in } \gamma \) implies that the constants appearing in the definition do not depend on \(\gamma \), \(\cdots \). Moreover, \(\langle (\tau, \xi) \rangle_{\gamma} \) and \(\langle \xi \rangle_{\gamma} \) are uniformly \(\sigma, g_0 \) temperate in \(\gamma \). (2.27) gives

\[
E_k(t, x, \tau; \xi; R, \varepsilon) \in S((\langle (\tau, \xi) \rangle_{\gamma}^{-m}\langle \xi \rangle_{\gamma}^{-k}, g_0) \text{ uniformly in } \gamma \text{ and } \varepsilon.
\]

Here we also refer to [4] for the terminologies and notations. For \(N \in \mathbb{Z}_+ \) we put

\[
E^N(t, x, \tau; \xi; R, \varepsilon) = \sum_{k=0}^{N} E_k(t, x, \tau; \xi; R, \varepsilon)
\]

\[
\in S((\langle (\tau, \xi) \rangle_{\gamma}^{-m}, g_0) \text{ uniformly in } \gamma \text{ and } \varepsilon).
\]

Then we have

(2.28) \[
E^N(t, x, \tau, \xi; \gamma; R, \varepsilon) \circ P(t, x, \tau - i\gamma, \xi; R, \varepsilon) - \chi_0(t)\Theta_{\gamma}(\xi)
\]

\[
\in S((\langle \xi \rangle_{\gamma}^{-N-1}, g_0) \text{ uniformly in } \gamma \text{ and } \varepsilon.
\]

Since \(E^N(t, x, \tau, \xi; \gamma; R, \varepsilon) = 0 \) if \(d\chi_1(t) \neq 0 \), we have

(2.29) \[
\sigma(E^N(t, x, D_t, D_x; \gamma; R, \varepsilon)\|P(t, x, D_t - i\gamma, D_x; R, \varepsilon), \chi_1(t))
\]

\[
\in S((\langle (\tau, \xi) \rangle_{\gamma}^{-1}\langle \xi \rangle_{\gamma}^{-k}, g_0) \text{ uniformly in } \gamma \text{ and } \varepsilon
\]

for any \(k \in \mathbb{Z}_+ \), where \(\sigma(a(t, x, D_t, D_x)) = a(t, x, \tau, \xi) \). Let \(\chi_2(t) \in C_0^{\infty}(\mathbb{R}) \) satisfy

\[
\chi_2(t) = \begin{cases}
1 & \text{if } 7\delta_1/2 \leq t \leq 11\delta_1/2, \\
0 & \text{if } t \leq 3\delta_1 \text{ or } t \geq 6\delta_1.
\end{cases}
\]

Then we have

\[
[P(t, x, D_t - i\gamma, D_x; R, \varepsilon), \chi_1(t)]v = [P(\cdots), \chi_1](\chi_2(t)v).
\]

Multiplying (2.25) by \(\langle (D_t, D_x) \rangle_{\gamma}^{n}\langle D_x \rangle_{\gamma}^{l}E^N(t, x, D_t, D_x; \gamma; R, \varepsilon) \), (2.28) and (2.29) give the following
Lemma 2.5. For any \(l \in \mathbb{R} \) and any \(N \in \mathbb{N} \) there are positive constants \(C_l \) and \(C_{l,N} \) such that \(C_l \) is independent of \(N \) and

\[
\| \langle (D_t, D_x) \rangle_\gamma^m \langle D_x \rangle_\gamma^l \Theta_\gamma(D_x)(e^{-\gamma t} \chi_0(t)v) \|_{L^2(\mathbb{R}^{n+1})} \\
\leq C_l \| \langle D_x \rangle_\gamma^l (e^{-\gamma t} \chi_0(t) g_{R,\varepsilon}) \|_{L^2(\mathbb{R}^{n+1})} \\
+ C_{l,N} \{ \| \langle (D_t, D_x) \rangle_\gamma^m \langle D_x \rangle_\gamma^N (e^{-\gamma t} \chi_1(t)v) \|_{L^2(\mathbb{R}^{n+1})} \\
+ \| \langle (D_t, D_x) \rangle_\gamma^{m-1} \langle D_x \rangle_\gamma^N (e^{-\gamma t} \chi_2(t)v) \|_{L^2(\mathbb{R}^{n+1})} \}.
\]

Choose \(\chi_3(t) \in C^\infty(\mathbb{R}) \) so that

\[
\chi_3(t) = \begin{cases}
0 & \text{if } t \leq 2\delta_1, \\
1 & \text{if } t \geq 3\delta_1.
\end{cases}
\]

Then we have

\[
(2.30) \quad P(t, x, D_t, D_x; R, \varepsilon)(\chi_3(t)v) = \chi_3(t) g_{R,\varepsilon} + [P_{R,\varepsilon}, \chi_3] v,
\]

where \(P_{R,\varepsilon} = P(t, x, D_t, D_x; R, \varepsilon) \). Since \(\text{supp} \chi_3 \subset [2\delta_1, \infty) \), \((2.30) \) yields

\[
(2.31) \quad \left(p(t, D_t, D_x) - \frac{i}{2} Op(\partial_\tau p(t, \tau, \xi)) \right)(\chi_3(t)v) \\
= \chi_3(t) g_{R,\varepsilon} + \left[p(t, D_t, D_x) - \frac{i}{2} Op(\partial_\tau p(t, \tau, \xi)), \chi_3 \right] v,
\]

where \(Op(a(t, x, \tau, \xi)) = a(t, x, D_t, D_x) \). Since \(p(t, D_t, D_x) - (i/2) Op(\partial_\tau p(t, \tau, \xi)) \) has time dependent coefficients and \(D_t^k(\chi_3(t)v(t, x)) = 0 \) for \(t \leq 2\delta_1 \) and \(k \in \mathbb{Z}_+ \), we can apply Lemma 3.2 of [13] to \((2.31) \), replacing \(\langle D_x \rangle \) by \(\langle D_x \rangle_\gamma \). Therefore, there are \(C > 0 \) and \(\nu_0 > 0 \) such that

\[
(2.32) \quad \sum_{k=0}^m \| \langle D_x \rangle_\gamma^{l+m-k} D_t^k(\chi_3(t)v(t, x)) \|_{L^2(\mathbb{R}^2)}^2 \\
\leq C \left\{ \int_{2\delta_1}^t \| \langle D_x \rangle_\gamma^{l+\nu_0} \chi_3(s) g_{R,\varepsilon}(s, x) \|_{L^2(\mathbb{R}^2)}^2 \, ds \\
+ \int_{2\delta_1}^t \| \langle D_x \rangle_\gamma^{l+\nu_0} [p - (i/2) Op(\partial_\tau p), \chi_3] v(t, x) \|_{L^2(\mathbb{R}^2)}^2 \, ds \right\}
\]

for \(l \in \mathbb{R} \) and \(t \in [2\delta_1, 6\delta_1] \). Note that \(\chi_3(t) = 1 \) for \(t \geq 3\delta_1 \), \(\text{supp} \chi_3 \subset [2\delta_1, 3\delta_1] \) and \(e^{-2\gamma t} \leq e^{-2\gamma s} \) for \(s \in [2\delta_1, t] \). Multiplying \((2.32) \) by \(e^{-2\gamma t} \), we have

\[
\sum_{k=0}^m \| e^{-\gamma t} D_t^k \langle D_x \rangle_\gamma^{l+m-k} v(t, x) \|_{L^2(\mathbb{R}^2)}^2
\]
\[
\leq C' \left\{ \int_{t}^{t + \delta_1} \left\| e^{-\gamma s} \langle D_x \rangle^{l+\nu_0} g_{R,\varepsilon}(s, x) \right\|_{L^2(\mathbb{R}^n)}^2 \, ds \right. \\
+ \sum_{k=0}^{m-1} \int_{t}^{t + \delta_1} \left\| e^{-\gamma s} D^k_x \langle D_x \rangle^{l+\nu_0+m-k-1} v(t, x) \right\|_{L^2(\mathbb{R}^n)}^2 \, ds \right\}
\]
for \(t \in [3\delta_1, 6\delta_1] \), where \(C' > 0 \). This gives the following

Lemma 2.6. There is \(C > 0 \) satisfying

\[
\sum_{k=0}^{m} \int_{3\delta_1}^{6\delta_1} \left\| e^{-\gamma t} D^k_t \langle D_x \rangle^{l+\nu_0} v(t, x) \right\|_{L^2(\mathbb{R}^n)}^2 \, dt \\
\leq C' \left\{ \int_{t}^{t + \delta_1} \left\| e^{-\gamma s} \langle D_x \rangle^{l+\nu_0} g_{R,\varepsilon}(s, x) \right\|_{L^2(\mathbb{R}^n)}^2 \, ds \right. \\
+ \sum_{k=0}^{m-1} \int_{t}^{t + \delta_1} \left\| e^{-\gamma s} D^k_x \langle D_x \rangle^{l+\nu_0+m-k-1} v(t, x) \right\|_{L^2(\mathbb{R}^n)}^2 \, ds \right\}.
\]

Let \(C_{j,k} \) (\(1 \leq j \leq N_0, 1 \leq k \leq 4 \)) be open conic sets in \(\mathbb{R}^n \setminus \{0\} \) satisfying \(C_{j,0} \subset C_{j,1} \subset C_{j,2} \subset C_{j,3} \subset C_{j,4} \subset C_j \). Choose \(\Psi_j(\xi), \varphi_j(\xi) \in S^{0,1}_{1,0} \) (\(1 \leq j \leq N_0 \)) so that

\[
\Psi_j(\xi) = \begin{cases}
1 & \text{if } \xi \in C_{j,1} \text{ and } |\xi| \geq 1, \\
0 & \text{if } \xi \notin C_{j,2} \text{ or } |\xi| \leq 1/2,
\end{cases}
\]

\[
\varphi_j(\xi) = \begin{cases}
0 & \text{if } \xi \in C_{j,0} \text{ or } |\xi| \leq 1/4, \\
1 & \text{if } \xi \notin C_{j,1} \text{ and } |\xi| \geq 1/2.
\end{cases}
\]

Put \(\Psi_{j,\gamma}(\xi) = (1 - \Theta_{4\gamma/4}(\xi)) \Psi_j(\xi) \) for \(\gamma \geq 1 \). Then we have

\[(2.33) \quad P(t, x; D_t, D_x; R, \varepsilon) \Psi_{j,\gamma}(D_x)v(t, x) = \Psi_{j,\gamma}(D_x)g_{R,\varepsilon}(t, x) + [P_{R,\varepsilon}, \Psi_{j,\gamma}]v(t, x) \quad (1 \leq j \leq N_0).\]

It is obvious that \([p(t, D_t, D_x), \Psi_{j,\gamma}(D_x)] = 0\), \(\text{supp} \sigma([P_{R,\varepsilon}, \Psi_{j,\gamma}])(t, x, \tau, \xi) \subset [-2\delta_1, 2\delta_1] \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \), and there are \(C_j(t, x, \tau, \xi; R, \varepsilon, \gamma) \in S^{m-1}_{1,0,1,0} \) uniformly in \(\gamma \) and \(\varepsilon \) (\(1 \leq j \leq N_0 \)) satisfying

\[
\sigma([P_{R,\varepsilon}, \Psi_{j,\gamma}])(t, x, \tau, \xi) - C_j(t, x, \tau, \xi; R, \varepsilon, \gamma) \\
\in S^{m-1}_{1,0,-\infty} \text{ uniformly in } \gamma \text{ and } \varepsilon, \\
\text{supp } C_j(t, x, \tau, \xi; R, \varepsilon, \gamma) \\
\subset \{(t, x, \tau, \xi) \in [-2\delta_1, 2\delta_1] \times \mathbb{R}^n \times \mathbb{R} \times C_{j,2}\};
\]

22
\[|x| \leq R + 3, \ |\xi| \geq 9\gamma /8 \text{ and } \{ \xi \not\in C_{j,1} \text{ or } |\xi| \leq 3\gamma /2 \}. \]

We put
\[\Lambda_j(\xi) = \varphi_j(\xi) \log (1 + \langle \xi \rangle) \quad (1 \leq j \leq N_0). \]

For \(B \geq 1 \) we define
\[P_{BA_j}(t, x, \tau, \xi; R, \varepsilon) = e^{-BA_j(\xi)} \circ P(t, x, \tau, \xi; R, \varepsilon) e^{BA_j(\xi)}. \]

From (2.14) and (2.33) we have
\[(P_{j,1})_{BA_j}(P_{j,2})_{BA_j} \cdots (P_{j,r_j+1})_{BA_j}(e^{-BA_j(D_x)} \Psi_{j,\gamma}(D_x)v) = g_{j,R,\varepsilon,\tau,B}(t, x) \]
for \(t \in [0, 3\delta_1] \), where \((P_{j,k})_{BA_j} = (P_{j,k})_{BA_j}(t, x, D_t, D_x; R, \varepsilon) \) and
\[g_{j,R,\varepsilon,\gamma,B}(t, x) = e^{-BA_j} \Psi_{j,\gamma} g_{R,\varepsilon} - e^{-BA_j} R_j(t, x, D_t, D_x; R, \varepsilon) \Psi_{j,\gamma} v + e^{-BA_j} [P_{R,\varepsilon}, \Psi_{j,\gamma}] v. \]

In §2.2 we shall derive microlocal energy estimates for the \((P_{j,k})_{BA_j}(t, x, D_t, D_x; R, \varepsilon)\).

2.2. Microlocal energy estimates

Define \(\{ v_{j,R,\varepsilon}^k \}_{1 \leq k \leq r_j + 1} \) for \(1 \leq j \leq N_0 \) by
\[v_{j,R,\varepsilon}^{r_j+1} = e^{-BA_j(D_x)} \Psi_{j,\gamma}(D_x)v, \]
\[v_{j,R,\varepsilon}^{r_j+1-\mu} = (P_{j,r_j+2-\mu})_{BA_j} v_{j,R,\varepsilon}^{r_j+2-\mu} = (P_{j,r_j+2-\mu})_{BA_j} \cdots (P_{j,r_j+1})_{BA_j} v_{j,R,\varepsilon}^{r_j+1} \quad (1 \leq \mu \leq r_j + 1). \]

Then (2.34) gives
\[v_{j,R,\varepsilon}^0 = g_{j,R,\varepsilon,\tau,B}(t, x) \quad \text{for } t \in [0, 3\delta_1]. \]

We shall first derive microlocal energy estimates for \((P_{j,r_j+1})_{BA_j}(t, x, D_t, D_x; R, \varepsilon)\) \(1 \leq j \leq N_0 \). If \(m - 2r_j = 0 \) then \((P_{j,r_j+1})_{BA_j}(t, x, \tau, \xi; R, \varepsilon) = 1 \). So we may assume that \(m - 2r_j > 0 \). Fix \(j \in \mathbb{N} \) so that \(1 \leq j \leq N_0 \). In this subsection we omit the subscript \(j \) of \(P_{j,k}(\cdot), b_{j,k}(\cdot), \Lambda_j(\cdot), \Psi_{j,\gamma}(\cdot), C_j, r_j, \cdots \) and so on, i.e., we write \(P_{j,k}(\cdot), b_{j,k}(\cdot), \Lambda_j(\cdot), \Psi_{j,\gamma}(\cdot), C_j, r_j, \cdots \) as \(P_k(\cdot), b_k(\cdot), \Lambda(\cdot), \Psi_{\gamma}(\cdot), C, r, \cdots \), respectively. Then there is \(\tilde{q}_{r+1}(t, x, \tau, \xi; R, \varepsilon, B) \in S_{1,0}^{m-2r-1} \) uniformly in \(\varepsilon \) such that
\[(P_{r+1})_{BA}(t, x, \tau, \xi; R, \varepsilon) = \tilde{p}_{r+1}(t, \tau, \xi) + \tilde{q}_{r+1}(t, x, \tau, \xi; R, \varepsilon, B). \]
Let $\psi(\xi) \in S^m_{1,0}$ satisfy

$$\psi(\xi) = \begin{cases}
1 & \text{if } \xi \in \mathcal{C}_3 \text{ and } |\xi| \geq 1/2, \\
0 & \text{if } \xi \notin \mathcal{C}_4 \text{ or } |\xi| \leq 1/4,
\end{cases}$$

and put

$$\psi_\gamma(\xi) = (1 - \Theta_{\gamma/2}(\xi)) \psi(\xi).$$

We define

$$E_{r+1}(t; w, \gamma, l) = \sum_{\mu=1}^{m-2r} \|e^{-\gamma t} \langle D_x \rangle_\gamma^{l} p_{r+1,\mu}(t, D_t, D_x) \psi_\gamma(D_x)w \|_{L^2(R^n_x)}^2$$

for $w(t, x) \in C^\infty(R; H^\infty(R^n_x))$ with $w|_{\xi \leq 0} = 0$, $t \in [0, 3\delta_1]$, $\gamma \geq 1$ and $l \in R$, where the $p_{r+1,\mu}(t, \tau, \xi)$ are as in (2.17) with the subscript j omitted. Write

$$(f, g)_{L^2(R^n_x)} = \int_{R^n_x} f(x)g(x) \, dx.$$

A simple calculation yields

$$(2.40) \quad D_t E_{r+1}(t; w, \gamma, l) = \sum_{\mu=1}^{m-2r} \left\{ 2i \text{ Im}((D_t - \lambda_{r+1,\mu}(t, D_x)) p_{r+1,\mu} \psi_\gamma w, \\
\quad e^{-2\gamma t} \langle D_x \rangle_\gamma^{l} p_{r+1,\mu} \psi_\gamma w \|_{L^2(R^n_x)}^2 \\
\quad + 2i \gamma \|e^{-\gamma t} \langle D_x \rangle_\gamma^{l} p_{r+1,\mu} \psi_\gamma w \|_{L^2(R^n_x)}^2 \right\}$$

for $t \in [0, 3\delta_1]$. Note that, for example,

$$\begin{align*}
(\tau - \lambda_{r+1,\mu}(t, \xi)) \circ p_{r+1,\mu}(t, \tau, \xi) \psi_\gamma(\xi) \\
= (\tau - \lambda_{r+1,\mu}(t, \xi)(1 - \Theta(4|\xi|))) \circ p_{r+1,\mu}(t, \tau, \xi) \psi_\gamma(\xi), \\
\lambda_{r+1,\mu}(t, \xi)(1 - \Theta(4|\xi|)) \in S^1_{1,0}.
\end{align*}$$

We can write

$$p_{r+1}(t, \tau, \xi) - i\partial_t p_{r+1,\mu}(t, \tau, \xi) = (P_{r+1})_{BA}(t, \tau, \xi; R, \varepsilon) - q_{r+1,\mu}(t, \tau, \xi; R, \varepsilon; B),$$

$$q_{r+1,\mu}(t, \tau, \xi; R, \varepsilon; B) = (q_{r+1})_{BA}(t, \tau, \xi; R, \varepsilon; B) - i\partial_t p_{r+1,\mu}(t, \tau, \xi)$$

for $(t, \xi) \in [0, 3\delta_1] \times \overline{C}$ with $|\xi| \geq 1/4$ and $1 \leq \mu \leq m - 2r$, where

$$q_{r+1,\mu}(t, \tau, \xi; R, \varepsilon; B) \in S^m_{1,0} - 2r - 1 \text{ (uniformly in } \varepsilon).$$

Then we have

$$(\tau - \lambda_{r+1,\mu}(t, \xi)) \circ p_{r+1,\mu}(t, \tau, \xi)$$

for $(t, \xi) \in [0, 3\delta_1] \times \overline{C}$ with $|\xi| \geq 1/4$ and $1 \leq \mu \leq m - 2r$, where

$$q_{r+1,\mu}(t, \tau, \xi; R, \varepsilon; B) \in S^m_{1,0} - 2r - 1 \text{ (uniformly in } \varepsilon).$$

Then we have

$$(\tau - \lambda_{r+1,\mu}(t, \xi)) \circ p_{r+1,\mu}(t, \tau, \xi)$$
\[(P_{r+1})_{BA}(t, x, \tau, \xi; R, \varepsilon) - q_{r+1, \mu}(t, x, \tau, \xi; R, \varepsilon; B) \]

for \((t, \xi) \in [0, 3\delta_1] \times \overline{C}\) with \(|\xi| \geq 1/4\) and \(1 \leq \mu \leq m - 2r\). This, together with (2.40), yields

\[(2.41) \quad \partial_t \mathcal{E}_{r+1}(t; w, \gamma, l) \leq \sum_{\mu = 1}^{m-2r} \left\{ \gamma^{-1} \| e^{-\gamma t} (D_x)^{l_1} (P_{r+1})_{BA}(t, x, D_t, D_x; R, \varepsilon) \psi_j (D_x) w \|_{L^2(R^n)}^2 \right. \]

\[- \gamma \| e^{-\gamma t} (D_x)^{l_2} p_{r+1, \mu} \psi_j w \|_{L^2(R^n)}^2 \]

\[+ \gamma^{-1} \| e^{-\gamma t} (D_x)^{l_3} q_{r+1, \mu}(t, x, D_t, D_x; R, \varepsilon, B) \psi_j w \|_{L^2(R^n)}^2 \right\} \]

for \(t \in [0, 3\delta_1].\) Since \(p_{r+1}(t, \tau, \xi)\) is strictly hyperbolic in \(\tau\) for \((t, \xi) \in [0, 3\delta_1] \times \overline{C},\) it follows from Lagrange’s interpolation theorem that there is \(C(B) > 0\) such that

\[(2.42) \quad \sum_{\mu = 1}^{m-2r} \| e^{-\gamma t} (D_x)^{l_1} q_{r+1, \mu}(t, x, D_t, D_x; R, \varepsilon, B) \psi_j w \|_{L^2(R^n)}^2 \]

\[\leq C(B) \sum_{\mu = 1}^{m-2r} \| e^{-\gamma t} (D_x)^{l_2} p_{r+1, \mu} \psi_j w \|_{L^2(R^n)}^2 \]

for \(l \in \mathbb{R}, t \in [0, 3\delta_1]\) and \(w(t, x) \in C^\infty(\mathbb{R}; H^\infty(R^n))\) with \(w|_{t \leq 0} = 0,\) if \(\gamma \geq \gamma_{r+1}(B).\) So we have

\[\mathcal{E}_{r+1}(t; w, \gamma, l) \leq (m - 2r)\gamma^{-1} \int_0^t \| e^{-\gamma s} (D_x)^{l_1} (P_{r+1})_{BA} \psi_j w |_{t=s} \|_{L^2(R^n)}^2 \, ds \]

for \(l \in \mathbb{R}, t \in [0, 3\delta_1]\) and \(w(t, x) \in C^\infty(\mathbb{R}; H^\infty(R^n))\) with \(w|_{t \leq 0} = 0,\) if \(\gamma \geq \gamma_{r+1}(B).\) By Lagrange’s interpolation theorem \(\tau^{\nu}(\xi)^{l_1} \psi_j(\xi)\) \((\nu + l = m - 2r - 1)\) can be represented by linear combinations of \(\{p_{r+1, \mu}(t, \tau, \xi) \psi(\xi)\}_{1 \leq \mu \leq m-2r}\) with symbols of \((t, \xi) \in S^0_{1/0}(\mathbb{R} \times T^*\mathbb{R})\) for \(t \in [0, 3\delta_1].\) Therefore, there is \(C, C' > 0\) satisfying

\[(2.43) \quad \sum_{\mu = 0}^{m-2r-1} \| e^{-\gamma t} D_t^\mu (D_x)^{l_1+2r-1-\mu} \psi_j w \|_{L^2(R^n)}^2 \leq C' \mathcal{E}_{r+1}(t; w, \gamma, l) \]

25
\[\leq C \gamma^{-1} \int_0^t \| e^{-\gamma s} \langle D_x \rangle_\gamma^{l} (P_{r+1})_{BA} \psi, v \|_{L^2(R^d_\gamma)}^2 ds \]

for \(l \in \mathbb{R}, \ t \in [0, 3\delta_1] \) and \(w(t, x) \in C^\infty(\mathbb{R}; H^\infty(R^d_\gamma)) \) with \(w|_{t \leq 0} = 0 \), if \(\gamma \geq \gamma_{r+1}(B) \). Noting that \(\psi_\gamma(\xi) \Psi_\gamma(\xi) = \Psi_\gamma(\xi) \), we have

\[(P_{r+1})_{BA} (\psi_\gamma v_{r+1}^{l+1}) = \psi_\gamma v_{r,\varepsilon}^l + (1 - \psi_\gamma) (P_{r+1})_{BA} (e^{-BA} \Psi_\gamma v). \]

Since \(\text{supp} \Psi_\gamma(\xi) \cap \text{supp}(1 - \psi_\gamma(\xi)) = \emptyset \), there is \(R_{r+1}(t, x, \tau, \xi; R, \varepsilon, B, \gamma) \in S^{m-2r-1,-\infty}_{1,0} \) uniformly in \(\gamma \) and \(\varepsilon \) satisfying

\[(2.44) \quad (P_{r+1})_{BA} (\psi_\gamma v_{r+1}^{l+1}) = \psi_\gamma v_{r,\varepsilon}^l + R_{r+1}(t, x, D_t, D_x; R, \varepsilon, B, \gamma)\psi_\gamma v. \]

(2.43) with \(w = v_{r,\varepsilon}^l \) and (2.44) yield

\[\sum_{\mu = 0}^{m-2r-1} \| e^{-\gamma t} D_t^{\mu} (D_x v_{l+m-2r-1+\mu}^{l+1} v_{r,\varepsilon}^l) \|^2_{L^2(R^d_\gamma)} \]

\[\leq C \gamma^{-1} \int_0^t \| e^{-\gamma s} (D_x)_{\gamma}^l \psi_\gamma v_{r,\varepsilon}^l (s, x) \|^2_{L^2(R^d_\gamma)} ds \]

\[+ \ C_{l,N}(B) \gamma^{-1} \sum_{\mu = 0}^{m-2r-1} \int_0^t \| e^{-\gamma s} D_t^{\mu} (\langle D_x \rangle_{\gamma}^{l+m-\mu - \varepsilon} v) \|^2_{L^2(R^d_\gamma)} ds \]

for \(B \geq 1, \ l \in \mathbb{R}, \ t \in [0, 3\delta_1] \) and \(\gamma \geq \gamma_{r+1}(B) \), where \(C > 0, \ C_{l,N}(B) > 0 \) and \(N \in \mathbb{N} \). From (2.39) and (2.44) we have

\[D_t^{l+m-2r} \psi_\gamma v_{r,\varepsilon}^{l+1} = (\tilde{p}_{r+1}(t, D_t, D_x) - D_t^{l+m-2r}) \psi_\gamma v_{r,\varepsilon}^{l+1} \]

\[- \tilde{q}_{r+1}(t, x, D_t, D_x; R, \varepsilon, B) \psi_\gamma v_{r,\varepsilon}^{l+1} \]

\[+ R_{r+1}(t, x, D_t, D_x; R, \varepsilon, B) \psi_\gamma v + \psi_\gamma v_{r,\varepsilon}^l. \]

We can prove that there are \(d_{r+1, \nu, l}(t, x, \tau, \xi; R, \varepsilon, B) \in S^{m-2r-1,l-2-\nu}_{1,0} \) uniformly in \(\varepsilon \), \(d_{r+1, \nu, l}(t, x, \tau, \xi; R, \varepsilon, B) \in S^{m+2r,l+\nu}_{1,0} \) uniformly in \(\varepsilon \) and \(R_{r+1, \nu, l}(t, x, \tau, \xi; R, \varepsilon, B, \gamma) \in S^{m-2r-1,-\infty}_{1,0} \) uniformly in \(\gamma \) and \(\varepsilon \) satisfying

\[(2.47) \quad D_t^{l+m-2r} \psi_\gamma v_{r,\varepsilon}^{l+1} = d_{r+1, \nu, l}(t, x, D_t, D_x; R, \varepsilon, B) \psi_\gamma v_{r,\varepsilon}^{l+1} \]

\[+ d_{r+1, \nu, l}(t, x, D_t, D_x; R, \varepsilon, B) \psi_\gamma v_{r,\varepsilon}^{l+1} \]

\[+ R_{r+1, \nu, l}(t, x, D_t, D_x; R, \varepsilon, B, \gamma) \psi_\gamma v \]

for \(\nu \geq m-2r \) and \(l \in \mathbb{R} \), by induction on \(\nu \). Indeed, from (2.46) we can see that (2.47) is valid for \(\nu = m-2r \). Let \(\kappa \in \mathbb{N} \) with \(\nu \geq m-2r \), and suppose that (2.47) is valid for \(\nu = \kappa \). Then we have

\[(2.48) \quad D_t^{l+1} \langle D_x \rangle_{\gamma}^{l-\kappa+1} \psi_\gamma v_{r,\varepsilon}^{l+1} = d_{r+1, \nu, l-1}^0 (D_t \psi_\gamma v_{r,\varepsilon}^{l+1} + [D_t, d_{r+1, \nu, l-1}] \psi_\gamma v_{r,\varepsilon}^{l+1}) \]

26
where \(d_{r+1,\kappa,l-1}^0 = d_{r+1,\kappa,l-1}^0(t, x, D_t, D_x; R, \varepsilon, B), \ldots \) and so on. Note that \(d_{r+1,m-2r,m-2r}^0(t, x, \tau, \xi; R, \varepsilon, B) = 1. \) It follows from (2.47) with \(\nu = l = m-2r \) and (2.48) that

\[
D_t^{\kappa+1} \langle D_x \rangle_{\gamma}^{l-\kappa-1} \psi_\gamma v^r_{R,\varepsilon} + D_t^{\mu+1} \psi_\gamma v^r_{R,\varepsilon} + R_{r+1,m-2r,m-2r} \psi_\gamma v,
\]

\[
D_t^{\kappa+1} \langle D_x \rangle_{\gamma}^{l-\kappa-1} \psi_\gamma v^r_{R,\varepsilon} = d_{r+1,\kappa,l-1}^0 \langle D_x \rangle_{\gamma}^{l-\kappa-1} \psi_\gamma v^r_{R,\varepsilon} + \sum_{\mu=0}^{m-2r-2} d_{r+1,\kappa,l-1,\mu}^0 D_t^{\mu+1} \psi_\gamma v^r_{R,\varepsilon} + D_t d_{r+1,\kappa,l-1,\mu}^1 \psi_\gamma v^r_{R,\varepsilon} + D_t R_{r+1,\kappa,l-1,\mu} \psi_\gamma v,
\]

where \(d_{r+1,\kappa,l-1}^0(t, x, \tau, \xi; R, \varepsilon, B) = \sum_{\mu=0}^{m-2r-1} d_{r+1,\kappa,l-1,\mu}^0(t, x, \xi; R, \varepsilon, B) \tau^\mu \) and \(d_{r+1,\kappa,l-1,\mu}^0 = d_{r+1,\kappa,l-1,\mu}^0(t, x, D_x; R, \varepsilon, B). \) This implies that (2.47) is valid for \(\nu = \kappa + 1. \) It follows from (2.36) and (2.47) that

\[
\sum_{\mu=0}^{m} \| e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{l-\mu} e^{-B A} \Psi_\gamma v \|_{L^2(\mathbb{R}^2)}^2 \leq C_l(B) \left\{ \sum_{\mu=0}^{m-2r-1} \| e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{l-\mu} e^{-B A} \Psi_\gamma v^r_{R,\varepsilon} \|_{L^2(\mathbb{R}^2)}^2 \right. + \left. \sum_{\mu=0}^{2r} \| e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{l-m+2r-\mu} \psi_\gamma v^r_{R,\varepsilon} \|_{L^2(\mathbb{R}^2)}^2 \right\} + C_{l,N}(B) \sum_{\mu=0}^{m-1} \| e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{l-N-\mu} \psi_\gamma v \|_{L^2(\mathbb{R}^2)}^2,
\]

where \(B \geq 1, \ l, N \in \mathbb{N} \) and \(C_l(B) \) and \(C_{l,N}(B) \) are positive constants. Therefore, this, together with (2.45) gives the following

Lemma 2.7. There are positive constants \(C_l(B) \) and \(C_{l,N}(B) \) (\(l \in \mathbb{R}, \ B \geq 1, \ N \in \mathbb{N} \)) such that

\[
\sum_{\mu=0}^{m} \int_0^t \| e^{-\sigma s} D_t^\mu \langle D_x \rangle_{\gamma}^{l-\mu} e^{-B A} \Psi_\gamma v \|_{L^2(\mathbb{R}^2)}^2 \; ds \leq C_l(B) \sum_{\mu=0}^{2r} \int_0^t \| e^{-\sigma s} D_t^\mu \langle D_x \rangle_{\gamma}^{l-m+2r+1-\mu} \psi_\gamma v^r_{R,\varepsilon} \|_{L^2(\mathbb{R}^2)}^2 \; ds + C_{l,N}(B) \sum_{\mu=0}^{m-1} \int_0^t \| e^{-\sigma s} D_t^\mu \langle D_x \rangle_{\gamma}^{l-N-\mu} \psi_\gamma v \|_{L^2(\mathbb{R}^2)}^2 \; ds
\]

27
for $B \geq 1$, $l \in \mathbb{R}$, $N \in \mathbb{N}$, $t \in [0, 3\delta_1]$ and $\gamma \geq \gamma_{r+1}(B)$.

Remark. The lemma is well-known since $P_{r+1}(t, x, \tau, \xi; R, \varepsilon)$ is strictly hyperbolic in τ for $(t, x, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n \times (\overline{C} \setminus \{0\})$. To make the paper readable we gave the proof of the lemma.

Next we fix $k \in \mathbb{N}$ so that $1 \leq k \leq r$. Recall that

$$P_k(t, x, \tau, \xi; R, \varepsilon) = (\tau - b_k(t, \xi))^2 - a_k(t, \xi) + q_k(t, x, \tau, \xi; R, \varepsilon),$$

$$q_k(t, x, \tau, \xi; R, \varepsilon) = q_{k,0}^1(t, x, \xi; R, \varepsilon)\tau + q_{k,1}^1(t, x, \xi; R, \varepsilon) + q_k^0(t, x, \tau, \xi; R, \varepsilon)$$

for $(t, x, \tau, \xi) \in [-3\delta_1/2, 4\delta_1] \times \mathbb{R}^n \times \mathbb{R} \times \overline{C}$ with $|\xi| \geq 1/4$, where $q_{k,\mu}^0(t, x, \xi; R, \varepsilon) \in S^{1,0}_k(\mathbb{R} \times T^*\mathbb{R}^n)$ uniformly in ε ($\mu = 0, 1$) and $q_k^0(t, x, \tau, \xi; R, \varepsilon) \in S^{1,0}_1$ uniformly in ε. Therefore, there is $\hat{q}_k(t, x, \tau, \xi; R, \varepsilon, B) \in S^{1,0}_1$ uniformly in ε such that

$$(2.49) \quad (P_k)_{BA}(t, x, \tau, \xi; R, \varepsilon) = \hat{p}_k(t, \tau, \xi) + \hat{q}_k(t, x, \tau, \xi; R, \varepsilon, B).$$

Note that

$$(2.50) \quad \hat{p}_k(t, \tau, \xi) = (\tau - b_k(t, \xi))^2 - a_k(t, \xi),$$

$$(2.51) \quad \hat{q}_k(t, x, \tau, \xi; R, \varepsilon, B) = q_{k,0}^1(t, x, \xi; R, \varepsilon)\tau + q_{k,1}^1(t, x, \xi; R, \varepsilon) + q_k^0(t, x, \tau, \xi; R, \varepsilon, B)$$

for $(t, x, \tau, \xi) \in [-3\delta_1/2, 4\delta_1] \times \mathbb{R}^n \times \mathbb{R} \times \overline{C}$ with $|\xi| \geq 1/4$, where $q_{k,\mu}^0(t, x, \xi; R, \varepsilon) \in S^{1,0}_k(\mathbb{R} \times T^*\mathbb{R}^n)$ uniformly in ε. As $a_k(t, \xi)$ is real analytic in $[-3\delta_1/2, 4\delta_1] \times (\overline{C} \setminus \{0\})$ and $a_k(t, \xi) \geq 0$, we can apply Lemma 2.2 (and its remark). Put

$$\tilde{\kappa}_k(\xi) = \int_0^{3\delta_1} a_k(t, \xi) \, dt \quad \text{for} \quad \xi \in \overline{C}.$$

Then there are $m_0 \in \mathbb{N}$ and $C > 0$ such that for any $\xi \in \overline{C} \setminus \{0\}$ there are $m_k(\xi) \in \mathbb{Z}_+$ and $a_{k,\mu}(\xi) \in \mathbb{R}$ ($1 \leq \mu \leq m_k(\xi)$) satisfying $m_k(\xi) \leq m_0$ and

$$(2.52) \quad C^{-1}\tilde{\kappa}_k(\xi)^{m_k(\xi)} + a_{k,1}(\xi)t^{m_k(\xi)-1} + \cdots + a_{k,m_k(\xi)}(\xi)|\xi|$$

$$\leq a_k(t, \xi) \leq C\tilde{\kappa}_k(\xi),$$

$$(2.53) \quad |\partial_\xi a_k(t, \xi)| \leq C\tilde{\kappa}_k(\xi)$$

for $t \in [0, 3\delta_1]$, with a modification of δ_1 if necessary. Let $\tilde{\Psi}(\xi)$ be a symbol in $S^0_{1,0}$ satisfying $0 \leq \tilde{\Psi}(\xi) \leq 1$ and

$$\tilde{\Psi}(\xi) = \begin{cases}
1 & \text{if } \xi \in \mathcal{C}_4 \text{ and } |\xi| \geq 1/2, \\
0 & \text{if } \xi \notin \mathcal{C} \text{ or } |\xi| \leq 1/4,
\end{cases}$$

and define

$$[\xi]_k = \sqrt{\tilde{\kappa}_k(\xi)\tilde{\Psi}(\xi) + 1} \quad \text{for } \xi \in \mathbb{R}^n.$$
Lemma 2.8. For $s \in \mathbb{R}$ and $\alpha \in (\mathbb{Z}_+)^n$ there is $C_{s,\alpha}$ satisfying

\begin{equation}
(2.54) \quad |\partial^\alpha \| \xi \|_k^2 | \leq C_{s,\alpha} \| \xi \|_k^{s-|\alpha|}.
\end{equation}

\textbf{Proof.} It is obvious that $\| \xi \|_k^2 \in S_{1,0}^2$, $\| \xi \|_k^2 \geq 1$ (≥ 0) and $|\partial^\alpha \| \xi \|_k^2 | \leq C_{|\alpha|}(\xi)^{2-|\alpha|}$. Fix $\mu \in \mathbb{N}$ with $1 \leq \mu \leq n$, and put $f(\xi) = \| \xi \|_k^2$ and $\epsilon_\mu = (\delta_{\mu,1}, \cdots, \delta_{\mu,n}) \in \mathbb{R}^n$, where $\delta_{\mu,l} = 0$ if $\mu \neq l$ and $\delta_{\mu,\mu} = 1$. Then for any $h \in \mathbb{R}$ there is $\theta \in (0, 1)$ satisfying

\[f(\xi + h\epsilon_\mu) = f(\xi) + h\partial_{\epsilon_\mu} f(\xi) + \frac{h^2}{2} \partial^2_{\epsilon_\mu} f(\xi + \theta h\epsilon_\mu) \geq 1 \quad (\geq 0). \]

If $\pm h > 0$, we have

\[+\partial_{\epsilon_\mu} f(\xi) \leq f(\xi)/|h| + |h|\partial^2_{\epsilon_\mu} f(\xi + \theta h\epsilon_\mu)/2. \]

Therefore, taking $|h| = \sqrt{2f(\xi)/C_2}$ ($= \sqrt{2/C_2} \| \xi \|_k$) we have

\[|\partial_{\epsilon_\mu} \| \xi \|_k^2 | \leq \sqrt{2/C_2} \| \xi \|_k. \]

If $|\alpha| = 1$, then we have

\[|\partial^\alpha \| \xi \|_k^2 | = |\partial^\alpha (\| \xi \|_k^2)^{s/|\alpha|}| \leq |s| \sqrt{2/C_2} \| \xi \|_k^{s-1}. \]

Since $\| \xi \|_k^2 \leq C_0(\xi)^2$ and $|\partial^\alpha \| \xi \|_k^2 | \leq C_{|\alpha|}(\xi)^{2-|\alpha|} \leq C_{|\alpha|}C_0^{0-2-|\alpha|} \| \xi \|_k^{2-|\alpha|}$ if $|\alpha| \geq 2$, there are $C'_\alpha > 0 \quad (\alpha \in (\mathbb{Z}_+)^n)$ satisfying

\[|\partial^\alpha \| \xi \|_k^2 | \leq C'_\alpha \| \xi \|_k^{2-|\alpha|} \quad (\alpha \in (\mathbb{Z}_+)^n). \]

Noting that

\[\partial^\alpha \partial_{\epsilon_\mu} \| \xi \|_k^2 = (s/2)\partial^\alpha \{ (\| \xi \|_k^2)^{s/|\alpha|} \partial_{\epsilon_\mu} \| \xi \|_k^2 \}, \]

induction on $|\alpha|$ proves the lemma. \qed

We may assume that $m_0 \geq 2$. Define

\[\rho_0 = 2/(m_0 + 2), \]
\[w_k(t, \xi) = a_k(t, \xi) \bar{\Psi}(\xi) + \| \xi \|_k^{2\rho_0}, \]
\[W_{k,0}(t, \xi) = [\| \xi \|_k^{2\rho_0} w_k(t, \xi)^{-1/2} + 1, \]
\[W_{k,1}(t, \xi) = (\sum_{\mu=1}^{r_0} \bar{\Psi}(\xi)^2 |\beta^\mu(t, b_k(t, \xi), \xi)|^2|\xi|^{-2m + 4} + \| \xi \|_k^{2\rho_0})^{1/2} w_k(t, \xi)^{-1/2} + 1, \]

29
\[
W_{k,2,1}(t, \xi) = (\tilde{\Psi}(\xi)^4 |\partial_t a_k(t, \xi)|^2 + \| \xi \|_{k}^{2\rho})^{1/2} / w_k(t, \xi),
\]
\[
W_{k,2,2}(t, \xi) = (\tilde{\Psi}(\xi)^4 |\partial_l \nabla \xi a_k(t, \xi)|^2 + \| \xi \|_{k}^{2\rho})^{1/2} (\tilde{\Psi}(\xi)^4 |\nabla \xi a_k(t, \xi)|^2 + \| \xi \|_{k}^{2\rho})^{-1/2},
\]
\[
W_{k,2}(t, \xi) = W_{k,2,1}(t, \xi) + W_{k,2,2}(t, \xi) + 1
\]
for \((t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n\), where the \(\beta^\rho(t, \tau, \xi)\) are as in (2.22) and \(\nabla \xi f(\xi) = (\partial_{\xi_1} f(\xi), \cdots, \partial_{\xi_n} f(\xi))\). We also define the Riemannian metric \(g_{k,\rho}(x, \xi)\) on \(\mathbb{R}^{2n}\) by
\[
g_{k,\rho}(x, \xi)(y, \eta) = |y|^2 + \| \xi \|_{k}^{-2\rho} |\eta|^2,
\]
where \(0 < \rho \leq \rho_0\).

Lemma 2.9. Let \(0 < \rho \leq \rho_0\). (i) \(g_{k,\rho}\) is slowly varying and \(\| \xi \|_{k}\) is \(g_{k,\rho}\) continuous, i.e., there are positive constants \(c\) and \(C\) such that
\[
g_{k,\rho}(x+y, \xi+\eta)(X) \leq Cg_{k,\rho}(x, \xi)(X),
\]
\[
C^{-1} \| \xi \|_{k} \leq \| \xi + \eta \|_{k} \leq C \| \xi \|_{k}
\]
if \((x, \xi), (y, \eta), X \in \mathbb{R}^{2n}\) and \(g_{k,\rho}(x, \xi)(y, \eta) \leq c\). (ii)
\[
g_{k,\rho}(x, \xi)(y, \eta) \left(\equiv \sup_X |\sigma((y, \eta), X)|^2 / g_{k,\rho}(x, \xi)(X) \right) = \| \xi \|_{k}^{2\rho} |y|^2 + |\eta|^2,
\]
where \(\sigma\) denotes the symplectic form on \(\mathbb{R}^{2n}\). Moreover,
\[
h_{k,\rho}(x, \xi) \left(\equiv \left\{ \sup_X g_{k,\rho}(x, \xi)(X) / g_{k,\rho}(x, \xi)(X) \right\}^{1/2} \right) = \| \xi \|_{k}^{-\rho} \leq 1.
\]
(iii) \(g_{k,\rho}\) is \(\sigma\) temperate and \(\| \xi \|_{k}\) is \(\sigma, g_{k,\rho}\) temperate.

Proof. By Lemma 2.8 we have, with \(C > 0\),
\[
| \| \xi + \eta \|_{k} - \| \xi \|_{k} | = |\eta| \cdot \int_{0}^{1} \nabla \xi \| \xi + \theta \eta \|_{k} d\theta | \leq C|\eta|.
\]
Let \(c > 0\), and assume that \(g_{k,\rho}(x, \xi)(y, \eta) \leq c\). Then we have \(|\eta| \leq \sqrt{c} \| \xi \|_{k} \) \((\leq \sqrt{c} \| \xi \|_{k})\). So, choosing \(c \leq c_0 \equiv (4C^2)^{-1}\), we have
\[
\| \xi \|_{k} / 2 \leq \| \xi + \eta \|_{k} \leq 3 \| \xi \|_{k} / 2.
\]
Since \(2^{2\rho} \leq 2\) and \((2/3)^{2\rho} \geq 2/3\), we have
\[
2g_{k,\rho}(x, \xi)(X) / 3 \leq g_{k,\rho}(x+y, \xi+\eta)(X) \leq 2g_{k,\rho}(x, \xi)(X).
\]
This proves the assertion (i). The assertion (ii) is obvious. \((2.55)\) gives
\[
\|\xi + \eta\|_k \leq \|\xi\|_k + C|\eta| \leq C' \|\xi\|_k (1 + g_{k,\rho}(x,\xi)(y,\eta))^{1/2},
\]
which implies that
\[
\|\xi\|_k^{-1} \leq C' \|\xi + \eta\|_k^{-1} (1 + g_{k,\rho}(x,\xi)(y,\eta))^{1/2};
\]
\[
g_{k,\rho}(x,\xi)(X) \leq C'' g_{k,\rho}(x+y,\xi+\eta)(X)(1 + g_{k,\rho}(x,\xi)(y,\eta))^{\rho},
\]
where \(C', C'' > 0\). This proves the assertion (iii). \(\quad \Box\)

Lemma 2.10. There are positive constants \(C, C_{s,\alpha}\) \((s \in \mathbb{R}, \alpha \in (\mathbb{Z}_+)^n)\) such that
\[
(2.57) \quad |\partial_t w_k(t, \xi)\tilde{\Psi}(\xi)| \leq W_{k,2}(t, \xi)w_k(t, \xi),
\]
\[
(2.58) \quad |\partial_{\xi}^s w_k(t, \xi)| \leq C_{s,\alpha} w_k(t, \xi)^s \|\xi\|_k^{-|\alpha|\rho_0}, \quad (s \in \mathbb{R}),
\]
\[
(2.59) \quad |\partial_{\xi}^s W_{k,0}(t, \xi)| \leq C_{0} W_{k,0}(t, \xi)^{\|\xi\|_k^{-|\alpha|\rho_0}},
\]
\[
(2.60) \quad |\partial_{\xi}^s W_{k,1}(t, \xi)| \leq C_{1} W_{k,1}(t, \xi)^{\|\xi\|_k^{-|\alpha|\rho_0}},
\]
\[
(2.61) \quad |\partial_{\xi}^s W_{k,2}(t, \xi)| \leq C_{2} W_{k,2}(t, \xi)^{\|\xi\|_k^{-\rho_0}} \quad (1 \leq \mu \leq n)
\]
for \(\alpha \in (\mathbb{Z}_+)^n\) and \((t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n\).

Proof. \((2.57)\) is obvious. Let \(f(\xi) \in S_{2,0}^2\) satisfy \(f(\xi) \geq 0\), and put
\[
g(\xi) = \sqrt{f(\xi) + \|\xi\|_k^{2\rho_0}}.
\]
Then we have, with \(C_{\alpha} > 0\) \((\alpha \in (\mathbb{Z}_+)^n)\),
\[
(2.62) \quad |\partial_{\xi}^s g(\xi)| \leq C_{\alpha} g(\xi)^{\|\xi\|_k^{-|\alpha|\rho_0}}.
\]
Indeed, we can apply the same argument as in the proof of Lemma 2.8. In doing so, we use the fact that \(\nabla_{\xi} f(\xi) = 0\) if \(f(\xi) = 0\). Then we have, with \(C > 0\),
\[
(2.63) \quad |\partial_{\xi}^s f(\xi)| \leq C \sqrt{f(\xi)} \quad \text{for } 1 \leq \mu \leq n.
\]
Since \(2\rho_0 - 1 \leq 0\), we have
\[
|\partial_{\xi}^s g(\xi)| = |\partial_{\xi}^s f(\xi) + \partial_{\xi}^s \|\xi\|_k^{2\rho_0}|/(2g(\xi)) \leq C' g(\xi)^{\|\xi\|_k^{-\rho_0}},
\]
where \(1 \leq \mu \leq n\) and \(C' > 0\). This implies that \((2.62)\) is valid for \(|\alpha| = 1\).
Let \(l \in \mathbb{N}\), and suppose that \((2.62)\) is valid for \(|\alpha| \leq l\). Let \(|\alpha| = l+1\). Then, noting that
\[
2g(\xi)\partial_{\xi}^s g(\xi) + \sum_{0 < \beta < \alpha} \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) \partial^\beta g(\xi)\partial^{\alpha-\beta} g(\xi) = \partial^\alpha f(\xi) + \partial^\alpha \|\xi\|_k^{2\rho_0},
\]

31
we have, with $C'_\alpha > 0$,

$$
2g(\xi)|\partial^\alpha g(\xi)| \leq C'_\alpha \left(\langle \xi \rangle^{2-|\alpha|} + \|\xi\|^2_{k}^{\rho_0-|\alpha|} + \sum_{0<\beta<\alpha} g(\xi)^2 \|\xi\|^{2-|\alpha|}_{k}^{\rho_0} \right).
$$

Since $\langle \xi \rangle^{2-|\alpha|} \leq C''_{\alpha} \|\xi\|^2_{k}^{2-|\alpha|\rho_0}$, $2\rho_0 - |\alpha| \leq (2 - |\alpha|)\rho_0$ and $\|\xi\|^{2-|\alpha|}_{k}^{\rho_0} \leq g(\xi)^2 \|\xi\|^{2-|\alpha|}_{k}^{\rho_0}$, (2.64) shows that (2.62) is valid for $|\alpha| = l + 1$. (2.62), with induction on $|\alpha|$, gives

$$
|\partial^\alpha g(\xi)| \leq C_{s,\alpha} g(\xi)^s \|\xi\|^{-|\alpha|\rho_0} \quad \text{for } \alpha \in (Z_+)^n \text{ and } s \in \mathbb{R},
$$

where the $C_{s,\alpha}$ are positive constants. (2.58) and (2.60) are simple consequences of (2.65) and (2.62), respectively. (2.59) easily follows from Lemma 2.8 and (2.58). Taking $f(\xi) = \bar{\Psi}(\xi)^4|\partial_t \nabla_\xi a_k(t, \xi)|^2$ and $s = 1$ and $f(\xi) = \bar{\Psi}(\xi)^4|\nabla_\xi a_k(t, \xi)|^2$ and $s = -1$ in (2.65), respectively, we have

$$
|\partial^\alpha W_{k,2,2}(t, \xi)| \leq C_{\alpha} W_{k,2,2}(t, \xi) \|\xi\|^{-|\alpha|\rho_0}
$$

for any $\alpha \in (Z_+)^n$ and $(t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n$, since $\bar{\Psi}(\xi)^4|\partial_t \nabla_\xi a_k(t, \xi)|^2, \bar{\Psi}(\xi)^4 \times |\nabla_\xi a_k(t, \xi)|^2 \in S^2_{1,0}([0, 3\delta_1] \times T^*\mathbb{R}^n)$. A simple calculation yields

$$
|\partial_{\xi\mu} W_{k,2,1}(t, \xi)|
\leq (|\bar{\Psi}(\xi)^2|\partial_t a_k(t, \xi) \cdot \partial_{\xi\mu} (\bar{\Psi}(\xi)^2|\partial_t a_k(t, \xi)|) + C \|\xi\|^{2\rho_0-1}_{k})/w_k(t, \xi)
\times (\bar{\Psi}(\xi)^4|\partial_t a_k(t, \xi)|^2 + \|\xi\|^{2\rho_0}_{k})^{-1/2} + W_{k,2,1}(t, \xi) \|\xi\|^{-\rho_0}_{k}
\leq |\partial_{\xi\mu} \bar{\Psi}(\xi)^2| \cdot \partial_t a_k(t, \xi)|/w_k(t, \xi)
\times (\bar{\Psi}(\xi)^4|\nabla_\xi a_k(t, \xi)|^2 + \|\xi\|^{2\rho_0}_{k})^{1/2} W_{k,2,2}(t, \xi)/w_k(t, \xi)
\times C \|\xi\|^{-1-\rho_0}_{k} + W_{k,2,1}(t, \xi) \|\xi\|^{-\rho_0}_{k},
$$

where $1 \leq \mu \leq n$, $(t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n$ and $C > 0$. (2.63) with $f(\xi) = \bar{\Psi}(\xi)^4a_k(t, \xi)$ gives

$$
|\nabla_\xi (\bar{\Psi}(\xi)^4a_k(t, \xi))| \leq C \bar{\Psi}(\xi)a_k(t, \xi) \leq C w_k(t, \xi) \|\xi\|^{-\rho_0}_{k}.
$$

Since $|\nabla_\xi \bar{\Psi}(\xi)| \leq C \langle \xi \rangle^{-1}, \bar{\Psi}(\xi)^4a_k(t, \xi) \leq C \langle \xi \rangle \sqrt{\bar{\Psi}(\xi)a_k(t, \xi)}$ and $w_k(t, \xi)^{1/2} \leq \|\xi\|^{\rho_0}_{k}$, we have, with $C' > 0$,

$$
|\bar{\Psi}(\xi)^2\nabla_\xi a_k(t, \xi)| \leq |\nabla_\xi (\bar{\Psi}(\xi)^4a_k(t, \xi))| + |\bar{\Psi}(\xi)a_k(t, \xi)\nabla_\xi \bar{\Psi}(\xi)|
\leq C' \left(w_k(t, \xi) \|\xi\|^{\rho_0}_{k} + \sqrt{\bar{\Psi}(\xi)a_k(t, \xi)} \right) \leq 2C' w_k(t, \xi) \|\xi\|^{-\rho_0}_{k}.
$$
Next we shall consider \(\tilde{\Psi}(\xi) \partial_t a_k(t, \xi) \). Put \(q(t) = \tilde{\Psi}(\xi) a_k(t, \xi) \) for \((t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n \). Recall that \(\tilde{\Psi}(\xi) a_k(t, \xi) \) is defined for \((t, \xi) \in [-2\delta_1, 4\delta_1] \times \mathbb{R}^n \). Then, for \(h \in [-\delta_1, \delta_1] \) there is \(\theta \in (0, 1) \) such that

\[
0 \leq q(t + h) = q(t) + hq'(t) + h^2 q''(t + \theta h)/2
\]

for \(t \in [0, 3\delta_1] \). Therefore, we have

\[
\pm q'(t) \leq q(t)/|h| + |h|q''(t + \theta h)/2.
\]

This gives, with \(C_0 > 0 \),

\[
|\tilde{\Psi}(\xi) \partial_t a_k(t, \xi)| \leq \tilde{\Psi}(\xi) a_k(t, \xi)/|h| + C_0 |h| \tilde{\Psi}(\xi) \langle \xi \rangle^2
\]

for \((t, \xi) \in [0, 3\delta_1] \) and \(h \in [-\delta_1, \delta_1] \). When \(\sqrt{a_k(t, \xi) \langle \xi \rangle^{-2}/C_0} \leq \delta_1 \), taking \(|h| = \sqrt{a_k(t, \xi) \langle \xi \rangle^{-2}/C_0} \) we have

\[
|\tilde{\Psi}(\xi) \partial_t a_k(t, \xi)| \leq 2\sqrt{C_0 a_k(t, \xi) \tilde{\Psi}(\xi) \langle \xi \rangle}
\]

for \((t, \xi) \in [0, 3\delta_1] \). Note that (2.70) is still valid when \(a_k(t, \xi) = 0 \). When \(\sqrt{a_k(t, \xi) \langle \xi \rangle^{-2}/C_0} \geq \delta_1 \), taking \(|h| = \delta_1 \) in (2.69), we have

\[
C_0 \delta_1^2 \tilde{\Psi}(\xi) \langle \xi \rangle^2 \leq \tilde{\Psi}(\xi) a_k(t, \xi) \leq C \tilde{\Psi}(\xi) \langle \xi \rangle^2,
\]

\[
|\tilde{\Psi}(\xi) \partial_t a_k(t, \xi)| \leq \tilde{\Psi}(\xi) a_k(t, \xi)/\delta_1 + C_0 \delta_1 \tilde{\Psi}(\xi) \langle \xi \rangle^2
\]

\[
\leq C' \sqrt{a_k(t, \xi) \tilde{\Psi}(\xi) \langle \xi \rangle}/\delta_1.
\]

This, together with (2.70), gives

\[
|\partial_{\xi_{i}} \tilde{\Psi}(\xi)^2 \cdot \partial_t a_k(t, \xi)|/w_k(t, \xi) \leq C'' w_k(t, \xi)^{-1/2}/\delta_1 \leq C'' \|\xi\|_k^{-\rho_0}/\delta_1
\]

for \(1 \leq \mu \leq n \) and \((t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n \), where \(C'' > 0 \). Therefore, (2.61) follows from (2.66) -- (2.68) and (2.71).

Lemma 2.11. Let \(\rho > 0 \), and let \(f(\xi) \in C^1(\mathbb{R}^n) \) satisfy \(f(\xi) > 0 \) and

\[
|\partial_{\xi_{i}} f(\xi)| \leq C(f) f(\xi) \|\xi\|_k^{-\rho} \quad \text{for } 1 \leq \mu \leq n \text{ and } \xi \in \mathbb{R}^n.
\]

Then, for any \(\delta > 0 \) there is \(c_\delta \equiv c_\delta(C(f)) > 0 \) satisfying

\[
(1 + \delta)^{-1} \leq f(\eta)/f(\xi) \leq 1 + \delta
\]

if \(\xi, \eta \in \mathbb{R}^n \) and \(|\xi - \eta| \leq \sqrt{c_\delta \|\xi\|_k} \). In particular, \(f(\xi) \) is \(g_{k, \rho} \)-continuous.
Proof. Let $0 < c_\delta \leq c_0$ and $|\xi - \eta| \leq \sqrt{c_\delta} \|\xi\|_k^p$, where c_0 is the constant in (2.56). Then, by (2.56) and (2.72) we have

$$|\log f(\xi) - \log f(\eta)|$$

$$= \left| \sum_{\mu=1}^{n} \int_{0}^{1} \partial_{\xi_{\mu}} f(\xi + \theta(\eta - \xi)) \cdot (\eta_{\mu} - \xi_{\mu}) f(\xi + \theta(\eta - \xi))^{-1} d\theta \right|$$

$$\leq 2^p C(f) \sum_{\mu=1}^{n} \int_{0}^{1} |\xi_{\mu} - \eta_{\mu}| \|\xi\|_k^{-p} d\theta \leq 2^p C(f) \sqrt{n} |\xi - \eta| \|\xi\|_k^{-p}$$

$$\leq 2^p C(f) \sqrt{nc_\delta},$$

$$\exp[-2^p C(f) \sqrt{nc_\delta}] \leq f(\eta)/f(\xi) \leq \exp[2^p C(f) \sqrt{nc_\delta}].$$

Taking $c_\delta = \min\{c_0, (\log(1 + \delta))/2^p n C(f)^2\}$, we obtain (2.73). □

Lemma 2.12. (i) For any $\delta > 0$ there is $c'_\delta > 0$ such that

$$(1 + \delta)^{-1} \leq w_k(t, \eta)/w_k(t, \xi) \leq 1 + \delta,$$

$$(1 + \delta)^{-1} \leq W_{k,\mu}(t, \eta)/W_{k,\mu}(t, \xi) \leq 1 + \delta \quad (0 \leq \mu \leq 2)$$

if $\xi, \eta \in \mathbb{R}^n$, $t \in [0, 3\delta_1]$ and $|\xi - \eta| \leq \sqrt{c_\delta} \|\xi\|_k^p$. Moreover, there is $C > 0$ such that

(2.74) $w_k(t, \xi) \leq C \|\xi\|_k^2$,

(2.75) $W_{k,0}(t, \xi) \leq 2 \|\xi\|_k^p$,

(2.76) $W_{k,1}(t, \xi) \leq C \|\xi\|_k^{-p_0}$,

(2.77) $W_{k,2}(t, \xi) \leq C \|\xi\|_k^{2-p_0}$,

(2.78) $\Psi(\xi)^2 |\nabla_{\xi} a_k(t, \xi)| \leq C \|\xi\|_k$

for $(t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n$. (ii) $W_{k,1}(t, \xi)$ is uniformly σ, g_{k,ρ_0} temperate in $t \in [0, 3\delta_1]$. (iii) Modifying δ_1 and m_0 if necessary, for $l = 0, 1$ we have

$$\#\{t \in [0, 3\delta_1]; \partial_{l} \partial_{\xi_{\mu}} a_k(t, \xi) = 0\} \leq m_0$$

if $1 \leq \mu \leq n$, $\xi \in \mathcal{C} \cap S^{n-1}$ and $\partial_{l} \partial_{\xi_{\mu}} a_k(t, \xi) \neq 0$ in t.

Proof. The first part of the assertion (i) easily follows from Lemmas 2.10 and 2.11. (2.52) proves (2.74). (2.75) is obvious. Let us prove (2.76). From the definitions of the $\beta^\mu(t, \tau, \xi)$ we have

$$\min_{s \in \mathcal{R}(\xi/|\xi|)} \{ \min_{s \in \mathcal{R}(\xi/|\xi|)} |t - s|^2, 1\} |\beta^\mu(t, b_k(t, \xi), \xi)|^2 \leq C h_{m-1}(t, b_k(t, \xi), \xi)$$

(2.79)
for \((t, \xi) \in [0, 3\delta_1] \times (\overline{C} \setminus \{0\})\). By (1.1) there is \(C > 0\) satisfying
\[
(2.80) \quad C^{-1} a_k(t, \xi) |\xi|^{2m-4} \leq h_{m-1}(t, b_k(t, \xi), \xi) \leq C a_k(t, \xi) |\xi|^{2m-4}
\]
for \((t, \xi) \in [0, 3\delta_1] \times (\overline{C} \setminus \{0\})\). Therefore, we have
\[
(2.81) \quad \min\{ \min_{s \in \mathcal{R}(\xi/|\xi|)} |t - s|^{2}, 1\} |\beta^\mu(t, b_k(t, \xi), \xi)|^2 / |\xi|^{2m-4} \leq C' \hat{k}_k(\xi).
\]
Now we use the notations in the proof of Lemma 2.2 with \(\hat{k}_k(\xi)\) replaced by \(\hat{k}_k(\xi)\) (see, also, the remark of Lemma 2.2). Let \(\xi^0 \in \overline{C} \cap S^{n-1}\) and \(p \in \tilde{U}(\xi^0)\). Then we have
\[
\hat{k}_k(\varphi(\tilde{u})) = e(X(\tilde{u})) \prod_{\mu=1}^{r(p)} X_{\mu}(\tilde{u})^{2s_{\mu}(p)} \quad (\tilde{u} \in \tilde{U}(\xi^0; p)),
\]
where \(e(X) > 0\) for \(X \in \tilde{V}(\xi^0; p)\). So we have, with \(C'' > 0\),
\[
\min\{ \min_{s \in \mathcal{R}(\tilde{\varphi}(X)/|\tilde{\varphi}(X)|)} |t - s|^{2}, 1\} |\beta^\mu(t, b_k(t, \tilde{\varphi}(X)), \tilde{\varphi}(X))|^2 \leq C'' \hat{k}_k(\tilde{\varphi}(X))
\]
for \(t \in [0, 3\delta_1]\) and \(X \in \tilde{V}(\xi^0; p)\). This implies that
\[
|\beta^\mu(t, b_k(t, \tilde{\varphi}(X)), \tilde{\varphi}(X))|^2 = \tilde{\beta}^\mu(t, X) \hat{k}_k(\tilde{\varphi}(X)),
\]
where \(\tilde{\beta}^\mu(t, X)\) is real analytic in \((t, X)\). Therefore, we have
\[
(2.82) \quad |\beta^\mu(t, b_k(t, \xi), \xi)| \leq C\|\xi\|_k |\xi|^{m-2}
\]
for \((t, \xi) \in [0, 3\delta_1] \times \overline{C}\) with \(|\xi| \geq 1\), which proves (2.76). (2.63) gives
\[
|\tilde{\Psi}(\xi)^2 \nabla \xi a_k(t, \xi)| \leq |\nabla \xi (\tilde{\Psi}(\xi) a_k(t, \xi))| + |\tilde{\Psi}(\xi) a_k(t, \xi) \nabla \xi \tilde{\Psi}(\xi)|
\]
\[
\leq C \sqrt{\tilde{\Psi}(\xi) a_k(t, \xi)},
\]
which proves (2.78). It follows from Lemma 2.2 and (2.78) that
\[
\tilde{\Psi}(\xi)^2 |\partial_t \nabla \xi a_k(t, \xi)| \leq C \left(\int_0^{3\delta_1} |\nabla \xi a_k(t, \xi)|^2 dt \right)^{1/2} \leq C' \delta_1 \|\xi\|_k
\]
for \((t, \xi) \in [0, 3\delta_1] \times \overline{C}\). This, together with (2.53), proves (2.77). The assertion (i) implies that \(W_{k,1}(t, \xi)\) is uniformly \(g_{k, \rho_0}\) continuous in \(t\). If \(\xi, \eta \in \mathbb{R}^n\) and \(|\xi - \eta| \leq \sqrt{\rho_1} \|\xi\|_{k}^{\rho_0}\), then we have
\[
W_{k,1}(t, \xi) \leq W_{k,1}(t, \eta)(1 + g^\rho_{k, \rho}(x, \xi)(y - x, \eta - \xi))
\]
for $t \in [0, 3\delta_1]$, $x, y \in \mathbb{R}^n$ and $\rho > 0$, where c_1' is the constant in Lemma 2.12 with $\delta = 1$. Suppose that $\xi, \eta \in \mathbb{R}^n$, $|\xi - \eta| \geq \sqrt{c_1' \|\xi\|_k^{2\rho_0}}$ and $\rho > 0$. We may assume that $c_1^* \leq 1$. Then we have

$$1 + g_{k,\rho}(x, \xi)(y - x, \eta - \xi) \geq c_1'(1 + \|\xi\|_k^{2\rho_0}).$$

This, together with (2.76), gives

$$W_{k,1}(t, \xi) \leq C \|\xi\|_k^{1-\rho_0} \leq C'W_{k,1}(t, \eta)(1 + g_{k,\rho}^*(x, \xi)(y - x, \eta - \xi))^{(1-\rho_0)/(2\rho_0)},$$

which proves the assertion (ii). The assertion (iii) easily follows from Lemma 2.2, since $\partial_t a_k(t, \xi)$ and $\partial_t \partial_\xi a_k(t, \xi)$ are real analytic. \hfill \square

Let $\theta(\xi) \in C^\infty_0(\mathbb{R}^n)$ satisfy $\theta(\xi) \geq 0$, $\int_{\mathbb{R}^n} \theta(\xi) \, d\xi = 1$ and $\text{supp} \theta \subset \{ \xi \in \mathbb{R}^n; |\xi| \leq \sqrt{c_1'} \}$. We define

$$\tilde{W}_{k,2}(t, \xi) = \int_{\mathbb{R}^n} \theta([\eta]_k^{\rho_0}(\xi - \eta))W_{k,2}(t, \eta) [\|\eta\|_k^{-\rho_0}]_k d\eta$$

for $(t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n$. Then we can prove the following lemma, applying the same argument as in Lemma 3.4 of [12].

Lemma 2.13. Modifying c_1' if necessary, we have, with $C_\alpha > 0$ ($\alpha \in (\mathbb{Z}^+)^n$),

$$W_{k,2}(t, \xi)/4 \leq \tilde{W}_{k,2}(t, \xi) \leq 4W_{k,2}(t, \xi),$$

$$|\partial_\xi^\alpha \tilde{W}_{k,2}(t, \xi)| \leq C_\alpha W_{k,2}(t, \xi) [\|\xi\|_k^{-\alpha\rho_0}]$$

for $(t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n$ and $\alpha \in (\mathbb{Z}^+)^n$.

Define

$$\Phi_k(t, \xi) = \int_0^t (W_{k,0}(s, \xi) + W_{k,1}(s, \xi) + \tilde{W}_{k,2}(s, \xi)) \, ds$$

for $(t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n$.

Lemma 2.14. There are $C_\alpha > 0$ ($\alpha \in (\mathbb{Z}^+)^n$) such that

$$|\partial_\xi^\alpha \Phi_k(t, \xi)| \leq C_\alpha(1 + \log [\|\xi\|_k]) [\|\xi\|_k^{-\alpha\rho_0}]$$

for $(t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n$ and $\alpha \in (\mathbb{Z}^+)^n$.

36
Proof. By Lemmas 2.10 and 2.13 it suffices to prove that

\[(2.83) \quad (0 \leq) \Phi_k(3\delta_1, \xi) \leq C_0(1 + \log \| \xi \|_k) \quad \text{for} \quad \xi \in \mathbb{R}^n.\]

If \(\tilde{k}_k(\xi) \tilde{\Psi}(\xi) = 0 \), then we have \(\| \xi \|_k = 1 \), \(w_k(t, \xi) = 1 \), \(W_{k,0}(t, \xi) = 2 \), \(W_{k,1}(t, \xi) = 2 \) and \(W_{k,2}(t, \xi) = 2 \) by (2.63) and (2.81). So (2.83) holds if \(\tilde{k}_k(\xi) \tilde{\Psi}(\xi) = 0 \). Now assume that \(\xi \in \mathbb{R}^n \) and \(\tilde{k}_k(\xi) \tilde{\Psi}(\xi) > 0 \). It follows from (2.52) that there is \(c_0 > 0 \) satisfying

\[w_k(t, \xi) \geq c_0 \left(\| \xi \|_k^{m_k(\xi)} \prod_{\mu=1}^{m_k(\xi)} |t - t_\mu(\xi)| + \| \xi \|_k^{2\rho_0} \right), \]

where \(t^{m_k(\xi)} + a_{k,1}(\xi)t^{m_k(\xi)-1} + \cdots + a_{k,\mu_k(\xi)}(\xi) = \prod_{\mu=1}^{m_k(\xi)} (t - t_\mu(\xi)) \). So there is \(C > 0 \) such that

\[\int_0^{3\delta_1} w_k(t, \xi)^{-1/2} dt \leq C \int_0^{3\delta_1} \| \xi \|^{m_k(\xi)} \prod_{\mu=1}^{m_k(\xi)} |t - t_\mu(\xi)| + \| \xi \|^{2\rho_0-2} \right)^{-1/2} dt. \]

Write

\[(\{0, 3\delta_1\} \cup \{ \Re t_\mu(\xi) \}_{1 \leq \mu \leq \mu_k(\xi)} \cap [0, 3\delta_1] = \{ t_0, t_1, \ldots, t_{\mu_k(\xi)+1} \}, \]

\[t_{-1} = 0 = t_0 < t_1 < t_2 < \cdots < t_{\mu_k(\xi)+1} = 3\delta_1 = t_{\mu_k(\xi)+2}. \]

Then we have, with \(C', C'' > 0 \),

\[\int_0^{3\delta_1} w_k(t, \xi)^{-1/2} dt \]

\[\leq C \sum_{\mu=0}^{m_k(\xi)+1} \int_{(t_{\mu} + t_{\mu+1})/2}^{(t_{\mu} + t_{\mu+1}+1)/2} \| \xi \|^{m_k(\xi)} \prod_{\mu=1}^{m_k(\xi)} |t - t_\mu(\xi)| + \| \xi \|^{2\rho_0-2} \right)^{-1/2} dt. \]

\[\leq C' \sum_{\mu=0}^{m_k(\xi)+1} \int_{0}^{3\delta_1} \| \xi \|^{m_k(\xi)} \prod_{\mu=1}^{m_k(\xi)} |t - t_\mu| + \| \xi \|^{2(\rho_0-1)/m_0 - m_0/2} \right) dt \]

\[\leq \begin{cases} C'' \| \xi \|^{-2\rho_0} & \text{if } m_0 > 2, \\ C'' \| \xi \|^{-2\rho_0} (1 + \log \| \xi \|_k) & \text{if } m_0 = 2, \end{cases} \]

since \(m_k(\xi) \leq m_0 \) and \(2(\rho_0 - 1)/m_0 \cdot (2 - m_0)/2 - 1 = -2\rho_0 \). This gives, with \(C > 0 \),

\[(2.84) \quad \int_0^{3\delta_1} W_{k,0}(t, \xi) dt \leq C(1 + \log \| \xi \|_k). \]
We note that (2.84) was proved in [2] when \(a_k(t, \xi) \) is a non-negative quadratic form of \(\xi \). By (2.76), (2.79) and (2.80), we have, with \(C > 0 \),

\[
\int_0^{3\delta_1} W_{k,1}(t, \xi) \, dt \leq C \int_0^{3\delta_1} \min \left\{ \left(\min_{s \in R(\xi/|\xi|)} |t-s| \right)^{-1}, \left[\| \xi \|_k^{1-p_0} \right] \right\} \, dt.
\]

Write

\[
\{ \{0, 3\delta_1\} \cup \{ \Re \lambda; \lambda \in R(\xi/|\xi|) \} \} \cap [0, 3\delta_1] = \{ \tau_0, \tau_1, \cdots, \tau_{N(\xi)} \},
\]

\[
0 = \tau_0 < \tau_1 < \tau_2 < \cdots < \tau_{N(\xi)} = 3\delta_1 = \tau_{N(\xi)+1}.
\]

Note that \(N(\xi) \leq N_{3\delta_1} + 1 \), where \(N_{3\delta_1} \) is the integer in (1.2). Put \(\tilde{\tau}_0 = 0 \) and \(\tilde{\tau}_{\mu+1} = (\tau_\mu + \tau_{\mu+1})/2 \), \(\tilde{\tau}_\mu = \max\{\tau_\mu - \left[\| \xi \|_k^{p_0} \right], \tilde{\tau}_\mu \} \) and \(\tilde{\tau}_\mu^+ = \min\{\tau_\mu + \left[\| \xi \|_k^{p_0} \right], \tilde{\tau}_\mu + 1 \} \) (\(0 \leq \mu \leq N(\xi) \)), we have, with \(C, C' > 0 \),

\[
\int_0^{3\delta_1} W_{k,1}(t, \xi) \, dt \leq C \sum_{\mu=0}^{N(\xi)} \left\{ \int_{\tau_\mu}^{\tilde{\tau}_\mu} (\tau_\mu - t)^{-1} \, dt + \int_{\tau_\mu}^{\tilde{\tau}_\mu^+} \left[\| \xi \|_k^{1-p_0} \right] \, dt \\
+ \int_{\tau_\mu}^{\tilde{\tau}_{\mu+1}} (t - \tau_\mu)^{-1} \, dt \right\} \leq C' (1 + \log \left[\| \xi \|_k \right]).
\]

Let \(N_0 \in \mathbb{Z}^+ \) and \(p \in \mathbb{R} \), and let \(f(t, \xi) \) be a function defined for \((t, \xi) \in [0, 3\delta_1] \times \mathcal{C} \) satisfying the following:

(i) \(f(t, \xi) \) is continuously differentiable in \(t \in [0, 3\delta_1] \).

(ii) \#\{ \{ 0 \leq t \leq 3\delta_1; \partial_t f(t, \xi) = 0 \} \} \leq N_0 \) if \(\xi \in \mathcal{C} \) and \(\partial_t f(t, \xi) \neq 0 \) in \(t \).

(iii) \(|f(t, \xi)| \leq C_0 \left[\| \xi \|_k^p \right] \) for \((t, \xi) \in [0, 3\delta_1] \times \mathcal{C} \) with \(|\xi| \geq 1 \).

Then there is \(C(N_0, C_0, p) > 0 \) such that

\[
(2.85) \quad \int_0^{3\delta_1} |\partial_t f(t, \xi)|/(|f(t, \xi)| + 1) \, dt \leq C(N_0, C_0, p)(1 + \log \left[\| \xi \|_k \right])
\]

for \(\xi \in \mathcal{C} \) with \(|\xi| \geq 1 \). Indeed, (2.85) is obvious if \(\partial_t f(t, \xi) \equiv 0 \) in \(t \), where \(\xi \in \mathcal{C} \). Fix \(\xi \in \mathcal{C} \) so that \(|\xi| \geq 1 \) and \(\partial_t f(t, \xi) \neq 0 \) in \(t \). Write

\[
\{ t \in [0, 3\delta_1]; f(t, \xi) \partial_t f(t, \xi) = 0 \} = \{ t_1, t_2, \cdots, t_{N(\xi)} \},
\]

\[
0 \leq t_1 < t_2 < \cdots < t_{N(\xi)} \leq 3\delta_1.
\]
It is obvious that \(N(\xi) \leq 2N_0 + 1 \). In each subinterval \([t_{\mu-1}, t_{\mu})\) (\(1 \leq \mu \leq N(\xi) + 1 \)) we have “\(f(t, \xi) \geq 0 \) or \(f(t, \xi) \leq 0 \)” and “\(\partial_t f(t, \xi) \geq 0 \) or \(\partial_t f(t, \xi) \leq 0 \), where \(t_0 = 0 \) and \(t_{N(\xi)+1} = 3\delta_1 \). Then we have

\[
\int_{t_{\mu-1}}^{t_{\mu}} |\partial_t f(t, \xi)|/(|f(t, \xi)| + 1) \, dt = |\log\{|f(t_{\mu}, \xi)| + 1)/(|f(t_{\mu-1}, \xi)| + 1)\}|
\leq 2 \log(C_0 \|\xi\|_k^p + 1) \leq \begin{cases} 2\log(C_0 + 1) + 2p \log \|\xi\|_k & \text{if } p \geq 0, \\ 2\log(C_0 + 1) & \text{if } p \leq 0, \end{cases}
\]

which proves (2.85). Note that

\[
W_{k,2}(t, \xi) \leq (\tilde{\Psi}(\xi)^2|\partial_t a_k(t, \xi)| + \|\xi\|_{pk}^{\rho_0})/(\tilde{\Psi}(\xi)a_k(t, \xi) + \|\xi\|_{k}^{\rho_0})
+ 2 \sum_{\mu=1}^{n} (\tilde{\Psi}(\xi)^2|\partial_t \partial_{\omega} a_k(t, \xi)| + \|\xi\|_{pk}^{\rho_0})/(\tilde{\Psi}(\xi)^2|\partial_{\omega} a_k(t, \xi)| + \|\xi\|_{k}^{\rho_0})
\leq 2|\partial_t (\tilde{\Psi}(\xi)a_k(t, \xi) + \|\xi\|_{k}^{\rho_0})/(\tilde{\Psi}(\xi)a_k(t, \xi) + \|\xi\|_{k}^{\rho_0} + 1) + \|\xi\|_{k}^{-\rho_0}
+ 4 \sum_{\mu=1}^{n} |\partial_t (\tilde{\Psi}(\xi)^2\partial_{\omega} a_k(t, \xi) + \|\xi\|_{k}^{\rho_0})/(\tilde{\Psi}(\xi)^2\partial_{\omega} a_k(t, \xi) + \|\xi\|_{k}^{\rho_0} + 1) + 2n.
\]

This, together with (2.85), gives, with \(C > 0 \),

\[
\int_0^{3\delta_1} W_{k,2}(t, \xi) \, dt \leq C(1 + \log \|\xi\|_k),
\]

which proves the lemma. \(\square\)

Let \(A > 0, \gamma \geq 1 \) and \(l \in \mathbb{R} \). We define

\[
K_k(t, \xi; A, \gamma, l) = e^{-2\gamma t} \tilde{K}_k(t, \xi; A, \gamma, l),
\]

\[
\tilde{K}_k(t, \xi; A, \gamma, l) = \exp[-A\Phi_k(t, \xi) - 2t \log \langle \xi \rangle_\gamma + 2t \log \langle \xi \rangle_\gamma].
\]

Fix \(\rho \) so that \(0 < \rho < \rho_0 \).

Lemma 2.15. There are \(C_\alpha(A, l) > 0 \) (\(\alpha \in \mathbb{Z}_+^n \)) such that

\[
|\partial_t^2 \tilde{K}_k(t, \xi; A, \gamma, l)| \leq C_\alpha(A, l) \tilde{K}_k(t, \xi; A, \gamma, l) \|\xi\|_{k}^{-\alpha_\rho}
\]

for \(\alpha \in \mathbb{Z}_+^n \) and \((t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n \). Moreover, \(\tilde{K}_k(t, \xi; A, \gamma, l) \) is uniformly \(\sigma \), \(g_{k,\rho} \) temperate in \(\varepsilon \) and \(t \in [0, 3\delta_1] \).
Proof. Since
\[\partial_{\xi_\mu} \tilde{K}_k(t, \xi; A, \gamma, l) = (-A \partial_{\xi_\mu} \Phi_k(t, \xi) + (2l - 2t)\xi_\mu \xi_\gamma) \tilde{K}_k(t, \xi; A, \gamma, l), \]
Lemma 2.14 and induction on \(|\alpha|\) prove (2.86). From Lemma 2.11 \(\tilde{K}_k(t, \xi; A, \gamma, l)\) is uniformly \(g_{k, \rho}\) continuous, i.e., there is \(c(A, l) > 0\) satisfying
\[1/2 \leq \tilde{K}_k(t, \xi; A, \gamma, l)/\tilde{K}_k(t, \eta; A, \gamma, l) \leq 2 \]
if \(t \in [0, 3\delta_1], \xi, \eta \in \mathbb{R}^n\) and \(|\xi - \eta| \leq c(A, l) \|\xi\|_k^p\). Suppose that \(\xi, \eta \in \mathbb{R}^n\) and \(|\xi - \eta| \geq c(A, l) \|\xi\|_k^p\). Noting that
\[
\langle \xi \rangle_\gamma^{2l-2t} \exp[-AC_0(1 + \log \|\xi\|_k)] \leq \tilde{K}_k(t, \xi; A, \gamma, l) \leq \langle \xi \rangle_\gamma^{2l-2t} \]
\[\langle \xi \rangle_\gamma^{2l+1} \leq \sqrt{2} \langle \eta \rangle_\gamma^{\pm 1} (1 + |\eta - \xi|^2)^{1/2} \leq \sqrt{2} \langle \eta \rangle_\gamma^{\pm 1} (1 + g_{k, \rho}(x, \xi)(0, \eta - \xi))^{1/2}, \]
we have
\[(2.87) \quad \tilde{K}_k(t, \xi; A, \gamma, l) \leq e^{AC_0 \langle \xi \rangle_\gamma^{2l-2t} \langle \eta \rangle_\gamma^{2l+2t} \|\eta\|_k^{2+2t}} \tilde{K}_k(t, \eta; A, \gamma, l). \]
From (2.55) we have \(\|\eta\|_k \leq C_0(A, l) |\xi - \eta|^{1/p}\), where \(C_0(A, l) > 0\). This, together with (2.87), gives
\[\tilde{K}_k(t, \xi; A, \gamma, l) \leq C_1(A, l) \tilde{K}_k(t, \eta; A, \gamma, l)(1 + g_{k, \rho}(x, \xi)(0, \eta - \xi))^{1/2} + AC_0/(2p), \]
where \(C_1(A, l) > 0\). \(\square\)

Define
\[
\mathcal{E}_k(t, w; A, \gamma, l) = ((D_t - b_k(t, D_x))\psi_\gamma(D_x)w, K_k(D_t - b_k)\psi_\gamma w)_{L^2(\mathbb{R}^n_+)} + ((w(t, D_x) + (\log(D_x)\gamma)^2)\psi_\gamma w, K_k\psi_\gamma w)_{L^2(\mathbb{R}^n_+)},
\]
for \(w(t, x) \in C^\infty(\mathbb{R}; H^\infty(\mathbb{R}^n_+))\) with \(w|_{t=0} = 0\) and \(t \in [0, 3\delta_1]\), and
\[W_k(t, \xi) = \sum_{\mu=0}^1 W_{k, \mu}(t, \xi) + \tilde{W}_{k, 2}(t, \xi) \quad \text{for} \quad (t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n, \]
where \(K_k = K_k(t, D_x; A, \gamma, l)\). Then we have
\[
D_t \mathcal{E}_k(t, w; A, \gamma, l) = 2i \text{Im}(\text{Op}((\tau - b_k(t, \xi))^2)\psi_\gamma w, K_k(D_t - b_k)\psi_\gamma w)_{L^2(\mathbb{R}^n_+)}
\]
\[+ 2i \text{Re}(\text{Op}(\partial b_k(t, \xi))\psi_\gamma w, K_k(D_t - b_k)\psi_\gamma w)_{L^2(\mathbb{R}^n_+)}
\]
\[+ i((D_t - b_k)\psi_\gamma w, (\text{AW}_k(t, D_x) + 2(\gamma + \log(D_x)\gamma))K_k(D_t - b_k)\psi_\gamma w)_{L^2(\mathbb{R}^n_+)}. \]
From (2.49) – (2.51) we have
\[((\tau - b_k(t, \xi))^2 - a_k(t, \xi) + i\partial_b b_k(t, \xi))\psi_\gamma(\xi) = ((P_k)_{BA}(t, x, \tau, \xi; R, \varepsilon) - \text{sub } \sigma(P_k)(t, x, \tau, \xi; R, \varepsilon)
- \hat{q}_k^0(t, x, \tau, \xi; R, \varepsilon, B))\psi_\gamma(\xi). \]

A simple calculation yields
\[
D_t \mathcal{E}_k(t; w, A, \gamma, l) = 2i \text{Im}((P_k)_{BA}\psi_\gamma w, K_k(D_t - b_k)\psi_\gamma w)_{L^2(\mathbb{R}^2)}^2
- 2i \text{Im}(\text{sub } \sigma(P_k)\psi_\gamma w, K_k(D_t - b_k)\psi_\gamma w)_{L^2(\mathbb{R}^2)}^2
- 2i \text{Im}((\hat{q}_k^0(t, x, D_t, D_x; R, \varepsilon, B) + \|\hat{D}_\gamma\|_{L^2(\mathbb{R}^2)}^2 + (\log \|\hat{D}_\gamma\|_{L^2(\mathbb{R}^2)})\psi_\gamma w, K_k(D_t - b_k)\psi_\gamma w)_{L^2(\mathbb{R}^2)}^2
+ i((D_t - b_k)\psi_\gamma w, (AW_k + 2(\gamma + \log \|\hat{D}_\gamma\|)K_k(D_t - b_k)\psi_\gamma w)_{L^2(\mathbb{R}^2)}^2
- i(\text{Op}(\partial_a a_k(t, \xi))\psi_\gamma w, K_k\psi_\gamma w)_{L^2(\mathbb{R}^2)}^2
+ i((w_k + (\log \|\hat{D}_\gamma\|)\psi_\gamma w, (AW_k + 2(\gamma + \log \|\hat{D}_\gamma\|)K_k\psi_\gamma w)_{L^2(\mathbb{R}^2)}^2,
\]
where \text{sub } \sigma(P_k) = \text{Op}(\text{sub } \sigma(P_k)(t, x, \tau, \xi; R, \varepsilon)). Therefore, we have
\[
(2.88) \quad \partial_t \mathcal{E}_k(t; w, A, \gamma, l) \leq \|K_k^{1/2}(P_k)_{BA}\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2
+ \|K_k^{1/2}W_{k,1}^{-1/2}\text{sub } \sigma(P_k)\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2
+ \|K_k^{1/2}\hat{q}_k^0(t, x, D_t, D_x; R, \varepsilon, B)\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2
+ \|K_k^{1/2}\hat{D}_\gamma^{2/2}\|_{L^2(\mathbb{R}^2)}^2 \psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2
+ \|K_k^{1/2}(\log \|\hat{D}_\gamma\|)\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2
- ((D_t - b_k)\psi_\gamma w, (A - 1)W_k + 2\gamma + \log \|\hat{D}_\gamma\| - W_{k,1} - 2)
\times K_k(D_t - b_k)\psi_\gamma w)_{L^2(\mathbb{R}^2)}^2
+ \|K_k^{1/2}W_{k}^{-1/2}W_{k,1}^{-1/2}\text{Op}(\partial_a a_k)\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2/2
- ((A - 1/2)W_k + 2\gamma + 2\log \|\hat{D}_\gamma\|)w_k + (\log \|\hat{D}_\gamma\|)^2\psi_\gamma w,
K_k\psi_\gamma w)_{L^2(\mathbb{R}^2)}^2.
\]

Lemma 2.16. Let \(\kappa \in \mathbb{R} \), and let \(q(t, x, \xi; R, \varepsilon) \in S^0_{1,0}([0, 3\delta_1] \times T^*\mathbb{R}^n) \) uniformly in \(\varepsilon \). Then we have
\[
(K_k^{1/2}W_{k,1}^{-1/2}) \circ q(t, x, \xi; R, \varepsilon) \circ (K_k^{-1/2}W_{k,1}^{1/2})
\]
Lemma 2.16 and (2.90) we can also write

Moreover, we have

\[K_{k}^{1/2} \circ q(t, x, \xi; R, \varepsilon) \circ K_{k}^{-1/2} \in S_{0,0}^{\infty}([0, 3\delta_1] \times T^{n} \mathbb{R}^{n}) \text{ uniformly in } \gamma \text{ and } \varepsilon. \]

Proof. Since \(K_{k}^{1/2} \circ q(t, x, \xi; R, \varepsilon) \circ K_{k}^{-1/2} = \tilde{K}_{k}^{1/2} \circ q(t, x, \xi; R, \varepsilon) \circ \tilde{K}_{k}^{-1/2} \), Lemma 2.15 and the results given in \(\S 18.5 \) of [4] prove the lemma.

By (2.13) and (2.22) we can write

\[(2.89) \quad \text{sub } \sigma(P)(t, x, \tau, \xi; R, \varepsilon) = \sum_{\mu=1}^{r_0} \tilde{c}_{\mu}(t, x) \beta_{\mu}(t, \tau, \xi) \]

for \((t, x, \tau, \xi) \in [0, 3\delta_1] \times \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{n} \), where \(\tilde{c}_{\mu}(t, x) \in C^{\infty}([0, 3\delta_1] \times \mathbb{R}^{n}) \) \((1 \leq \mu \leq r_0)\). So it follows from Lemma 2.4, (2.21), (2.49), (2.51) and (2.89) that

\[(2.90) \quad \text{sub } \sigma(P_k)(t, x, \tau, \xi; R, \varepsilon) = q_{k,0}^{1}(t, x, \xi; R, \varepsilon) \tau - b_k(t, \xi) \]

\[+ \sum_{\mu=1}^{r_0} \tilde{c}_{\mu}(t, x) d_k(t, \xi) \beta_{\mu}(t, b_k(t, \xi), \xi)/|\xi|^{m-2} \]

\[+ c_{k,0}(t, x, \xi) a_k(t, \xi) + c_{k,1}(t, \xi) \partial_{\xi} a_k(t, \xi) \]

for \((t, x, \xi) \in [0, 3\delta_1] \times \mathbb{R}^{n} \times \mathbb{C} \) with \(|\xi| \geq 1\), where \(d_k(t, \xi) \in S_{1,0}^{1}([0, 3\delta_1] \times T^{n} \mathbb{R}^{n}) \). We recall that \(c_{k,0}(t, x, \xi), c_{k,1}(t, \xi) \in S_{1,0}^{1}([0, 3\delta_1] \times T^{n} \mathbb{R}^{n}) \). By Lemma 2.16 and (2.90) we can also write

\[(2.91) \quad K_{k}^{1/2}W_{k,1}^{-1/2} \text{sub } \sigma(P_k) \psi_{W} \]

\[= (K_{k}^{1/2}W_{k,1}^{-1/2} q_{k,0}^{1}(t, x, D_x; R, \varepsilon) K_{k}^{-1/2}W_{k,1}^{1/2}) K_{k}^{1/2}W_{k,1}^{-1/2} \]

\[\times (D_t - b_k(t, D_x)) \psi_{\xi} \]

\[+ \sum_{\mu=1}^{r_0} (K_{k}^{1/2}W_{k,1}^{-1/2} \tilde{c}_{\mu}(t, x) K_{k}^{-1/2}W_{k,1}^{1/2}) K_{k}^{1/2}W_{k,1}^{-1/2} d_k(t, D_x) \]

\[\times \text{Op}(\beta_{\mu}(t, b_k(t, \xi), \xi)/|\xi|^{m-2}) \psi_{\xi} \]

\[+ (K_{k}^{1/2}W_{k,1}^{-1/2} c_{k,0}(t, x, D_x) K_{k}^{-1/2}W_{k,1}^{1/2}) K_{k}^{1/2}W_{k,1}^{-1/2} a_k(t, D_x) \psi_{\xi} \]

\[+ K_{k}^{1/2}W_{k,1}^{-1/2} c_{k,1}(t, D_x) \text{Op}(\partial_{\xi} a_k(t, \xi)) \psi_{\xi} \]

\[K_{k}^{1/2}W_{k,1}^{-1/2} \tilde{c}_{\mu}(t, x) K_{k}^{-1/2}W_{k,1}^{1/2} = \tilde{c}_{\mu}(t, x) + \tilde{c}_{\mu,0}(t, x, D_x; A, \gamma, l), \]
where \(\tilde{c}_{\mu,0}(t, x, \xi; A, \gamma, l) \| \xi \|_{k}^{\rho} \in S_{0,0}^{0}(0, 3\delta_{1}) \times T^{*}R^{n} \) uniformly in \(\gamma \). From Lemma 2.16, the Calderon-Vaillancourt theorem on \(L^{2} \) boundedness and (2.91) we can see that there are \(C_{0} > 0 \) and \(C(A, l) > 0 \) satisfying

\[
\| K_{k}^{1/2}W_{k,1}^{-1/2} \sigma(P_{k})\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2} \\
\leq C(A, l) \left\{ \| K_{k}^{1/2}W_{k,1}^{-1/2}(D_{t} - b_{k})\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2} \\
+ \sum_{\mu=0}^{r_{0}} \| K_{k}^{1/2}W_{k,1}^{-1/2} [[D_{x}]]_{k}^{-\rho} \text{Op}(\beta^{\mu}(t, b_{k}(t, \xi), \xi)/|\xi|^{m-2})\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2} \\
+ \sum_{\nu=0}^{1} \| K_{k}^{1/2}W_{k,1}^{-1/2} \langle D_{x} \rangle_{\gamma}^{-1} \text{Op}(\partial_{t}^{\nu}a_{k}(t, \xi))\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2} \right\} \\
+ C_{0} \sum_{\mu=1}^{r_{0}} \| K_{k}^{1/2}W_{k,1}^{-1/2} \text{Op}(\beta^{\mu}(t, b_{k}, \xi)/|\xi|^{m-2})\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2}
\]

for \(t \in [0, 3\delta_{1}] \). It is easy to see that

\[
C(A, l) \| K_{k}^{1/2}W_{k,1}^{-1/2} [[D_{x}]]_{k}^{-\rho} \text{Op}(\beta^{\mu}(t, b_{k}, \xi)/|\xi|^{m-2})\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2} \\
\leq \| K_{k}^{1/2}W_{k,1}^{-1/2} \text{Op}(\beta^{\mu}(t, b_{k}, \xi)/|\xi|^{m-2})\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2} \\
+ C(A, l)^{1/\rho} \| K_{k}^{1/2}W_{k,1}^{-1/2} [[D_{x}]]_{k}^{-1} \text{Op}(\beta^{\mu}(t, b_{k}, \xi)/|\xi|^{m-2})\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2}
\]

for \(t \in [0, 3\delta_{1}] \), since

\[
C(A, l) \| \xi \|_{k}^{-2\rho} \leq 1 + C(A, l)^{1/\rho} \| \xi \|_{k}^{-2}.
\]

From (2.82) we have, with \(C''(A, l) > 0 \),

\[
C(A, l) \| W_{k,1}^{-1/2} [[D_{x}]]_{k}^{-\rho} \text{Op}(\beta^{\mu}(t, b_{k}, \xi)/|\xi|^{m-2})\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2} \\
\leq \| W_{k,1}^{-1/2} K_{k}^{1/2} \text{Op}(\beta^{\mu}(t, b_{k}, \xi)/|\xi|^{m-2})\psi_{\gamma}w \|_{L^{2}(R^{2})}^{2} \\
+ C''(A, l) \| W_{k,1}^{-1/2} K_{k}^{-1/2} \psi_{\gamma}w \|_{L^{2}(R^{2})}^{2}
\]

for \(t \in [0, 3\delta_{1}] \). By (2.70) with \(\tilde{\Psi}(\xi) \) replaced by \(\psi(\xi) \) there is \(C > 0 \) such that

\[
|\langle \xi \rangle_{\gamma}^{-1} \partial_{t}^{\nu}a_{k}(t, \xi)\psi_{\gamma}(\xi)| \leq C \sqrt{a_{k}(t, \xi)}\psi_{\gamma}(\xi) \leq C w_{k}(t, \xi)^{1/2}\psi_{\gamma}(\xi)
\]

for \(\nu = 0, 1 \) and \((t, \xi) \in [0, 3\delta_{1}] \times R^{n} \). Noting that

\[
|W_{k,1}(t, \xi)^{-1}w_{k}(t, \xi)^{-1/2}\beta^{\mu}(t, b_{k}(t, \xi), \xi)/|\xi|^{m-2}\psi_{\gamma}(\xi) \leq 1
\]
for \((t, \xi) \in [0, 3\delta_1] \times \mathbb{R}^n\), we have
\[
\|K_k^{1/2}W_{k,1}^{-1/2}\text{Op}(\beta^l(t, b_k, \xi)/|\xi|^{m-2})\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2
\leq \|K_k^{1/2}W_{k,1}^{1/2}w_k(t, D_x)^{1/2}\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2
\]
for \(t \in [0, 3\delta_1]\), which gives, with \(C(A, l) > 0\),
\begin{align*}
(2.92) \quad &\|K_k^{1/2}W_{k,1}^{-1/2}\text{sub} \sigma(P_k)\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2 \\
&\leq r_0(C_0 + 1)\|K_k^{1/2}W_{k,1}^{1/2}w_k^{1/2}\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2 \\
&\quad + C(A, l)(\|K_k^{1/2}(D_t - b_k)\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2 + \|K_k^{1/2}w_k^{1/2}\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2)
\end{align*}
for \(t \in [0, 3\delta_1]\). From (2.51) and Lemma 2.16 we have
\[
K_k^{1/2}\hat{q}^0_k(t, x, D_t, D_x; R, \varepsilon, B)
= \hat{q}^0_{k,0}(t, x, D_x; R, A, \gamma, l, \varepsilon, B)\log(1 + \langle D_x \rangle)K_k^{1/2}(D_t - b_k)
+ \hat{q}^0_{k,1}(t, x, D_x; R, A, \gamma, l, \varepsilon, B)\log(1 + \langle D_x \rangle)K_k^{1/2}
\]
where \(\hat{q}^0_{k,\mu}(t, x, D_x; R, A, \gamma, l, \varepsilon, B) \in S_{0,0}^{1+\mu}(\mathbb{R} \times T^*\mathbb{R}^n)\) uniformly in \(\gamma\) and \(\varepsilon\) \((\mu = 0, 1)\). Therefore, there is \(C(A, l, B) > 0\) such that
\begin{align*}
(2.93) \quad &\|K_k^{1/2}\hat{q}^0_k(t, x, D_t, D_x; R, \varepsilon, B)\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2 \\
&\leq C(A, l, B)\{\|K_k^{1/2}(D_t - b_k)\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2 \\
&\quad + \|K_k^{1/2}\log(D_x)\gamma\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2\}
\end{align*}
for \(t \in [0, 3\delta_1]\) and \(\gamma \geq 2\), since \(\log(1 + \langle \xi \rangle) \leq \log\langle \xi \rangle + \log 2 \leq 2\log\langle \xi \rangle\) if \(\gamma \geq 2\). Noting that
\[
W_k(t, \xi)^{-1/2}\|\xi\|^{2\alpha_0}_k \leq W_k(t, \xi)^{-1/2}w_k(t, \xi)^{1/2}W_{k,0}(t, \xi) \leq W_k^{1/2}w_k(t, \xi)^{1/2},
\]
we have
\begin{align*}
(2.94) \quad &\|K_k^{1/2}W_k^{-1/2}\|D_x\|_k^{2\alpha_0}\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2 \\
&\leq \|K_k^{1/2}W_k^{1/2}w_k^{1/2}\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2 \\
&\leq \|K_k^{1/2}W_k^{1/2}w_k^{1/2}\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2
\end{align*}
for \(t \in [0, 3\delta_1]\). Since
\[
|W_k(t, \xi)^{-1/2}w_k(t, \xi)^{-1/2}\partial_\alpha k(t, \xi)\psi_\gamma(\xi)| \leq W_{k,2}(t, \xi)^{1/2}w_k(t, \xi)^{1/2}\psi_\gamma(\xi),
\]
we have
\begin{align*}
(2.95) \quad &\|K_k^{1/2}W_k^{-1/2}w_k^{-1/2}\text{Op}(\partial_\alpha k)\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2 \\
&\leq \|K_k^{1/2}W_k^{1/2}w_k^{1/2}\psi_\gamma w\|_{L^2(\mathbb{R}^2)}^2
\end{align*}
for \(t \in [0, 3\delta] \). Therefore, it follows from (2.88) and (2.92) – (2.95) that

\[
\partial_t \mathcal{E}_k(t; w, A, \gamma, l) \leq \|K_k^{1/2}(P_k)_{BA}^l\psi_\gamma w\|^2_{L^2(\mathbb{R}^2)}
\]

for \(t \in [0, 3\delta] \), if \(A \geq r_0(C_0+1) + 2 \) and \(\gamma \geq \gamma_k \equiv (C(A, l) + C(A, l, B))/2 + 1 \). Let \(A = r_0(C_0+1) + 2 \) and \(\gamma \geq \gamma_k \). Then we have

\[
\mathcal{E}_k(t; w, A, \gamma, l) \leq \int_0^t \|K_k(s, D_x)^{1/2}(P_k)_{BA}^l\psi_\gamma w|_{t=s}\|^2_{L^2(\mathbb{R}^2)} ds
\]

for \(t \in [0, 3\delta] \). Note that

\[
e^{-\gamma t} \langle \xi \rangle^{l-\nu_k(A, \delta)} \leq K_k(t, \xi)^{1/2} \leq e^{-\gamma t} \langle \xi \rangle^{l},
\]

\[
\|D_t\langle D_x \rangle^l\psi_\gamma w\|^2_{L^2(\mathbb{R}^2)} + \|\langle D_x \rangle^l\psi_\gamma w\|^2_{L^2(\mathbb{R}^2)}
\]

\[
\leq C\{\|D_t - b_k(t, D_x)\langle D_x \rangle^l\psi_\gamma w\|^2_{L^2(\mathbb{R}^2)} + \|\langle D_x \rangle^l\psi_\gamma w\|^2_{L^2(\mathbb{R}^2)}\}
\]

for \(t \in [0, 3\delta] \), where \(\nu_k(A, \delta) > 0 \) and \(C > 0 \). Then we have

\[
\sum_{\mu=0}^1 \|e^{-\gamma t} D_t^\mu \langle D_x \rangle^l \psi_\gamma w\|^2_{L^2(\mathbb{R}^2)} \leq C \int_0^t \|e^{-\gamma s} \langle D_x \rangle^l \psi_\gamma w|_{t=s}\|^2_{L^2(\mathbb{R}^2)} ds
\]

for \(t \in [0, 3\delta] \). Since \((1 - \psi_\gamma(\xi))\Psi_\gamma(\xi) = 0 \), there is \(R_k(t, x, \tau, \xi; R, \varepsilon, B) \in S_{1,0}^{m-2k+1,-\infty} \) uniformly in \(\gamma \) and \(\varepsilon \) such that

\[
(P_k)_{BA}^l\psi_\gamma v_{R,\varepsilon}^k = \psi_\gamma v_{R,\varepsilon}^{k-1} + R_k(t, x, D_t, D_x; R, \varepsilon, B)\psi_\gamma v.
\]

This, together with (2.96), yields

\[
\sum_{\mu=0}^1 \|e^{-\gamma t} D_t^\mu \langle D_x \rangle^l \psi_\gamma v_{R,\varepsilon}^k\|^2_{L^2(\mathbb{R}^2)} \leq C \int_0^t \|e^{-\gamma s} \langle D_x \rangle^l \psi_\gamma v_{R,\varepsilon}^{k-1}|_{t=s}\|^2_{L^2(\mathbb{R}^2)} ds
\]

\[
+ C_{l,N}(B) \sum_{\mu=0}^{m-2k+1} \int_0^t \|e^{-\gamma s} D_t^\mu \langle D_x \rangle^l \psi_\gamma v|_{t=s}\|^2_{L^2(\mathbb{R}^2)} ds
\]

for \(t \in [0, 3\delta] \) and \(N \in \mathbb{N} \), where \(C, C_{l,N}(B) > 0 \). From (2.97) we can write

\[
D_t^2\psi_\gamma v_{R,\varepsilon}^k = \psi_\gamma v_{R,\varepsilon}^{k-1} - (P_k)_{BA}^l - D_t^2\psi_\gamma v_{R,\varepsilon}^k + R_k(t, x, D_t, D_x; R, \varepsilon, B)\psi_\gamma v.
\]
Applying the same argument as for (2.47), we can prove that there are
\[d_{k,\nu,l}(t,x,\tau,\xi; R,\varepsilon, B) \in S^{1-1}_{1,0} \text{ uniformly in } \varepsilon, \]
\[d^{1,\nu}_{k,\nu,l}(t,x,\tau,\xi; R,\varepsilon, B) \in S^{m-2k+\nu-1,-\infty}_{1,0} \text{ uniformly in } \gamma \text{ and } \varepsilon \]
\[R_{k,\nu,l}(t,x,\tau,\xi; R,\varepsilon, B, \gamma) \in S^{m-2k+\nu-1,-\infty}_{1,0} \text{ uniformly in } \gamma \text{ and } \varepsilon \]

(2.99) \[D_t^\nu (D_x^l) \psi \psi v_{R,\varepsilon}^k = d_{k,\nu,l}(t,x, D_t, D_x; R,\varepsilon, B) \psi \psi v_{R,\varepsilon}^k \]
\[+ d^{1,\nu}_{k,\nu,l}(t,x, D_t, D_x; R,\varepsilon, B) \psi \psi v_{R,\varepsilon}^{k-1} \]
\[+ R_{k,\nu,l}(t,x, D_t, D_x; R,\varepsilon, B, \gamma) \psi \psi v \]

for \(\nu \geq 2 \). Therefore, it follows from (2.98) and (2.99) that there are positive constants \(C_l(B) \) and \(C_{l,N}(B) \) (\(N \in \mathbb{N} \)) such that

\[
\sum_{\mu=0}^{2k} \| e^{-\gamma t} D_t^{\mu} (D_x^l) \psi \psi v_{R,\varepsilon}^k \|_{L^2(R^n)}^2 \\
\leq C_l(B) \left\{ \int_0^t \| e^{-\gamma s} (D_x^l)^{l+\nu_2(A,\delta_1)} \psi \psi v_{R,\varepsilon}^{k-1} \|_{L^2(R^n)}^2 ds \right. \\
+ \sum_{\mu=0}^{2k-2} \| e^{-\gamma t} D_t^{\mu} (D_x^l) \psi \psi v_{R,\varepsilon}^{k-1} \|_{L^2(R^n)}^2 \right\} \\
+ C_{l,N}(B) \sum_{\mu=0}^{m-1} \| e^{-\gamma t} D_t^{\mu} (D_x^l) \psi \psi v_{R,\varepsilon}^{k-1} \|_{L^2(R^n)}^2
\]

for \(t \in [0,3\delta_1] \) and \(N \in \mathbb{N} \). This, together with Lemma 2.7, yields the following

Lemma 2.17. There are \(\gamma_0(B) \geq 1 \) and positive constants \(\nu_1, C_l(B) \) and \(C_{l,N}(B) \) (\(l \in \mathbb{R}, B \geq 1, N \in \mathbb{N} \)) such that

\[
\sum_{\mu=0}^{m} \int_0^t \| e^{-\gamma s} D_t^{\mu} (D_x^l) \psi \psi v_{R,\varepsilon}^{0} e^{-BA}\Psi \psi v \|_{L^2(R^n)}^2 ds \\
\leq C_l(B) \int_0^t \| e^{-\gamma s} (D_x^l)^{l+\nu_1} \psi \psi v_{R,\varepsilon}^{0} \|_{L^2(R^n)}^2 ds \\
+ C_{l,N}(B) \sum_{\mu=0}^{m-1} \int_0^t \| e^{-\gamma s} D_t^{\mu} (D_x^l) \psi \psi v_{R,\varepsilon}^{0} \|_{L^2(R^n)}^2 ds
\]

for \(B \geq 1, l \in \mathbb{R}, N \in \mathbb{N}, t \in [0,3\delta_1] \) and \(\gamma \geq \gamma_0(B) \).

Remark. \(v_{R,\varepsilon}^{0}(t, x) \) also depends on \(\gamma \) and \(B \) (see (2.38)).
2.3. Proof of Theorem 1.2

We can choose \(\tilde{\psi}_j(\xi) \in S_{1,0}^0 \) (\(1 \leq j \leq N_0 \)) so that the \(\tilde{\psi}_j(\xi) \) are positively homogeneous of degree 0 for \(|\xi| \geq 1 \), supp \(\tilde{\psi}_j \subset C_{j,0} \) (\(1 \leq j \leq N_0 \)) and

\[
\sum_{j=1}^{N_0} \tilde{\psi}_j(\xi)^2(1 - \Theta_\gamma(\xi))^2 = (1 - \Theta_\gamma(\xi))^2.
\]

From (2.35) and (2.38) we have

\[
\psi_{j,\gamma}v_{j,R,\varepsilon}^0 = e^{-B\lambda_j}\Gamma_j\gamma g_{R,\varepsilon} - e^{-B\lambda_j}\psi_{j,\gamma}R_j(t, x, D_t, D_x; R, \varepsilon, \gamma)\psi_{j,\gamma}v
\]

\[
+ e^{-B\lambda_j}\psi_{j,\gamma}C_j(t, x, D_t, D_x; R, \varepsilon, \gamma)v
\]

\[
+ e^{-B\lambda_j}\psi_{j,\gamma}([P_{R,\varepsilon}, \Psi_{j,\gamma}] - C_j(t, x, D_t, D_x; R, \varepsilon, \gamma))v
\]

\[
e^{-B\lambda_j}\psi_{j,\gamma}g_{R,\varepsilon} - \tilde{R}_j(t, x, D_t, D_x; R, \varepsilon, \gamma, B)(1 - \Theta_\gamma(D_x))v
\]

\[
+ C_1(t, x, D_t, D_x; R, \varepsilon, \gamma, B)(D_x)_{\gamma}^{-B}v
\]

\[
+ C_2(t, x, D_t, D_x; R, \varepsilon, \gamma, B)\Theta_\gamma(D_x)v,
\]

where \(\tilde{R}_j(t, x, \tau, x; R, \varepsilon, \gamma, B) \in S_{1,0}^{m-1,-\infty} \) uniformly in \(\gamma \) and \(\varepsilon \), \(C_\mu(t, x, \tau, x; R, \varepsilon, \gamma, B) \in S_{1,0}^{-1} \) (\(\mu = 1, 2 \)) uniformly in \(\gamma \) and \(\varepsilon \) and \(\psi_{j,\gamma} \) is \(\tilde{\psi}_j \) in §2.2. Indeed, we have

\[
e^{-B\lambda_j}(\xi) = (1 + (\xi))^{-B} \leq 2B(\xi)_\gamma^{-B}
\]

if \(C_j(t, x, \tau, x; R, \varepsilon, \gamma) \neq 0 \) and \(|\xi| \geq 3\gamma/2 \). Since

\[
\tilde{\psi}_j(\xi)(1 - \Theta_\gamma(\xi))e^{-B\lambda_j}(\xi)\psi_{j,\gamma}(\xi) = \tilde{\psi}_j(\xi)(1 - \Theta_\gamma(\xi)),
\]

Lemma 2.17, with (2.100), yields

\[
\sum_{\mu=0}^m \int_0^t \| e^{-\gamma s} D_t^\mu \langle D_x \rangle_\gamma^{l+\mu}(1 - \Theta_\gamma(D_x))v |_{t=s} \|^2_{L^2(\mathbb{R}^2)} ds
\]

\[
\leq C_l(B) \left\{ \int_0^t \| e^{-\gamma s} \langle D_x \rangle_\gamma^{l+\mu} \|_{L^2(\mathbb{R}^2)} ds
\]

\[
+ \sum_{\mu=0}^{m-1} \int_0^t \| e^{-\gamma s} D_t^\mu \langle D_x \rangle_\gamma^{m+l+\mu-\mu-1} \Theta_\gamma(D_x)v |_{t=s} \|^2_{L^2(\mathbb{R}^2)} ds
\]

\[
+ \gamma^{-1} \sum_{\mu=0}^{m-1} \int_0^t \| e^{-\gamma s} D_t^\mu \langle D_x \rangle_\gamma^{l+\mu} v |_{t=s} \|^2_{L^2(\mathbb{R}^2)} ds \right\}
\]

for \(B \geq \nu_1 + 1, l \in \mathbb{R}, t \in [0,3\delta_1] \) and \(\gamma \geq \gamma_0(B) \), with modifications of \(C_l(B) \) if necessary. Put \(\gamma(l) = \max\{\gamma_0(\nu_1 + 1), 4C_l(\nu_1 + 1)\} \), and let \(l \in \mathbb{R} \)
and \(\gamma \geq \gamma(l) \). Then (2.101) gives

\[
(2.102) \quad \sum_{\mu=0}^{m} \int_{0}^{t} \| e^{-\gamma s} D_t^\mu (D_x)^{l-\mu} v |_{t=s} \|^2_{L^2(R^2)} \, ds
\]

\[
\leq 2C_1 (\nu_1 + 1) \left\{ \int_{0}^{t} \| e^{-\gamma s} (D_x)^{l+\nu_1} g_{R,e}(s,x) \|^2_{L^2(R^2)} \, ds
\right.
\]

\[
+ \sum_{\mu=0}^{m-1} \int_{0}^{t} \| e^{-\gamma s} D_t^\mu (D_x)^{l+\nu_1-1} \Theta_\gamma (D_x) v |_{t=s} \|^2_{L^2(R^2)} \, ds
\right\}
\]

\[
+ \sum_{\mu=0}^{m-1} \int_{0}^{t} \| e^{-\gamma s} D_t^\mu (D_x)^{l+\nu_1-2} D_{x}^\nu (D_x) v |_{t=s} \|^2_{L^2(R^2)} \, ds
\]

for \(t \in [0, 3\delta_1] \).

Lemma 2.18. For \(k \in \mathbb{Z}_+ \) there is \(C_0(k) > 0 \) such that

\[
(2.103) \quad \| D^k_t (D_x)^{l-k} u \|_{L^2(R^2)} \leq C_0(k) \sum_{\mu=0}^{k} \| (D_t \pm i\gamma)^\mu (D_x)^{l-\mu} u \|_{L^2(R^2)},
\]

where \(l \in \mathbb{R} \) and \(\gamma \geq 1 \). Moreover, for \(k \in \mathbb{Z}_+ \) there is \(C(k) > 0 \) satisfying

\[
(2.104) \quad C(k)^{-1} \sum_{\mu=0}^{k} \| D^\mu_t (D_x)^{l-\mu} (e^{\pm \gamma t} u) \|_{L^2(R^2)}
\]

\[
\leq \sum_{\mu=0}^{k} \| e^{\pm \gamma t} D^\mu_t (D_x)^{l-\mu} u \|_{L^2(R^2)}
\]

\[
\leq C(k) \sum_{\mu=0}^{k} \| D^\mu_t (D_x)^{l-\mu} (e^{\pm \gamma t} u) \|_{L^2(R^2)},
\]

where \(l \in \mathbb{R} \) and \(\gamma \geq 1 \).

Proof. Noting that

\(D_t^{k+1} (D_x)^{l-k-1} u = D_t^k (D_x)^{l-k-1} (D_t \pm i\gamma) u \mp i\gamma D_t^k (D_x)^{l-k-1} u, \)

we can prove (2.103) by induction on \(k \). (2.104) easily follows from (2.103).

Since

\[
(2.105) \quad \sum_{\mu=0}^{m} \tau^{2\mu} (\xi)^{2m-2\mu} \leq \langle (\tau, \xi) \rangle^{2m} \leq 2m \sum_{\mu=0}^{m} \tau^{2\mu} (\xi)^{2m-2\mu},
\]

48
Lemma 2.18 gives
\begin{equation}
\|\langle (D_t, D_x) \rangle_{\gamma}^m \langle D_x \rangle^l \Theta_\gamma(D_x)(e^{-\gamma t} \chi_0(t) v)\|_{L^2(\mathbb{R}^{n+1})}^2
\geq C^{-1} \sum_{\mu=0}^m \|e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{m-\mu+1} \Theta_\gamma(D_x)(\chi_0(t) v)\|_{L^2(\mathbb{R}^{n+1})}^2
\geq C^{-1} \sum_{\mu=0}^m \int_0^{36\delta_1} \|e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{m-\mu+1} \Theta_\gamma(D_x)v\|_{L^2(\mathbb{R}^2)}^2 dt.
\end{equation}

Since \(\chi_1(t) = \chi_2(t) = 0 \) if \(t \geq 6\delta_1 \), it follows from Lemma 2.5 and (2.104) – (2.106) that
\begin{equation}
\sum_{\mu=0}^m \int_0^{36\delta_1} \|e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{l-m} \Theta_\gamma(D_x)v\|_{L^2(\mathbb{R}^2)}^2 dt
\leq C_l' \int_0^{6\delta_1} \|e^{-\gamma t} \langle D_x \rangle_{\gamma}^{l-m} g_{R,\varepsilon}\|_{L^2(\mathbb{R}^2)}^2 dt
+ \gamma^{-1} C_{l,N}' \sum_{\mu=0}^m \int_0^{6\delta_1} \|e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{l-m-N}v\|_{L^2(\mathbb{R}^2)}^2 dt,
\end{equation}
where \(C_l' > 0 \) and \(C_{l,N}' > 0 \) (\(N \in \mathbb{N} \)). From (2.102), (2.107) and Lemma 2.6 we have
\begin{equation}
\sum_{\mu=0}^m \int_0^{6\delta_1} \|e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{l-m} v\|_{L^2(\mathbb{R}^2)}^2 dt
\leq C_l'' \int_0^{6\delta_1} \|e^{-\gamma t} \langle D_x \rangle_{\gamma}^{l+n_0} g_{R,\varepsilon}\|_{L^2(\mathbb{R}^2)}^2 dt
+ \gamma^{-1} C_{l,N}'' \sum_{\mu=0}^m \int_0^{6\delta_1} \|e^{-\gamma t} D_t^\mu \langle D_x \rangle_{\gamma}^{l-m-N} v\|_{L^2(\mathbb{R}^2)}^2 dt,
\end{equation}
for \(l \in \mathbb{R} \) and \(\gamma \geq \max\{\gamma(l), \gamma(l + \nu_0 - 1)\} \), where
\begin{align*}
C_l'' &= 2C_l(\nu_1 + 1) + (2C_l(\nu_1 + 1) + 1)C_{l+m+\nu_1-1}^l + C(2C_l(\nu_1 + 1) + 1)(C_{l+m+n_0+\nu_1-1}^l + 1), \\
C_{l,N}'' &= C_{l+m+n_0+\nu_1-2,N+m+n_0+\nu_1-2}^l + (2C_l(\nu_1 + 1) + 1)C_{l+m+\nu_1-1, N+m+\nu_1-1}^l.
\end{align*}

Therefore, we have the following

Lemma 2.19. There are \(C(l) > 0 \) (\(l \in \mathbb{R} \)) and \(\tilde{\nu} > 0 \) satisfying
\begin{equation}
\sum_{\mu=0}^m \int_0^{6\delta_1} \|D_t^\mu \langle D_x \rangle_{\gamma}^{l-\mu}v\|_{L^2(\mathbb{R}^2)}^2 dt
\end{equation}
\[\leq C(l) \int_0^{\delta_1} \| \langle D_x \rangle^{l+\bar{\nu}} P(t, x, D_t, D_x; R, \varepsilon) v \|_{L^2(R^2)}^2 \, dt \]

for \(l \in \mathbb{R} \) and \(v(t, x) \in C^\infty(\mathbb{R}; H^\infty(R^n_+)) \) with \(v|_{t \leq 0} = 0 \).

Let \(f(t, x) \in C^\infty([0, \infty) \times \mathbb{R}^n) \) satisfy \(D_x^j f(t, x)|_{t=0} = 0 \ (j \in \mathbb{Z}_+) \), and recall that \(f_{R,\varepsilon} \in \mathcal{E}^{[3/2]}(\mathbb{R}^{n+1}) \) was defined by (2.23) and (CP)\(_{R,\varepsilon} \) has a unique solution \(v_{R,\varepsilon} \in \mathcal{E}^{[3/2]}(\mathbb{R}^{n+1}) \), where \(R \geq 1 \) and \(\varepsilon \in (0, 1) \). We note that \(\text{supp} v_{R,\varepsilon} \subset \{(t, x) \in \mathbb{R}^{n+1} ; (t, x) \in K_{s,y}^+ \) for some \((s, y) \in \text{supp} f_{R,\varepsilon}\)\), especially, \(v_{R,\varepsilon}(t, x) \in C^\infty(\mathbb{R}; H^\infty(R^n_+)) \). Let \(0 < \varepsilon' \leq \varepsilon \leq 1 \), and put \(w_{R,\varepsilon,\varepsilon'} = v_{R,\varepsilon} - v_{R,\varepsilon'} \). Then we have

\[
P(t, x, D_t, D_x; R, \varepsilon) w_{R,\varepsilon,\varepsilon'} = f_{R,\varepsilon} - f_{R,\varepsilon'}
\]

\[\begin{align*}
&+ \Theta_{\delta_1}(t) \sum_{j=1}^m \sum_{|a| \leq j - 1} (a_{j,a}(t, x; R, \varepsilon') - a_{j,a}(t, x; R, \varepsilon)) D_x^{m-j} D_x^a v_{R,\varepsilon'} \\
&+ \frac{i}{2} \Theta_{\delta_1}(t) \Theta_{\delta_1}(-t)(\chi_{R,\varepsilon'}(x) - \chi_{R,\varepsilon}(x))(\partial_t \partial_x \tilde{p})(t, D_t, D_x) v_{R,\varepsilon'} \\
&\equiv f_{R,\varepsilon,\varepsilon'}
\end{align*}\]

It follows from (2.11), (2.12), (2.24) and Lemma 2.19 that

\[
\int_0^\delta \| \langle D_x \rangle^{l+\bar{\nu}} f_{R,\varepsilon,\varepsilon'} \|_{L^2(R^2)}^2 \, dt \leq \int_0^\delta \| \langle D_x \rangle^{l+\bar{\nu}} (f_{R,\varepsilon} - f_{R,\varepsilon'}) \|_{L^2(R^2)}^2 \, dt \\
+ C_{R,\varepsilon,\varepsilon'} \sum_{j=0}^m \int_0^\delta \| D_x^j \langle D_x \rangle^{l+\bar{\nu}+m-j} v_{R,\varepsilon'} \|_{L^2(R^2)}^2 \, dt
\]

\[
\leq \int_0^\delta \| \langle D_x \rangle^{l+\bar{\nu}} (f_{R,\varepsilon} - f_{R,\varepsilon'}) \|_{L^2(R^2)}^2 \, dt \\
+ C(l + \bar{\nu} + m) C_{R,\varepsilon,\varepsilon'} \int_0^\delta \| \langle D_x \rangle^{l+2\bar{\nu}+m} f_{R,\varepsilon'} \|_{L^2(R^2)}^2 \, dt
\]

\[
\to 0 \quad \text{as } \varepsilon \downarrow 0,
\]

where

\[
C_{R,\varepsilon,\varepsilon'} = \sup \{ |a_{j,a}(t, x; R, \varepsilon') - a_{j,a}(t, x; R, \varepsilon)| + |\chi_{R,\varepsilon'}(y) - \chi_{R,\varepsilon}(y)| ; \\
t \in [0, 2\delta_1], \ x, y \in \mathbb{R}^n, \ 1 \leq j \leq m \ \text{and} \ |a| \leq j - 1 \}.
\]

Thus, from Lemma 2.19 we have

\[
\sum_{j=0}^m \int_0^\delta \| D_x^j \langle D_x \rangle^{l-j} w_{R,\varepsilon,\varepsilon'} \|_{L^2(R^2)}^2 \, dt \to 0 \quad \text{as } \varepsilon \downarrow 0.
\]
This implies that there is $v_R \in \mathcal{D}'((\infty, 6\delta_1) \times \mathbb{R}^n)$ such that

$$v_{R,1/j} \to v_R \quad \text{in } \mathcal{D}'((\infty, 6\delta_1) \times \mathbb{R}^n) \text{ as } j \to \infty,$$

since $v_{R,1/j}(t, x) = 0$ if $t \leq 0$. Then we have

$$P(t, x, D_t, D_x; R)v_R = f_R \quad \text{in } \mathcal{D}'((\infty, 6\delta_1) \times \mathbb{R}^n),$$

where $f_R(t, x) = \Theta_{2\delta_1}(t)\Theta(|x| - R)\tilde{f}(t, x)$ and $C_l(f_R) > 0$. \(2.109\) gives $v_R \in C^{m-1}([0, 6\delta_1]; H^\infty(\mathbb{R}^n))$. This, together with \(2.108\), gives $v_R \in C^\infty([0, 6\delta_1]; H^\infty(\mathbb{R}^n))$. Moreover, we have

$$P(t, x, D_t, D_x)v_R = f(t, x)$$

for $t \in [0, \delta_1]$ and $x \in \mathbb{R}^n$ with $|x| \leq R + 1$. Note that Lemma 2.19 is valid, replacing $P(t, x, D_t, D_x; R, \varepsilon)$ by $P(t, x, D_t, D_x; R)$. Therefore, for $l \in \mathbb{R}$ and $k \geq m$ there is $C_{l,k} > 0$ satisfying

$$\sum_{j=0}^k \int_0^{6\delta_1} \|D_t^j(D_x)^{l-j}v(t, x)\|_{L^2(\mathbb{R}^2)}^2 dt \leq C_{l,k} \sum_{j=0}^{k-m} \int_0^{6\delta_1} \|D_t^j(D_x)^{l+m-j}P(t, x, D_t, D_x; R)v\|_{L^2(\mathbb{R}^2)}^2 dt$$

for $v(t, x) \in C^\infty([0, 6\delta_1]; H^\infty(\mathbb{R}^n))$ with $D_t^jv(t, x)|_{t \leq 0} = 0$ ($j \in \mathbb{Z}_+$). Indeed, for $k \geq m$ there are $d_{k,\mu}^\nu(t, x; \xi; R) \in S_{1,0}^{k-n-\mu}([0, \delta_1] \times T^*\mathbb{R}^n)$ ($\nu = 0, 1, 0 \leq \mu \leq m - 1 + \nu(k - 2m + 1)$) such that

$$D_t^mv = \sum_{\mu=0}^{m-1} d_{k,\mu}^\nu(t, x; D_x; R)D_t^\mu v + \sum_{\mu=0}^{k-m} d_{k,\mu}^\nu(t, x; D_x; R)D_t^\mu P(t, x, D_t, D_x; R)v,$$

which can be proved by induction on k ($\geq m$).

Lemma 2.20. Assume that $u \in C^\infty([0, \delta_1] \times \mathbb{R}^n)$, and that $D_t^ju|_{t=0} = 0$ for $j \in \mathbb{Z}_+$. Let $(t_0, x^0) \in [0, \delta_1] \times \mathbb{R}^n$, and assume that

$$K_{(t_0, x^0)} \cap \text{supp } P(t, x, D_t, D_x)u = \emptyset.$$

Then $(t_0, x^0) \notin \text{supp } u$.

51
Proof. Choose \(\tilde{u} \in C^\infty([0, \infty) \times \mathbb{R}^n) \) so that \(\tilde{u}|_{t \leq \delta_1} = u \) and \(\tilde{u}(t, x) = 0 \) if \(t \geq 2\delta_1 \), and put

\[
F_R(t, x) = P(t, x, D_t, D_x; R) \tilde{u}(t, x).
\]

We choose \(R > 0 \) so that \(K_{(t_0, x^0)}^- \subset \{(t, x) \in [0, \delta_1] \times \mathbb{R}^n; |x| \leq R\} \). Note that \(F_R(t, x) = P(t, x, D_t, D_x)u(t, x) \) if \(t \in [0, \delta_1] \) and \(|x| \leq R + 1 \). We can write

\[
P(t, x, D_t, D_x; R)(\Theta(|x| - R)\tilde{u}(t, x)) = G_R(t, x),
\]

\[
G_R = \Theta(|x| - R)F_R + [P(\cdot, R), \Theta(|x| - R)]\tilde{u} \in C^\infty([0, 6\delta_1]; H^\infty(\mathbb{R}^n)).
\]

Then there is \(w_R \in C^\infty([0, 6\delta_1]; H^\infty(\mathbb{R}^n)) \) satisfying

\[
\begin{cases}
P(t, x, D_t, D_x; R)w_R = G_R & \text{in } [0, 6\delta_1] \times \mathbb{R}^n, \\
w_R(t, x)|_{t \leq 0} = 0.
\end{cases}
\]

Indeed, putting

\[
G_{R, \varepsilon}(t, x) = \Theta_{2\delta_1}(t) \int_{\mathbb{R}^{n+1}} \rho_{\varepsilon}(t-s)\rho_{\varepsilon}(x-y)G_R(s, y) \, ds dy,
\]

we can construct \(w_R \) as the limit of \(\{w_{R, 1/j}\}_{j=1,2,\ldots} \), where \(w_{R, \varepsilon} \) is a unique solution in \(\mathcal{E}^{[3/2]}(\mathbb{R}^{n+1}) \) of \((CP)_{R, \varepsilon} \) with \(f_{R, \varepsilon} \) replaced by \(G_{R, \varepsilon} \). From (2.112) we have

\[
\Theta(|x| - R)\tilde{u}(t, x) = w_R(t, x) \quad \text{for } (t, x) \in [0, 6\delta_1] \times \mathbb{R}^n.
\]

It is easy to see that

\[
K_{(t_0, x^0)}^- \cap \text{supp } G_R = \emptyset.
\]

So (2.110) implies that \((t_0, x^0) \notin \text{supp } u \), since \(|x^0| \leq R \) and \(\Theta(|x| - R) = 1 \) near \(x = x^0 \).

By (2.111) and Lemma 2.20 we can easily construct a unique solution \(u(t, x) \) in \(C^\infty([0, \delta_1] \times \mathbb{R}^n) \) satisfying

\[
\begin{cases}
P(t, x, D_t, D_x)u = f & \text{in } [0, \delta_1] \times \mathbb{R}^n, \\
D^j_t u|_{t = 0} = 0 & \text{in } \mathbb{R}^n \quad (j \in \mathbb{Z}_+),
\end{cases}
\]

\[
(2.113) \quad \text{supp } u \cap [0, \delta_1] \times \mathbb{R}^n \subset \{(t, x) \in [0, \delta_1] \times \mathbb{R}^n; \ (t, x) \in K_{(s, y)}^+ \text{ for some } (s, y) \in \text{supp } f\}.
\]

Let \(u_j(x) \in C^\infty(\mathbb{R}^n) \) (0 \leq j \leq m - 1) and \(f \in C^\infty([0, \infty) \times \mathbb{R}^n) \). If \(u(t, x) \in C^\infty([0, \delta_1] \times \mathbb{R}^n) \) satisfy \(P(t, x, D_t, D_x)u(t, x) = f(t, x) \) in \([0, \delta_1] \times \mathbb{R}^n\),

52
then for \(\nu \in \mathbb{Z}_+ \) there are \(a^\nu_{j, \alpha}(t, x) \in C^\infty([0, \infty) \times \mathbb{R}^n) \) (\(0 \leq j \leq m + \nu, |\alpha| \leq \min\{j, m\} \)) such that

\[
D_t^\nu f(t, x) = D_t^\nu P(t, x, D_t, D_x) u(t, x)
\]

\[
= D_t^{m+\nu} u(t, x) + \sum_{j=1}^{m+\nu} \sum_{|\alpha| \leq \min\{j, m\}} a^\nu_{j, \alpha}(t, x) D_t^{m+\nu-j} D_x^\alpha u(t, x)
\]

for \((t, x) \in [0, \delta_1] \times \mathbb{R}^n \). For \(\nu \in \mathbb{Z}_+ \) we define inductively

\[
u_{m+\nu}(x) = D_t^\nu f(t, x)|_{t=0} - \sum_{j=1}^{m+\nu} \sum_{|\alpha| \leq \min\{j, m\}} a^\nu_{j, \alpha}(0, x) D_x^\alpha u_{m+\nu-j}(x).
\]

Then, by the Borel theorem there is \(U(t, x) \in C^\infty(\mathbb{R}^{n+1}) \) satisfying \(D_t^\nu U(t, x)|_{t=0} = u_j(x) \) (\(j \in \mathbb{Z}_+ \)) and \(sup U \subset \mathbb{R} \times \bigcup_{j=0}^\infty supp u_j \). For \(\varepsilon > 0 \), putting \(u_\varepsilon(t, x) = u(t, x) - \Theta_\varepsilon(t) U(t, x) \) and \(f_\varepsilon(t, x) = f(t, x) - P(t, x, D_t, D_x)(u(t, x) - u_\varepsilon(t, x)) \), we have

\[
D_t^\nu f_\varepsilon(t, x)|_{t=0} = 0 \quad (j \in \mathbb{Z}_+)
\]

\[
\begin{cases}
P(t, x, D_t, D_x) u_\varepsilon(t, x) = f_\varepsilon(t, x) & \text{in } [0, \delta_1] \times \mathbb{R}^n, \\
D_t^\nu u_\varepsilon(t, x)|_{t=0} = 0 & \text{in } \mathbb{R}^n \quad (j \in \mathbb{Z}_+),
\end{cases}
\]

since \(D_t^\nu P(t, x, D_t, D_x) u(t, x)|_{t=0} = D_t^\nu P(t, x, D_t, D_x)(\Theta_\varepsilon(t) U(t, x))|_{t=0} \) (\(\nu \in \mathbb{Z}_+ \)). Note that

\[
supp f_\varepsilon \subset [0, 2\varepsilon] \times \left(\bigcup_{j=0}^{m-1} supp u_j \cup \bigcup_{j=0}^\infty supp D_t^j f|_{t=0} \right) \cup supp f.
\]

Therefore, we can prove that for any \(f \in C^\infty([0, \infty) \times \mathbb{R}^n) \) and \(u_j \in C^\infty(\mathbb{R}^n) \) (\(0 \leq j \leq m-1 \)) there is a unique solution \(u(t, x) \in C^\infty([0, \delta_1] \times \mathbb{R}^n) \) satisfying \(\text{(CP)}_{\delta_1} \), where \(s > 0 \) and

\[
\text{(CP)}_s \quad \begin{cases}
P(t, x, D_t, D_x) u(t, x) = f(t, x) & \text{in } [0, s] \times \mathbb{R}^n, \\
D_t^s u(t, x)|_{t=0} = u_j(x) & \text{in } \mathbb{R}^n \quad (0 \leq j \leq m - 1).
\end{cases}
\]

Let \((t_0, x^0) \in (0, \delta_1] \times \mathbb{R}^n \), and assume that \(u_j(x) = 0 \) near \(\{x \in \mathbb{R}^n; (0, x) \in K^+(0, x^0)\} \) (\(0 \leq j \leq m - 1 \)) and \(f(t, x) = 0 \) near \(K^+(0, x_0) \cap [0, \delta_1] \times \mathbb{R}^n \). Then there is \(\varepsilon_0 > 0 \) such that \(f_\varepsilon(t, x) = 0 \) near \(K^+(0, x^0) \cap [0, \delta_1] \times \mathbb{R}^n \) if \(0 < \varepsilon \leq \varepsilon_0 \). Therefore, (2.113) implies that \((t_0, x^0) \notin supp u_\varepsilon \) if \(0 < \varepsilon \leq \varepsilon_0 \), which proves that \((t_0, x^0) \notin supp u \). Put

\[T = \sup \{s \in (0, \infty); \text{ for any } f \in C^\infty([0, \infty) \times \mathbb{R}^n) \}\]
Suppose that \(T < \infty \). For \(t = T \) we can repeat the same argument as for \(t = 0 \), and define \(\delta_1 > 0 \) and \(\{ C_i \} \) in the factorization of \(p(t, \tau, \xi) \). Then we can show that the Cauchy problem

\[
\begin{aligned}
& \left\{ \begin{array}{l}
P(t, x, D_t, D_x)u(t, x) = f(t, x) \quad \text{in } [T - \delta_1/2, T + \delta_1/2] \times \mathbb{R}^n, \\
D_t^j u(t, x)|_{t=T-\delta_1/2} = u_j \quad \text{in } \mathbb{R}^n \quad (0 \leq j \leq m - 1)
\end{array} \right.
\end{aligned}
\]

has a unique solution \(u \in C^\infty([T - \delta_1/2, T + \delta_1/2] \times \mathbb{R}^n) \) for any \(f \in C^\infty([0, \infty) \times \mathbb{R}^n) \) and \(u_j \in C^\infty(\mathbb{R}^n) \quad (0 \leq j \leq m - 1) \), which contradicts the definition of \(T \). So we complete the proof of Theorem 1.2.

3. Proof of Theorem 1.3

In this section we assume that the conditions (A-1), (A-2), (H)' and (D) are satisfied. Moreover, we assume that \(a_{j,\alpha}(t, x) \quad (0 \leq j \leq m - 1, \quad |\alpha| = j, j - 1) \) are semi-algebraic in \([0, \infty)\) for each \(x \in \mathbb{R}^n \) when \(n \geq 3 \). Let \((t_0, x^0, \xi^0) \in [0, \infty) \times \mathbb{R}^n \times S^{n-1} \) and \(\theta_0 > 0 \), and let \(T(\theta), \Xi_j(\theta) \in C^\infty((0, \theta_0]) \cap C([0, \theta_0]) \) \quad (i \leq j \leq n) \) be real-valued functions satisfying the following:

(i) \(t_0 + T(\theta) > 0 \) for \(\theta \in (0, \theta_0] \).

(ii) \(T(0) = 0 \) and \(\Xi(0) = \xi^0 \), where \(\Xi(\theta) = (\Xi_1(\theta), \cdots, \Xi_n(\theta)) \).

(iii) \(\Xi(\theta) \in S^{n-1} \) for \(\theta \in [0, \theta_0] \).

(iv) \(T(\theta) \) and the \(\Xi_j(\theta) \) can be expanded into convergent Puiseux series of \(\theta \in (0, \theta_0] \).

We say that \(T(\theta) \) and \(\Xi(\theta) \) satisfy the condition \((T, \Xi)\) if the above conditions (i) – (iv) are satisfied. We can write

\[
p(t_0 + T(\theta), \tau, \Xi(\theta)) = \prod_{j=1}^{m} (\tau - \lambda_j(\theta; T, \Xi)),
\]

where \(\lambda_j(\theta; T, \Xi) \in C^\infty((0, \theta_0]) \cap C([0, \theta_0]) \) \quad (1 \leq j \leq m) \). We can expand \(\lambda_j(\theta; T, \Xi) \) as formal Puiseux series at \(\theta = 0 \) (see, e.g., [16]). Let \(1 \leq j_0 \leq m \), and put \(\tau_0 = \lambda_{j_0}(\theta; T, \Xi) \). Note that \(h_{m-1}(t_0, \tau_0, \xi^0) = \prod_{1 \leq j \leq m, j \neq j_0} (\tau_0 - \lambda_j(\theta; T, \Xi)) \)
\[\lambda_j(0; T; \Xi)^2. \] So we may assume that \((\partial_x p)(t_0, \tau_0, \xi^0) = 0.\) We define the condition \(C(t_0, \tau_0, \xi^0, j_0; T; \Xi)\) as follows:

\[
\begin{align*}
\text{Ord}_{\theta(j_0)} \min_{s \in \mathbb{R}_0(\Xi(\theta))} |t_0 + T(\theta) - s| |\text{sub } \sigma(P)(t_0 + T(\theta), x^0, \lambda_{j_0}(\theta; T; \Xi), \Xi(\theta))| \\
< \text{Ord}_{\theta(j_0)} h_m - 1(t_0 + T(\theta), \lambda_{j_0}(\theta; T; \Xi), \Xi(\theta))^{1/2}.
\end{align*}
\]

Here, for \(f \in C([0, \theta_0])\) \(\text{Ord}_{\theta(j_0)} f = \nu (\in \mathbb{R})\) means that there is \(c \in \mathbb{C} \setminus \{0\}\) satisfying \(f(\theta) = cd^\nu(1 + o(1))\) as \(\theta \downarrow 0.\) If \(f(\theta) = O(\theta^N)\) as \(\theta \downarrow 0\) for any \(N \in \mathbb{Z}_+\), then we define \(\text{Ord}_{\theta(j_0)} f = \infty.\)

Theorem 3.1. Assume that the condition \(C(t_0, \tau_0, \xi^0, j_0; T; \Xi)\) is satisfied. Then the Cauchy problem (CP) is not \(C^\infty\) well-posed.

We shall prove Theorem 3.1 in §3.2.

3.1. Preliminaries

Let \((t_0, \xi^0) \in [0, \infty) \times S^{n-1},\) and write

\[
\{ \tau \in \mathbb{R}; \ p(t_0, \tau, \xi^0) = (\partial_x p)(t_0, \tau, \xi^0) = 0 \} = \{ \tau_1, \ldots, \tau_{r(t_0, \xi^0)} \},
\]

where \(r(t_0, \xi^0) \in \mathbb{Z}_+\) and \(\tau_1 < \tau_2 < \cdots < \tau_{r(t_0, \xi^0)}\). Assume that \(r(t_0, \xi^0) \geq 1.\) Then, by the Weierstrass preparation theorem there are \(\delta_j \equiv \delta_j(t_0, \xi^0) > 0,\) \(\delta'_j \equiv \delta'_j(t_0, \xi^0) > 0,\) open conic neighborhoods \(\Gamma_j \equiv \Gamma_j(t_0, \xi^0)\) of \(\xi^0,\) real analytic symbols \(e_j(t, \tau, \xi; t_0, \xi^0)\) defined in \(\{(t, \tau, \xi) \in [t_0 - \delta_j, t_0 + \delta_j] \times \mathbb{R} \times (\overline{\Gamma}_j \setminus \{0\}); |\tau - \delta_j'\leq \tau/|\xi| \leq \tau_j + \delta_j'\}\) and real analytic symbols \(a_j(t, \xi) (\equiv a_j(t, \xi; t_0, \xi^0))\) and \(b_j(t, \xi) (\equiv b_j(t, \xi; t_0, \xi^0))\) defined in \(\{t_0 - \delta_j, t_0 + \delta_j\} \times (\overline{\Gamma}_j \setminus \{0\}) (1 \leq j \leq r(t_0, \xi^0))\) such that the \(e_j(t, \tau, \xi; t_0, \xi^0)\) are positively homogeneous of degree \(m - 2\) in \((\tau, \xi), a_j(t, \xi)\) and \(b_j(t, \xi) (1 \leq j \leq r(t_0, \xi^0))\) are positively homogeneous of degree \(2\) and \(1\) in \(\xi,\) respectively, and

\[
\begin{align*}
a_j(t_0, \xi^0) = 0, \quad b_j(t_0, \xi^0) = \tau_j, \\
e_j(t, \tau, \xi; t_0, \xi^0) \neq 0, \\
p(t, \tau, \xi) = e_j(t, \tau, \xi; t_0, \xi^0)((\tau - b_j(t, \xi))^2 - a_j(t, \xi))
\end{align*}
\]

for \((t, \tau, \xi) \in [t_0 - \delta_j, t_0 + \delta_j] \times [\tau_j - \delta'_j, \tau_j + \delta'_j] \times (\overline{\Gamma}_j \cap S^{n-1}).\) If the coefficients of \(p(t, \tau, \xi)\) are semi-algebraic in \([0, \infty),\) then \(a_j(t, \xi)\) and \(b_j(t, \xi) (1 \leq j \leq r(t_0, \xi^0))\) are also semi-algebraic in \([t_0 - \delta_j, t_0 + \delta_j] \times (\overline{\Gamma}_j \setminus \{0\}).\) Indeed, if we write

\[
p(t, \tau, \xi) = \prod_{k=1}^m (\tau - \lambda_k(t, \xi)),
\]

55
\[\lambda_1(t, \xi) \leq \lambda_2(t, \xi) \leq \cdots \leq \lambda_m(t, \xi), \]

then the \(\lambda_k(t, \xi) \) are semi-algebraic functions. This follows from Theorem 6 in [15] and the fact that the \(\lambda_k(t, \xi) \) are real analytic in an open dense semi-algebraic subset of \([0, \infty) \times \mathbb{R}^n\). Therefore, \(a_j(t, \xi) \equiv (\lambda_{k(j)}(t, \xi) - \lambda_{k(j)+1}(t, \xi))^2/4 \) and \(b_j(t, \xi) \equiv (\lambda_{k(j)}(t, \xi) + \lambda_{k(j)+1}(t, \xi))/2 \) are semi-algebraic in \([t_0 - \delta_j, t_0 + \delta_j] \times (\overline{\Gamma} \setminus \{0\})\), where \(k(j) \) satisfies

\[\tau_j = \lambda_{k(j)}(t_0, \xi^0) = \lambda_{k(j)+1}(t_0, \xi^0). \]

Put

\[
\begin{align*}
\delta_0 (\equiv \delta_0(t_0, \xi^0)) &= \min \{\delta_j; 1 \leq j \leq r(t_0, \xi^0)\}, \\
\delta'_0 (\equiv \delta'_0(t_0, \xi^0)) &= \min \{\delta'_j; 1 \leq j \leq r(t_0, \xi^0)\}, \\
\Gamma_0 (\equiv \Gamma_0(t_0, \xi^0)) &= \bigcap_{j=1}^r \Gamma_j.
\end{align*}
\]

Modifying \(\delta_0 \) and \(\Gamma_0 \) if necessary, we may assume that

\[|b_j(t, \xi) - \tau_j| + \sqrt{a_j(t, \xi)} < 2\delta'_0/3 \]

for \(1 \leq j \leq r(t_0, \xi^0) \) and \((t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\overline{\Gamma} \cap S^{n-1})\). Putting

\[\lambda_{j, \pm}(t, \xi) = b_j(t, \xi) \pm \sqrt{a_j(t, \xi)}, \]

we have

\[p(t, \lambda_{j, \pm}(t, \xi), \xi) = 0, \]
\[|\lambda_{j, \pm}(t, \xi) - \tau_j| < 2\delta'_0/3 \]

for \((t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\overline{\Gamma} \cap S^{n-1})\). Moreover, modifying \(\delta_0 \) and \(\Gamma_0 \) if necessary, we have

\[
(3.1) \quad |p(t, \tau, \xi)| + |\partial_\tau p(t, \tau, \xi)| \neq 0
\]

if \((t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\overline{\Gamma} \cap S^{n-1})\) and \(\tau \in \mathbb{R} \setminus \bigcup_{j=1}^r (t_0, \xi^0) \) such that \(t_j - 2\delta'_0/3, \tau_j + 2\delta'_0/3 \).

When \(r(t_0, \xi^0) = 0 \), we choose \(\delta_0 > 0 \) and an open conic neighborhood \(\Gamma_0 \) of \(\xi^0 \) so that (3.1) is satisfied, where \(\bigcup_{j=1}^r = \emptyset \). Fix \(x^0 \in \mathbb{R}^n \). We microlocalize the condition \((L)_0 \) as follows:
\((L)_{(t_0,x^0,\xi^0)}\) There is \(C > 0\) such that
\[
\min\left\{ \min_{s \in \mathcal{R}_0(\xi)} |t - s|, 1 \right\} |\text{sub } \sigma(P)(t, x^0, \tau, \xi)| \leq Ch_{m-1}(t, \tau, \xi)^{1/2}
\]
for \((t, \tau, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times \mathbb{R} \times (\Gamma_0 \cap S^{n-1})\).

Lemma 3.2. The condition \((L)_{(t_0,x^0,\xi^0)}\) is equivalent to the following condition:

\((L)'_{(t_0,x^0,\xi^0)}\) There is \(C > 0\) such that
\[
\begin{aligned}
(3.2) \quad & \min\left\{ \min_{s \in \mathcal{R}_0(\xi)} |t - s|, 1 \right\} |\text{sub } \sigma(P)(t, x^0, b_j(t, \xi), \xi)| \leq C\sqrt{a_j(t, \xi)} \\
& \text{if } r(t_0, \xi^0) \geq 1, 1 \leq j \leq r(t_0, \xi^0) \text{ and } (t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\Gamma_0 \cap S^{n-1}).
\end{aligned}
\]

Proof. If \(r(t_0, \xi^0) = 0\), then there is \(c > 0\) satisfying
\[
(3.3) \quad h_{m-1}(t, \tau, \xi) \geq c(1 + |\tau|)^{2m-2}
\]
for \((t, \tau, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times \mathbb{R} \times (\Gamma_0 \cap S^{n-1})\). Therefore, \((L)_{(t_0,x^0,\xi^0)}\) always holds if \(r(t_0, \xi^0) = 0\). So we assume that \(r(t_0, \xi^0) \geq 1\). Let \(1 \leq j \leq r(t_0, \xi^0)\). Then we can write, with \(C > 0\),
\[
h_{m-1}(t, \lambda_{j,\pm}(t, \xi), \xi) = 4a_j(t, \xi)h^\pm_j(t, \xi),
\]
\[
C^{-1}|\xi|^{2m-4} \leq h^\pm_j(t, \xi) \leq C|\xi|^{2m-4}
\]
for \((t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\Gamma_0 \setminus \{0\})\). Therefore, the condition \((L)_{(t_0,x^0,\xi^0)}\) implies that

\((L)''_{(t_0,x^0,\xi^0)}\) There is \(C > 0\) such that
\[
\min\left\{ \min_{s \in \mathcal{R}_0(\xi)} |t - s|, 1 \right\} |\text{sub } \sigma(P)(t, x^0, \lambda_{j,\pm}(t, \xi), \xi)| \leq C\sqrt{a_j(t, \xi)}
\]
if \(1 \leq j \leq r(t_0, \xi^0)\) and \((t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\Gamma_0 \cap S^{n-1})\).

Now suppose that \((L)''_{(t_0,x^0,\xi^0)}\) is satisfied. If \((t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\Gamma_0 \cap S^{n-1})\) and \(\tau \in \mathbb{R} \setminus \bigcup_{j=1}^{r(t_0, \xi^0)} [\tau_j - \delta_0, \tau_j + \delta_0]\), then (3.3) is satisfied with a modification of \(c\) if necessary. So we may assume that \(1 \leq j \leq r(t_0, \xi^0)\) and \(\tau \in [\tau_j - \delta_0, \tau_j + \delta_0]\). Then we have, with \(C > 0\),
\[
(3.4) \quad |\tau - \lambda_{j,\pm}(t, \xi)| \leq Ch_{m-1}(t, \tau, \xi)^{1/2},
\]

57

\[(3.5) \quad \sqrt{a_j(t, \xi)} \leq \{|\tau - \lambda_{j,+}(t, \xi)| + |\tau - \lambda_{j,-}(t, \xi)|\}/2 \leq Ch_{m-1}(t, \tau, \xi)^{1/2} \]

for \((t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\Gamma_0 \cap S^{n-1})\). We can write

\[
\begin{align*}
\sigma(P)(t, x^0, \tau, \xi) &= \sigma(P)(t, x^0, \lambda_j(t, \xi) + \gamma_j(\tau, \tau, \xi)(\tau - \lambda_j(\tau, \xi)), \xi) + \gamma_j(\tau, \tau, \xi)(\tau - \lambda_j(\tau, \xi)) \\
&= \sigma(P)(t, x^0, \lambda_j(t, \xi), \xi) + \gamma_j(\tau, \tau, \xi)(\tau - \lambda_j(\tau, \xi)) \\
&= \sigma(P)(t, x^0, \lambda_j(t, \xi), \xi) + \gamma_j(\tau, \tau, \xi)(\tau - \lambda_j(\tau, \xi))
\end{align*}
\]

for \((t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\Gamma_0 \cap S^{n-1})\), where \(\gamma_j(t, \tau, \xi)\) are polynomials of \(\tau\) with coefficients in \(C([t_0 - \delta_0, t_0 + \delta_0] \times (\Gamma_0 \cap S^{n-1}))\). This, together with (3.4) and (3.5), implies that \((L)_{(t_0, x^0, \xi^0)}\) is satisfied. Since there is \(C > 0\) satisfying

\[
|\sigma(P)(t, x^0, \lambda_j(t, \xi), \xi) - \sigma(P)(t, x^0, \beta_j(t, \xi), \xi)| \leq C|\lambda_j(t, \xi) - \beta_j(t, \xi)| \leq C \sqrt{a_j(t, \xi)}
\]

if \(1 \leq j \leq r(t_0, \xi^0)\) and \((t, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times (\Gamma_0 \cap S^{n-1})\), the condition \((L)_{(t_0, x^0, \xi^0)}\) is equivalent to the condition \((L)_{(t_0, x^0, \xi^0)}\). \(\square\)

Let \(1 \leq j \leq r(t_0, \xi^0)\), and put

\[
\beta_j(t, x, \xi) = \sigma(P)(t, x, \beta_j(t, \xi), \xi).
\]

Let \(\Theta_0 > 0\), and let \(\Xi_k(\Theta) (1 \leq k \leq n)\) be real analytic functions defined on \([0, \Theta_0]\) and satisfy \(\Xi(0) = \xi^0\), where \(\Xi(\Theta) = (\Xi_1(\Theta), \cdots, \Xi_n(\Theta))\). First suppose that \(a_j(t_0 + t, \Xi(\Theta)) \neq 0\) in \((t, \Theta)\). Define

\[
(3.6) \quad \nu_j(\Theta) (\equiv \nu_j(\Theta)) = \min\{\nu \in \mathbb{N}; \partial_\nu^j \partial_\Theta^\nu a_j(t_0 + t, \Xi(\Theta))|_{t=0, \Theta=0} \neq 0 \text{ for some } l \in \mathbb{N}\}.
\]

Then we can write

\[
(3.7) \quad a_j(t_0 + t, \Xi(\Theta)) = \theta^{\nu_j(\Theta)} \sum_{k=0}^\infty \theta^k A_{j,k}(t) \quad \text{near} \quad \Theta = 0.
\]

Since \(A_{j,0}(t) \neq 0\) in \(t\), we put

\[
I_j (\equiv I_j(\Xi)) = \text{Ord}_{t=0} A_{j,0}(t) (\leq \infty).
\]

With a modification of \(\Theta_0\) if necessary, \(\theta^{-\nu_j(\Theta)} a_j(t_0 + t, \Xi(\Theta))\) is real analytic in \([-\delta_0, \delta_0] \times [0, \Theta_0]\) and

\[
\partial_l(t^{-\nu_j(\Theta)} a_j(t_0 + t, \Xi(\Theta)))|_{t=0, \Theta=0} = 0 \quad \text{if} \quad l < I_j,
\]

58
It follows from the Weierstrass preparation theorem that there are a real analytic function \(c_j(t, \theta) \) defined in \([-\delta_0, \delta_0] \times [0, \theta_0]\) and real analytic functions \(a_{j,k}(\theta) \) (\(1 \leq k \leq l_j\)) defined in \([0, \theta_0]\) such that \(a_{j,k}(0) = 0 \) (\(1 \leq k \leq l_j\)) and

\[
(3.8) \quad c_j(t, \theta) \neq 0,
\]

\[
(3.9) \quad a_j(t_0 + t, \Xi(\theta)) = \theta^{-\nu_{j,0}} c_j(t, \theta)(t^{l_j} + a_{j,1}(\theta)t^{l_j-1} + \cdots + a_{j,l_j}(\theta))
\]

for \((t, \theta) \in [-\delta_0, \delta_0] \times [0, \theta_0]\), with modifications of \(\delta_0\) and \(\theta_0\) if necessary. Write

\[
t^{l_j} + a_{j,1}(\theta)t^{l_j-1} + \cdots + a_{j,l_j}(\theta) = \prod_{k=1}^{l_j}(t - t_{j,k}(\theta; \Xi)),
\]

\[
\tau_{j,k}(\theta; \Xi) = \text{Re} t_{j,k}(\theta; \Xi),
\]

where the \(t_{j,k}(\theta; \Xi)\) can be expanded into convergent Puiseux series at \(\theta = 0\). Write

\[
a_j((t_0 + \tau_{j,k}(\theta; \Xi))_+ + t, \Xi(\theta)) = \theta^{\nu_{j,0}} \sum_{i=0}^{\infty} \theta^i A_{j,i}((t_0 + \tau_{j,k}(\theta; \Xi))_+ - t_0 + t)
\]

\[
= \sum_{i=0}^{\infty} A_{j,k,i}(t) \theta^{\nu_{j,0} + i/L},
\]

where \(A_{j,k,0}(t) = A_{j,0}(t)\) and \(L \in \mathbb{N}\). Note that \(\nu_{j,0}\) is defined as in (3.6). We define

\[
\mu_{j,k,i}(\equiv \mu_{j,k,i}(\Xi)) = \text{Ord}_{t_0} A_{j,k,i}(t),
\]

\[
\Gamma_{0,j,k}(\Xi) = \text{ch}\left[\bigcup_{i \geq 0, \mu_{j,k,i} < \infty} \left(\left\{ \nu_{j,0} + i/L, \mu_{j,k,i} \right\} \right) + (\mathbb{R}_+)^2 \right].
\]

Here \(\text{ch}[A]\) denotes the convex hull of \(A\) and \(\mathbb{R}_+ = [0, \infty)\). The \(\Gamma_{0,j,k}(\Xi)\) are Newton polygons of \(a_j((t_0 + \tau_{j,k}(\theta; \Xi))_+ + t, \Xi(\theta))\). Let \(1 \leq k \leq l_j\). Suppose that \(\beta_j((t_0 + \tau_{j,k}(\theta; \Xi))_+ + t, \Xi(\theta)) \neq 0\) in \((t, \theta)\). Then we can write

\[
t\beta_j((t_0 + \tau_{j,k}(\theta; \Xi))_+ + t, \Xi(\theta)) = \sum_{i=0}^{\infty} t B_{j,k,i}(t) \theta^{\nu_{j,0} + i/L},
\]

where \(\nu_{j,k}(\equiv \nu_{j,k}(x_0; \Xi)) \in \mathbb{Q} \cap [0, \infty)\) and \(B_{j,k,0}(t) \neq 0\). Define

\[
\mu_{j,k,i}(\equiv \mu_{j,k,i}(x_0; \Xi)) = 1 + \text{Ord}_{t_0} B_{j,k,i}(t),
\]

59
\[\Gamma_{1,j,k}(\Xi) (\equiv \Gamma_{1,j,k}(x^0; \Xi)) = \text{ch}\left[\bigcup_{i \geq 0, \tilde{s}_{j,k,i}<\infty} \{ (\tilde{\nu}_{j,k} + i/L, \tilde{\mu}_{j,k,i}) \} + (\mathbb{R}_+)^3 \right].\]

We define \(\Gamma_{1,j,k}(\Xi) = \emptyset\) if \(\beta_j((t_0 + \tau_{j,k}(\theta; \Xi)) + t, x^0, \Xi(\theta)) \equiv 0\) in \((t, \theta)\). Next suppose that \(a_j(t_0 + t, \Xi(\theta)) \equiv 0\) in \((t, \theta)\). Then we define \(l_j = 1, \tau_{j,1}(\theta; \Xi) \equiv 0\) and \(\Gamma_{0,j,1}(\Xi) = \emptyset\). We also define \(\Gamma_{1,j,1}(\Xi) (\equiv \Gamma_{1,j,1}(x^0; \Xi))\) as the Newton polygon of \(t\beta_j(t_0 + t, x^0, \Xi(\theta))\).

Lemma 3.3. Let \(1 \leq j \leq r(t_0, \xi^0)\). Assume that the following condition (T) is satisfied:

(T) If \(T(\theta)\) is real-valued continuous function defined in \([0, \theta_0]\), \(T(\theta) \in C^\infty((0, \theta_0])\), \(T(0) = 0\), \(t_0 + T(\theta) > 0\) for \(\theta \in (0, \theta_0]\) and \(T(\theta)\) can be expanded into a formal Puiseux series, then

\[
\text{Ord}_{\mathbb{R}^2}\left\{ \min_{s \in \mathbb{R}_+(T(\theta))} \left| t_0 + T(\theta) - s \right| \cdot \left| \beta_j(t_0 + T(\theta), x^0, \Xi(\theta)) \right| \right\} \geq \text{Ord}_{\mathbb{R}^2} a_j(t_0 + T(\theta), \Xi(\theta)).
\]

Then we have \(2\Gamma_{1,j,k}(\Xi) \subset \Gamma_{0,j,k}(\Xi) (1 \leq k \leq l_j)\), where \(2\Gamma_{1,j,k}(\Xi) = \{(2\nu, 2\mu) \in \mathbb{R}^2; (\nu, \mu) \in \Gamma_{1,j,k}(\Xi)\}\).

Remark. We can also show that (T) is valid if \(2\Gamma_{1,j,k}(\Xi) \subset \Gamma_{0,j,k}(\Xi) (1 \leq k \leq l_j)\) (see Lemma 2.2 of [11]).

Proof. We shall repeat the same argument as in the proof of Lemma 2.2 of [11]. Choose real-valued continuous functions \(\lambda_k(\theta)\) defined in \([0, \theta_0]\) and subsets \(I_k\) of \(\{1, 2, \ldots, l_j\}\) so that \(\lambda_k(\theta) \in C^\infty((0, \theta_0])\) can be expanded into formal Puiseux series, \(\bigcup_{k=1}^{l_j} I_k = \{1, 2, \ldots, l_j\}\), \(\text{Ord}_{\mathbb{R}^2}(t_0 + \tau_{j,k}(\theta; \Xi)) - t_0 - \lambda_k(\theta)) = \infty\) for \(1 \leq \mu \leq r_j\) and \(k \in I_\mu\),

\[
\lambda_1(\theta) < \lambda_2(\theta) < \cdots < \lambda_r(\theta) \quad \text{for } \theta \in (0, \theta_0],
\]

\[
\text{Ord}_{\mathbb{R}^2}(\lambda_{k+1}(\theta) - \lambda_k(\theta)) < \infty \quad (1 \leq k \leq r_j - 1)
\]

and \(\lambda_1(\theta) \equiv 0\) if \(\text{Ord}_{\mathbb{R}^2} \lambda_1(\theta) = \infty\), where \(r_j \in \mathbb{N}\). Let \(1 \leq k \leq l_j\) and \(p > 0\). Putting

\[
T_p(t, \theta) = (t_0 + \tau_{j,k}(\theta; \Xi)) + t_0 + \theta^p t \quad (1/2 \leq t \leq 1),
\]

we have

\[
\text{Ord}_{\mathbb{R}^2} a_j(t_0 + T_p(t, \theta), \Xi(\theta)) = \min\{\nu + p\mu; (\nu, \mu) \in \Gamma_{0,j,k}(\Xi)\}
\]

\[
60
\]
for a generic $t \in [1/2, 1]$. Moreover, we have
\[
\text{Ord} \{ \min_{s \in \mathcal{R}_0(\Xi(\theta))} |t_0 + T_p(t, \theta) - s| = p
\]
for a generic $t \in [1/2, 1]$. Indeed, we have
\[
\text{Ord} \{ \min_{1 \leq \mu \leq t_j} |(t_0 + \tau_{j,k}(\theta; \Xi))_+ + \theta^p t - (t_0 + \tau_{j,\mu}(\theta; \Xi))_+| = p
\]
for a generic $t \in [1/2, 1]$. On the other hand, we have
\[
\text{Ord} \{ \min_{s \in \mathcal{R}_0(\Xi(\theta))} |t_0 + T_p(t, \theta) - s| = \text{Ord} \{ \min_{1 \leq \mu \leq t_j} |(t_0 + \tau_{j,k}(\theta; \Xi))_+ + \theta^p t - s| \leq p
\]
for a generic $t \in [1/2, 1]$. By assumption we have
\[
\text{Ord} \{ \theta^p t \beta_j((t_0 + \tau_{j,k}(\theta; \Xi))_+ + \theta^p t, x^0, \Xi(\theta))\} \geq \text{Ord} \{ \sqrt{a_j((t_0 + \tau_{j,k}(\theta; \Xi))_+ + \theta^p t, \Xi(\theta))} \}
\]
for a generic $t \in [1/2, 1]$. This gives
\[
\min\{ \nu + p\mu; (\nu, \mu) \in 2\Gamma_{1,j,k}(\Xi)\} \subset \Gamma_{0,j,k}(\Xi),
\]
which proves the lemma. \qed

3.2. Proof of Theorem 3.1

Let $(t_0, x^0, \xi^0) \in [0, \infty) \times \mathbb{R}^n \times S^{n-1}$, $\theta_0 > 0$ and $1 \leq j_0 \leq m$, and let $T(\theta), \Xi_k(\theta) \in C^\infty((0, \theta_0] \cap C([0, \theta_0]) (1 \leq k \leq n)$ be real valued functions satisfy the condition (T, Ξ). Put $\tau_0 = \lambda_{j_0}(0; T, \Xi)$. Assume that the condition $C(t_0, x^0, \xi^0, j_0; T, \Xi)$ is satisfied. It is obvious that
\[
p(t_0, \xi^0) = (\partial_{x^0} p)(t_0, \xi^0) = 0.
\]
We use the notation in §3.1. Then there is $j \in \mathbb{N}$ with $1 \leq j \leq r(t_0, \xi^0)$ such that $\tau_0 = \tau_j$. Recall that $a(t_0, \xi^0) = 0$, $b(t_0, \xi^0) = \tau_0$ and
\[
p(t, \tau, \xi) = e(t, \tau, \xi)((\tau - b(t, \xi))^2 - a(t, \xi))
\]
for $(t, \tau, \xi) \in [t_0 - \delta_0, t_0 + \delta_0] \times [\tau_0 - \delta'_0, \tau_0 + \delta'_0] \times (\Gamma_0 \cap S^{n-1})$, where $e(t, \tau, \xi) = e_j(t, \tau, \xi; t_0, \xi^0)$, $a(t, \xi) = a_j(t, \xi)$ and $b(t, \xi) = b_j(t, \xi)$. We note
that $\lambda_{j_0}(\theta; T, \Xi) = b(t_0 + T(\theta), \Xi(\theta)) \pm \sqrt{a(t_0 + T(\theta), \Xi(\theta))}$. For $\xi \in S^{n-1}$ we define

$$\mathcal{R}(\xi; a) = \begin{cases} \{(\text{Re } \lambda)_{+}; \lambda \in \Omega \text{ and } a(\lambda, \xi) = 0\} & \text{if } a(t, \xi) \neq 0 \text{ in } t, \\ \emptyset & \text{if } a(t, \xi) \equiv 0 \text{ in } t. \end{cases}$$

Then we have $\mathcal{R}(\xi; a) \subset \mathcal{R}_0(\xi)$. Indeed, if $a(t, \xi) \neq 0$ in t, then there is a real analytic function $d(t) \neq 0$ satisfying $D_{M-r(\xi)}(t, \xi) = a(t, \xi)d(t)$, where $\xi \in S^{n-1}$ is fixed. Therefore, we have

$$\text{(3.11)} \quad \text{Ord}_{\theta j_0} \min_{s \in \mathcal{R}(\Xi(\theta); a)} |t_0 + T(\theta) - s| \leq \text{Ord}_{\theta j_0} \min_{s \in \mathcal{R}_0} |t_0 + T(\theta) - s|.$$

It follows from $C(t_0, x^0, \xi^0, j_0; T, \Xi)$ and (3.11) that

$$\text{Ord}_{\theta j_0} \min_{s \in \mathcal{R}(\Xi(\theta); a)} |t_0 + T(\theta) - s| \sub \sigma(P)(t_0 + T(\theta), x^0, \lambda_{j_0}(\theta; T, \Xi), \Xi(\theta)) |$$

$$< \frac{1}{2} \text{Ord}_{\theta j_0} a(t_0 + T(\theta), \Xi(\theta)).$$

Now we assume that $a(t, \Xi(\theta)) \neq 0$ in (t, θ). We shall consider the case where $a(t, \Xi(\theta)) \equiv 0$ in (t, θ), later. By (3.7) – (3.9) we can write

$$a(t_0 + t, \Xi(\theta)) = \sum_{k=k_0}^{\infty} a_k(t) \theta^{k/L} = \theta^{k_0/L} c(t, \theta) \prod_{i=1}^{l}(t - t_i(\theta))$$

for $(t, \theta) \in [-\delta_0, \delta_0] \times [0, \theta_0]$, where $L \in \mathbb{N}$, $l = l_j$, $a_{k_0}(t) \neq 0$, $c(t, \theta) \neq 0$ and the $t_i(\theta)$ can be expanded into convergent Puiseux series. We note that $a_k(t)$, $c(t, \theta)$ and $t_i(\theta)$ also depend on Ξ. Put

$$\text{(3.12)} \quad \mu_0 = \frac{1}{2} \text{Ord}_{\theta j_0} a(t_0 + T(\theta), \Xi(\theta)), \quad \mu_1 = \text{Ord}_{\theta j_0} \min_{1 \leq i \leq l} |t_0 + T(\theta) - (t_0 + \tau_i(\theta)) + |$$

$$\times |\sub \sigma(P)(t_0 + T(\theta), x^0, \lambda_{j_0}(\theta; T, \Xi), \Xi(\theta))|,$$

$$\delta = \text{Ord}_{\theta j_0} \min_{1 \leq i \leq l} |t_0 + T(\theta) - (t_0 + \tau_i(\theta)) + |,$$

where $\tau_i(\theta) = \text{Re } t_i(\theta)$. Since $T(0) = 0$ and $\tau_i(0) = 0$ ($1 \leq i \leq l$), we have $\delta > 0$. The condition $C(t_0, x^0, \xi^0, j_0; T, \Xi)$ implies that $\mu_1 < \mu_0$. Put

$$T_v(\theta) = T(\theta) + v\theta^\delta \quad \text{for } v \in \mathbb{R},$$

and write

$$\text{(3.13)} \quad \sub \sigma(P)(t_0 + T_v(\theta), x, \lambda_{j_0}(\theta; T_v, \Xi), \Xi(\theta))$$

62
where \(\mu \in \mathbb{Q} \), \(\hat{c}(v, x) \neq 0 \) in \((v, x)\). Then \(\hat{c}(v, x) \) is a polynomial of \(v \), whose coefficients are \(C^\infty \) functions of \(x \), and \(\mu \leq \mu_1 \). If \(\hat{c}(v, x^0) \equiv 0 \) in \(v \), we replace \(x^0 \in \mathbb{R}^n \) so that \(\hat{c}(v, x^0) \neq 0 \) in \(v \). There is \(c_0 > 0 \) satisfying

\[
\min_{1 \leq i \leq l} |t_0 + T(\theta) - (t_0 + \tau_i(\theta))_+| \geq c_0 \theta^\delta \quad \text{for} \quad \theta \in [0, \theta_0].
\]

Since

\[
a(t_0 + T_v(\theta), \Xi(\theta)) = \theta^{k_0/L}e(T_v(\theta), \theta) \prod_{i=1}^l (T_v(\theta) - t_i(\theta)),
\]

\[
\text{Ord}_{\theta, 0}(T(\theta) - t_i(\theta)) \leq \delta,
\]

\(
\sqrt{a(t_0 + T_v(\theta), \Xi(\theta))}
\)
can be expanded into a Puiseux series whose coefficients are real analytic functions of \(v \) at \(v = 0 \). If \(\hat{c}(0, x^0) = 0 \), we replace \(T(\theta) \) and \(\mu_1 \) by \(T(\theta) + v_0 \theta^\delta \) and \(\mu \), respectively, choosing \(v_0 \in (0, c_0/2] \) so that \(\hat{c}(v_0, x^0) \neq 0 \). Noting that

\[
|T(\theta) - \tau_i(\theta)|/2 \leq |T(\theta) + v_0 \theta^\delta - \tau_i(\theta)| \leq 3|T(\theta) - \tau_i(\theta)|/2
\]

for \(1 \leq i \leq l \) and \(\theta \in [0, \theta_0] \), we have

\[
\mu_0 = \text{Ord}_{\theta, 0} \sqrt{a(t_0 + T_v(\theta), \Xi(\theta))}.
\]

Therefore, we have \(\hat{c} \equiv \hat{c}(0, x^0) \neq 0 \) and \(\mu = \mu_1 \) in (3.13) with \(v = 0 \), and we may assume

\[
(3.14) \quad \mu_1 - \delta = \text{Ord}_{\theta, 0} \text{sub}_{\sigma(P)}(t_0 + T(\theta), x^0, \lambda_{j_0}(\theta; T, \Xi), \Xi(\theta))
\]

\[
= \min_{x \in \mathbb{R}^n, v \in \mathbb{R}} \text{Ord}_{\theta, 0} \text{sub}_{\sigma(P)}(t_0 + T_v(\theta), x, \lambda_{j_0}(\theta; T_v, \Xi), \Xi(\theta)).
\]

Let \(\kappa \) and \(\delta' \) be positive rational constants satisfying \(\delta' \kappa < 1 \). We shall impose further conditions on \(\kappa \) and \(\delta' \). We make an asymptotic change of variables:

\[
t = t(s; \rho) \equiv t_0 + T(\rho^{-\kappa}) + \rho^{-\delta \kappa} s, \quad x = x(y; \rho) \equiv x^0 + \rho^{\delta' \kappa - 1} y.
\]

Put

\[
P_\rho(s, y, \sigma, \eta) = P(t(s; \rho), x(y; \rho), \rho^{\delta \kappa} \sigma, \rho^{1-\delta' \kappa} \eta),
\]

\[
E(s, y; \rho)(\equiv E(s, y; \rho, \varepsilon)) = \exp \left[i \varepsilon \left\{ \rho^{1-\delta \kappa} \int_0^s \tilde{b}(s_1; \rho) \, ds_1 + \rho^{\delta' \kappa} y \cdot \Xi(\rho^{-\kappa}) \right\} \right],
\]

where \(\varepsilon = \pm 1 \) and \(\tilde{b}(s; \rho) = b(t(s; \rho), \Xi(\rho^{-\kappa})). \)
Lemma 3.4. For $k \in \mathbb{N}$ we have

$$(\rho^{\delta k} D_s)^k E(s, y; \rho)$$

$= \{ \varepsilon^k \rho^{k \gamma} b(s; \rho) + \frac{k(k-1)}{2!} \varepsilon^{k-1} \rho^{k-1} b(s; \rho)^{k-2} (\partial b)(t(s; \rho), \Xi(\rho^{-\kappa}))$

$+ \Pi_{k-2}(\rho) \} E(s, y; \rho),$

where

$$\Pi_{\mu}(\rho) = \sum_{j=0}^{\mu} \rho^j f_{\mu,j}(t(s; \rho), \Xi(\rho^{-\kappa}))$$

with some C^∞ functions $f_{\mu,j}(t, \xi)$ of (t, ξ) defined near (t_0, ξ_0). Moreover, if $q(\tau, \xi)$ is a homogeneous polynomial of degree m, then we have

(3.15) \[q(\rho^{\delta k} D_s, \varepsilon \rho \Xi(\rho^{-\kappa})) E(s, 0; \rho) \]

$= \{ (\varepsilon \rho)^m q(\tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))$

$+ \frac{(\varepsilon \rho)^{m-1}}{2!} (\partial_\xi^2 q)(\tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))(\partial b)(t(s; \rho), \Xi(\rho^{-\kappa}))$

$+ \Pi_{m-2}(\rho) \} E(s, 0; \rho).$

Proof. The lemma can be proved by induction on k. Then (3.15) is obvious. \qed

For $(k, \alpha), (\mu, \beta) \in (\mathbb{Z}_+)^{n+1}$ we denote

$$P_{(\mu, \beta)}(t, x, \tau, \xi) = D_t^\mu D_x^\beta \partial_\tau^{\alpha} \partial_\xi \alpha P(t, x, \tau, \xi).$$

A simple calculation yields

$$E(s, y; \rho)^{-1} P_{\rho}(s, y, D_s, D_y)(E(s, y; \rho)u(s, y))$$

$= E(s, y; \rho)^{-1} \sum_{|k, \alpha| \leq m} \frac{1}{k!\alpha!} \{ P^{(k, \alpha)}(t(s; \rho), x(y; \rho), \rho^{\delta k} D_s, \rho^{1-\delta k} D_y) E(s, y; \rho) \}$

$\times (\rho^{\delta k} D_s)^k (\rho^{1-\delta k} D_y)^\alpha u(s, y)$

$= E(s, 0; \rho)^{-1} \sum_{|k, \alpha| \leq m} \frac{1}{k!\alpha!} \{ P^{(k, \alpha)}(t(s; \rho), x(y; \rho), \rho^{\delta k} D_s, \varepsilon \rho \Xi(\rho^{-\kappa})) E(s, 0; \rho) \}$

$\times (\rho^{\delta k} D_s)^k (\rho^{1-\delta k} D_y)^\alpha u(s, y)$

$= \left[(\varepsilon \rho)^m p(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) \right.$

$+ (\varepsilon \rho)^{m-1} \frac{1}{2!} (\partial_\xi^2 p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))(\partial b)(t(s; \rho), \Xi(\rho^{-\kappa}))$
where

\[+ P_{m-1}(t(s; \rho), x(y; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) \]

\[+ \{(\varepsilon \rho)^{m-1}(\partial_\tau p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + \Pi_{m-2}(\rho)\} \rho^{\delta \kappa} D_s \]

\[+ \left\{ \frac{1}{2} (\partial_x^2 p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + \Pi_{m-3}(\rho) \right\} (\rho^{\delta \kappa} D_s)^2 \]

\[+ \sum_{k=0}^{m} \sum_{0 < |\alpha| \leq m-k} \left\{ \frac{1}{k!} \frac{\rho^{(k, \alpha)}(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))}{p^{(k, \alpha)}} \right\} \rho^{\delta \kappa} D_s \]

\[+ \Pi_{m-k-|\alpha|-1}(\rho) \left\{ \rho^{\delta \kappa} D_s \right\} (\rho^{1-\delta \kappa} D_y)^{\alpha} \]

\[+ \sum_{k=3}^{m} \sum_{0 < |\alpha| \leq m-k} \left\{ \frac{1}{k!} \frac{\rho^{(k, \alpha)}(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))}{p^{(k, \alpha)}} \right\} \rho^{\delta \kappa} D_s \]

\[+ \Pi_{m-k-|\alpha|-1}(\rho) \left\{ \rho^{\delta \kappa} D_s \right\} (\rho^{1-\delta \kappa} D_y)^{\alpha} \]

\[+ \sum_{i=1}^{m} \sum_{0 < |\alpha| \leq m-i} \left\{ \frac{1}{k!} \frac{\rho^{(k, \alpha)}(t(s; \rho), x(y; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))}{p^{(k, \alpha)}} \right\} \rho^{\delta \kappa} D_s \]

\[\equiv \varepsilon^m \rho^m \tilde{P}_\mu(s, y, D_s, D_y) u(s, y), \]

where

\[\Pi_\mu(\rho) = \sum_{j=0}^{\mu} \rho^j f_{\mu, j}(t(s; \rho), x(y; \rho), \Xi(\rho^{-\kappa})) \]

with some \(C^\infty \) functions \(f_{\mu, j}(t, x, \xi) \) of \((t, x, \xi) \) defined near \((t_0, x^0, \xi^0) \). It follows from (2.63), (2.70), (3.10) and (3.12) that

\[p(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) \]

\[= -e(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) a(t(s; \rho), \Xi(\rho^{-\kappa})) \]

\[= O(\rho^{-2\mu \kappa}) \text{ as } \rho \to \infty, \]

\[(\partial_\tau p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) \]

\[= -(\partial_\tau e)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) a(t(s; \rho), \Xi(\rho^{-\kappa})) \]

\[= O(\rho^{-2\mu \kappa}) \text{ as } \rho \to \infty, \]

(3.16)

\[(\partial_x^2 p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) \]

\[= 2e(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + O(\rho^{-2\mu \kappa}) \text{ as } \rho \to \infty, \]

(3.17)

\[\frac{1}{2} \partial_x (\partial_x^2 p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))(\partial_b)(t(s; \rho), \Xi(\rho^{-\kappa})) \]

\[= \frac{1}{2} (\partial_b \partial_\tau p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) \]

65
By (3.13), (3.14) and (3.17) we have

\[+ \frac{i}{2} (\partial_x e)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))(\partial_x a)(t(s; \rho), \Xi(\rho^{-\kappa})) + O(\rho^{-2\mu_0\kappa}) \]

\[= \frac{i}{2} (\partial_x \partial_r p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + O(\rho^{-\mu_0\kappa}) \quad \text{as } \rho \to \infty, \]

\[(\partial_x p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) = O(\rho^{-\mu_0\kappa}) \quad \text{as } \rho \to \infty, \]

By (3.13), (3.14) and (3.17) we have

\[(3.18) \quad \frac{1}{2i} (\partial_x^2 p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))(\partial_x b)(t(s; \rho), \Xi(\rho^{-\kappa})) \]

\[+ P_{m-1}(t(s; \rho), x(y; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) \]

\[= \sigma(\rho)(t(s; \rho), x(y; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + O(\rho^{-\mu_0\kappa}) \]

\[= \rho^{-\mu_1\delta_\kappa} (\epsilon(s, x^0) + o(1)) \quad \text{as } \rho \to \infty, \]

since \(\mu_1 < \mu_0 \). Noting that

\[|T(\rho^{-\kappa}) - \tau_i(\rho^{-\kappa})|/2 \leq |t(s; \rho) - t_0 - \tau_i(\rho^{-\kappa})| \leq 3|T(\rho^{-\kappa}) - \tau_i(\rho^{-\kappa})|/2 \]

if \(|s| \leq c_0/2 \), we choose \(s_0 \in (0, c_0/2) \) and \(\epsilon = \pm 1 \) so that

\[(3.19) \quad \{ \epsilon \tilde{c}(s, x^0)/c(t_0, \tau_0, \xi^0); \; |s| \leq s_0 \} \cap (-\infty, 0] = \emptyset. \]

Assume that

\[1/\kappa > \mu_1 + \delta, \]

and put

\[\nu_0 = (1 - (\mu_1 + \delta)\kappa)/2. \]

Then we have

\[2\nu_0 + 2\delta\kappa - 2 = -1 - (\mu_1 - \delta)\kappa. \]

A simple calculation yields

\[(3.20) \quad \exp[-i \rho^{\mu_0} \varphi(s, y; \rho)] \tilde{P}_\rho(s, y, D_s, D_y)(\exp[i \rho^{\mu_0} \varphi(s, y; \rho)]u(s, y)) \]

\[= \left[\rho^{2\nu_0 + 2\delta\kappa - 2} \left\{ ((1/2)(\partial_x^2 p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + O(\rho^{-1})) \right. \right. \]

\[\times \left. \left. \left((\partial_x \varphi)^2 + (\rho^{-\nu_0}/i)\partial_x^2 \varphi + 2\rho^{-\nu_0} \partial_x \varphi \cdot D_s + \rho^{-\nu_0} D_s^2 \right) \right. \right. \]

\[+ \epsilon \rho^{(\mu_1 - \delta)\kappa} (\sub \sigma(\rho)(t(s; \rho), x(y; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) \right. \right. \]

\[+ \left. \left. O(\rho^{-\mu_0 - 1}) \right) + O(\rho^{-2\nu_0 - 2\delta\kappa}) \right) \]

\[+ \rho^{-2\nu_0 - 1}(\rho^{2\nu_0} p(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa}))) \]

\[+ \rho^{\mu_0 - (2\mu_0 - \delta)\kappa - 1}(\epsilon \rho^{2\nu_0} (\partial_x p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + O(\rho^{2\nu_0 - 1})) \]

\[\times (\partial_x \varphi + \rho^{-\nu_0} D_s) \]

66
\[+ \sum_{|\alpha|=1} \varepsilon \rho^{\nu_0-\delta'} \rho^{-\nu_0} (\rho^{\mu_0} \rho^{0,\alpha} (t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + O(\rho^{-1})) \]
\[\times (\partial_y^\alpha \varphi + \rho^{-\nu_0} D_y^\alpha)\]
\[+ \sum_{|\alpha|=2} \rho^{2\nu_0-2\delta'} (p^{(0,\alpha)} (t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + O(\rho^{-1}))\]
\[\times \{ (\nabla_y \varphi)^\alpha + (\rho^{-\nu_0} / i) \partial_y^\alpha \varphi + \rho^{-\nu_0} \sum_{\beta<\alpha, |\beta|=1} \partial_y^{\alpha-\beta} \varphi \cdot D_y^\beta + \rho^{-2\nu_0} D_y^\alpha \} \]
\[+ \sum_{|\alpha|=1} \rho^{2\nu_0+\delta-k-\delta'} (p^{(1,\alpha)} (t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\kappa})) + O(\rho^{-1}))\]
\[\times \{ \partial_s \varphi \cdot \partial_y^\alpha \varphi + (\rho^{-\nu_0} / i) \partial_s \partial_y^\alpha \varphi + \rho^{-\nu_0} \partial_s \varphi \cdot D_y^\alpha + \rho^{-\nu_0} \partial_y^\alpha \varphi \cdot D_s + \rho^{-2\nu_0} D_s D_y^\alpha \} \]
\[+ \sum_{3 \leq k+|\alpha| \leq m} \sum_{j=0}^k \sum_{\beta \leq \alpha} \sum_{l=0}^{k+|\alpha|-j-|\beta|} \rho^{l/2} \Phi^{(k, \alpha, j, \beta, l)}(\varphi, \rho^{-1}) D_s^l D_y^\beta \]
\[+ \sum_{i=1}^m \sum_{0<k+|\alpha| \leq m-i} \sum_{j=0}^k \sum_{\beta \leq \alpha} \sum_{l=0}^{k+|\alpha|-j-|\beta|} \rho^{l/2} \Phi^{(k, \alpha, j, \beta, l)}(\varphi, \rho^{-1}) D_s^l D_y^\beta \] \[u(s, y) \]
as \rho \to \infty, where \(\partial_s \varphi = \partial_s \varphi(s, y; \rho), \partial_y^\alpha \varphi = \partial_y^\alpha \varphi(s, y; \rho), \nabla_y \varphi = (\partial_y \varphi, \ldots, \partial_{y^n} \varphi), I(k, \alpha, j, \beta, l) = \{(h, \gamma) \in (\mathbb{Z}_+)^{n+1} : h \leq k - j, |\gamma| \leq |\alpha| - |\beta|, 1 \leq h + |\gamma| \leq k + |\alpha| - j - |\beta| - l - 1\} \) and the \(\Phi^{(k, \alpha, j, \beta, l)}(\varphi, \rho^{-1})\) and \(\Phi^{(k, \alpha, j, \beta, l)}(\varphi, \rho^{-1})\) denote polynomials of \(\{\partial_s^h \partial_y^\gamma \varphi\}_{(h, \gamma) \in I(k, \alpha, j, \beta, l)}\) and \(\rho^{-1}\). We choose \(\kappa, \delta' \in \mathbb{Q}\) as follows:
\[\kappa = (\mu_0 + (1 + X) \delta)^{-1}, \quad \delta' = \mu_0 + \delta,\]
where \(X = \min\{1/2, (\mu_0 - \mu_1)/(3\delta)\}.\) Then we have
\[\begin{align*}
0 < \delta' \kappa &< 1, \quad \nu_0 > 0, \quad \nu_0 + 2\delta \kappa - 2 \geq -2\mu_0 \kappa, \\
\nu_0 + 2\delta \kappa &- 2 > \nu_0 - (2\mu_0 - \delta) \kappa - 1, \\
\nu_0 + 2\delta \kappa &= \nu_0 - \delta' \kappa - \mu_0 \kappa \quad \text{if } X = 1/2, \\
\nu_0 - \delta' \kappa &- \mu_0 \kappa \quad \text{if } X \neq 1/2, \\
2\nu_0 + 2\delta \kappa &- 2 > 2\nu_0 - 2\delta \kappa,
\end{align*}\]
\[(3.24) \quad 2\nu_0 - 2\delta'\kappa \begin{cases} > \nu_0 + 2\delta\kappa - 2 & \text{if } (\mu_0 - \mu_1)/(3\delta) > 1/2, \\ = \nu_0 + 2\delta\kappa - 2 & \text{if } (\mu_0 - \mu_1)/(3\delta) = 1/2, \\ < \nu_0 + 2\delta\kappa - 2 & \text{if } (\mu_0 - \mu_1)/(3\delta) < 1/2, \end{cases} \]

\[(3.25) \quad 2\nu_0 + 2\delta\kappa - 2 > 2\nu_0 + \delta\kappa - 1 - \delta'\kappa, \]

\[(3.26) \quad 2\nu_0 + \delta\kappa - 1 - \delta'\kappa \begin{cases} > \nu_0 + 2\delta\kappa - 2 & \text{if } X > 1/3, \\ = \nu_0 + 2\delta\kappa - 2 & \text{if } X = 1/3, \\ < \nu_0 + 2\delta\kappa - 2 & \text{if } X < 1/3. \end{cases} \]

Moreover, we have

\[(3.27) \quad \nu_0 + 2\delta\kappa - 2 > k(\nu_0 - (1 - \delta\kappa)) + |\alpha|(\nu_0 - \delta'\kappa) \]

if \(k + |\alpha| \geq 3, \)

\[(3.28) \quad \nu_0 + 2\delta\kappa - 2 > k(\nu_0 - (1 - \delta\kappa)) + |\alpha|(\nu_0 - \delta'\kappa) - i \]

if \(i \geq 1 \) and \(k + |\alpha| > 0. \)

Put

\[\gamma_0 = \delta\kappa(1 - X) \ (\geq \delta\kappa/2), \quad l_0 = -[-\nu_0/\gamma_0] - 1. \]

Then we have

\[2\nu_0 + 2\delta\kappa - 2 - (2\nu_0 + \delta\kappa - 1 - \delta'\kappa) = \gamma_0, \]

\[2\nu_0 + 2\delta\kappa - 2 - (2\nu_0 - 2\delta'\kappa) = 2\gamma_0, \]

\[l_0 = 0 \text{ if and only if } \mu_0 - \mu_1 \leq \delta, \]

\[l_0 \geq 1 \text{ if and only if } \mu_0 - \mu_1 > \delta. \]

We also put

\[\varphi(s, y; \rho) = \sum_{k=0}^{l_0} \rho^{-k\gamma_0} \varphi_k(s, y; \rho) \quad \text{for } (s, y, \rho^{-1}) \in \tilde{\Omega}, \]

where \(\tilde{\Omega} = [-s_0, s_0] \times V_0 \times (0, \rho_0^{-1}], \)

\(V_0 = \{ y \in \mathbb{R}^n; |y| \leq 1 \} \) and \(\rho_0 \gg 1. \) By \((3.20)-(3.28) \) we have

\[(3.29) \quad \exp[-i\rho^{\mu_0}\varphi(s, y; \rho)][\bar{P}_\rho(s, y, D_s, D_y)(\exp[i\rho^{\mu_0}\varphi(s, y; \rho)]u(s, y))] \]

\[= \rho^{2\nu_0 + 2\delta\kappa - 2} \left[((1/2)(\partial^2_{s,p}) + O(\rho^{-1})) \right. \]

\[\times ((\partial_s \varphi_0)^2 + \epsilon((1/2)(\partial^2_{s,p}) + O(\rho^{-1}))^{-1} \]

\[\times \rho^{(\mu_1 - \delta)\kappa}(\text{sub } \sigma(P)(t(s, \rho), x(y, \rho), \bar{b}(s, \rho), \Xi(\rho^{-\kappa})) \]

\[+ O(\rho^{-(\mu_0 - \mu_1 + \delta)\kappa})). \]

68
\[+ \sum_{k=1}^{l_0} \rho^{-k \alpha}((1/2)(\partial^2_p p) + O(\rho^{-1})) \{2(\partial_s \varphi_0) \cdot (\partial_s \varphi_k) \\
+ \Phi^e_k(s, y; \rho; \varphi_0, \ldots, \varphi_{k-1}) \} \\
+ \rho^{-10} \{(\partial^2_p p) + O(\rho^{-1}) \} \{ \partial_s \varphi_0 \cdot D_s + \Phi^e(s, y; \rho; \varphi_0, \ldots, \varphi_{l_0}) \\
+ \rho^{-1/L} L^e(s, y; D_x, D_y; \rho; \varphi_0, \ldots, \varphi_{l_0}) \} \} \} u(s, y) \]

for \((s, y, \rho^{-1}) \in \tilde{\Omega},\) where \(L \in \mathbb{N},\) \(\partial_s \varphi_k = \partial_s \varphi_{k-1}(s, y; \rho) \) and \((\partial^2_p p) = (\partial^2_p p)(t(s; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\alpha}))\). Here \(\Phi^e_k(s, y; \rho; \varphi_0, \ldots, \varphi_{k-1}) (1 \leq k \leq l_0)\) and \(\Phi^e(s, y; \rho; \varphi_0, \ldots, \varphi_{l_0})\) are polynomials of derivatives of \(\varphi_0(s, y; \rho), \ldots, \varphi_{k-1}(s, y; \rho) \) and \(\varphi_0(s, y; \rho), \ldots, \varphi_{l_0}(s, y; \rho)\) with coefficients in \(\mathcal{B}(\tilde{\Omega})\), respectively, and \(L^e(s, y; D_x, D_y; \rho; \varphi_0, \ldots, \varphi_{l_0})\) is a differential operator of order \(m\) whose coefficients are polynomials of \(\{\partial^j_s \partial^m_p \varphi_k(s, y; \rho)\}_{0 \leq k \leq l_0, l+|\alpha| \leq m}\) with coefficients in \(\mathcal{B}(\tilde{\Omega})\). \(\mathcal{B}(\tilde{\Omega})\) denotes the set of \(C^\infty\) functions defined in \(\tilde{\Omega}\) with bounded derivatives. From (3.16), (3.18) and (3.19) we may assume that

\[\psi(s, y; \rho) \equiv \varepsilon((1/2)(\partial^2_p p) + O(\rho^{-1})^{-1/2} \rho^{\mu_1-\delta}) \times \text{sub } \sigma(P)(t(s; \rho), x(y; \rho), \tilde{b}(s; \rho), \Xi(\rho^{-\alpha})) \notin (-\infty, 0] \]

for \((s, y, \rho^{-1}) \in \tilde{\Omega},\) modifying \(\rho_0\) if necessary, where \(\psi(s, y; \rho)\) is the quantity in (3.29). Define

\[\varphi_0(s, y; \rho) = -i \int_{s_0}^s \sqrt{\psi(s_1, y; \rho)} \, ds_1 + i |y|^2 \quad \text{for } (s, y, \rho^{-1}) \in \tilde{\Omega}, \]

where \(\sqrt{\varepsilon}\) for \(z \notin (-\infty, 0]\) is the branch satisfying \(\text{Re } \sqrt{\varepsilon} > 0.\) Then there is \(c_1 > 0\) such that

\[\text{Im } \varphi_0(s, y; \rho) > c_1(s_0 - s) + |y|^2, \]
\[\partial_s \varphi_0(s, y; \rho) = -i \sqrt{\psi(s, y; \rho)} \neq 0 \]

for \((s, y, \rho^{-1}) \in \tilde{\Omega}.\) Now we can repeat the argument at the end of §4 of [11] to complete the proof of Theorem 3.1 if \(a(t, \Xi(\theta)) \neq 0\) in \((t, \theta).\) Next consider the case where \(a(t, \Xi(\theta)) \equiv 0\) in \((t, \theta).\) Then we take \(T(\theta) \equiv 0\) and \(\Xi(\theta) \equiv \xi^0.\) Modifying \((t_0, x^0, \xi^0)\) if necessary, we may assume that

\[\text{sub } \sigma(P)(t_0, x^0, \lambda_j_0(\theta; 0, \xi^0), \xi^0) \neq 0, \]

where \(\lambda_j_0(\theta; 0, \xi^0) \equiv \tau_0.\) We make the following asymptotic change of variables:

\[t = t(s; \rho) = t_0 + \rho^{-1/3} s, \quad x = x(y; \rho) = x^0 + \rho^{-1/6} y. \]
Similarly, we have
\[
\exp[-i\rho^{1/6} \varphi(s, y; \rho)] \tilde{P}_\rho(s, y, D_s, D_y)(\exp[i\rho^{1/6} \varphi(s, y; \rho)]u(s, y))
\]
\[
= \left[\rho^{-1}\{(1/2)(\partial_s^2 \rho)(t(s; \rho), \tilde{b}(s; \rho), \xi^0) + O(\rho^{-1}) \}
\right.
\]
\[
\times ((\partial_s \varphi)^2 + (\rho^{-1/6}/i) \partial_s^2 \varphi + 2\rho^{-1/6} \partial_s \varphi \cdot D_s + \rho^{-1/3} D_s^2)
\]
\[
+ \varepsilon \sub \sigma(P)(t(s; \rho), x(y; \rho), \tilde{b}(s; \rho), \xi^0) + O(\rho^{-1}) \}
\]
\[
+ \sum_{|\alpha|=1} \rho^{-7/6}(p^{1, \alpha})(t(s; \rho), \tilde{b}(s; \rho), \xi^0) + O(\rho^{-1}) \}
\]
\[
\times (\partial_s \varphi \cdot \partial_s^\alpha \varphi + (\rho^{-1/6}/i) \partial_s \partial_s^\alpha \varphi + \rho^{-1/6} \partial_s \varphi \cdot D_s^\alpha + \rho^{-1/3} D_s \partial_s^\alpha \varphi)
\]
\[
+ \sum_{|\alpha|=2} \sum_{\beta \leq \alpha} 2^{-|\beta|} \rho^{l/6-5/3} \Phi_{0, \alpha, 0, \beta, l}(\varphi, \rho^{-1}) D_\beta^3
\]
\[
+ \sum_{3 \leq k+|\alpha| \leq m} \sum_{j=0}^k \sum_{\beta \leq \alpha} \sum_{l=0}^{k+|\alpha|-|\beta|} \rho^{l/6-2k/3-5|\alpha|/6} \Phi_{k, \alpha, j, \beta, l}(\varphi, \rho^{-1}) D_j^i D_\beta^3
\]
\[
+ \sum_{i=1}^{m} \sum_{1 \leq k+|\alpha| \leq m-i} \sum_{j=0}^k \sum_{\beta \leq \alpha} \sum_{l=0}^{k+|\alpha|-|\beta|} \rho^{l/6-2k/3-5|\alpha|/6-i} \Phi_{k, \alpha, j, \beta, l}^i(\varphi, \rho^{-1}) D_j^i D_\beta^3
\]
\[
u(s, y),
\]
where \(\tilde{b}(s; \rho) = b(t(s; \rho), \xi^0) \). Noting that
\[
1/3 - 5/3 = -4/3 (-7/6)
\]
\[
(k + |\alpha|)/6 - 2k/3 - 5|\alpha|/6 \leq -3/2 (-7/6)
\]
if
\[
(k + |\alpha|)/6 - 2k/3 - 5|\alpha|/6 - i \leq -3/2 (-7/6)
\]
if
\[
i \geq 1 \text{ and } k \geq 1 \text{ and } k + |\alpha| \geq 1,
\]
we can also repeat the same argument as above, which proves Theorem 3.1.

3.3. Proof of Theorem 1.3

First we assume that \(n = 2 \), and that the Cauchy problem (CP) is \(C^\infty \) well-posed. Let \((t_0, x_0, \tau_0, \xi^0) \in [0, \infty) \times \mathbb{R}^2 \times \mathbb{R} \times S^1 \) satisfy \(p(t_0, \tau_0, \xi^0) = (\partial_x p)(t_0, \tau_0, \xi^0) = 0 \). Then there is \(j \in \mathbb{N} \) with \(1 \leq j \leq r(t_0, \xi^0) \) satisfying \(\tau_0 = \tau_j \). Here we have used the notations in §3.1. We omit the subscript \(j \), i.e., we write \(a(t, \xi), b(t, \xi), \delta \) and \(\Gamma \) for \(a_j(t, \xi), b_j(t, \xi), \delta_j \) and \(\Gamma_j \), respectively. Moreover, we put
\[
\beta(t, x, \xi) = \sub \sigma(P)(t, x, b(t, \xi), \xi)
\]
for \((t,x,\xi)\in [t_0-\delta,t_0+\delta] \times \mathbb{R}^n \times (\mathbb{T} \setminus \{0\})\). Let \(e\) be a vector in \(S^1\) satisfying \(e \perp \xi^0\), and choose \(\theta_0 > 0\) so that \(\Gamma_0 \equiv \{\lambda(\xi^0 + \theta e) ; \lambda > 0\} \subseteq \Gamma\). Since \(n = 2\), \(\Gamma_0\) is a conic neighborhood of \(\xi^0\). We put

\[a^\pm(t,\theta) = a(t,\xi^0 \pm \theta e), \quad b^\pm(t,\theta) = b(t,\xi^0 \pm \theta e),\]

\[\beta^\pm(t,\theta) = \beta(t, x^0, \xi^0 \pm \theta e).\]

Suppose that \(a^+(t,\theta) \equiv 0\) in \((t,\theta)\) and \(\beta^+(t,\theta) \neq 0\) in \((t,\theta)\). Then, taking \(T(\theta) = c\theta\) and \(\Xi(\theta) = (\xi^0 + \theta e)/|\xi^0 + \theta e|\) with some \(c > 0\), we have

\[\text{Ord}_{\partial_0} \min\{\min_{s \in \mathcal{R}_0(\Xi(\theta))} |\theta^0 + T(\theta) - s|, 1\} \times |\beta^+(t_0 + T(\theta), b^+(t_0 + T(\theta), \theta)| \leq \text{Ord}_{\partial_0} h_{m-1}(t_0 + T(\theta), b^+(t_0 + T(\theta), \theta), \Xi(\theta))^{1/2} = \infty,\]

since \(a^+(t,\theta) \equiv h_{m-1}(t, b^+(t,\theta), \Xi(\theta)) \equiv 0\) in \((t,\theta)\). Theorem 3.1 implies that \((CP)\) is not \(C^\infty\) well-posed, which contradicts the assumption of \(\S 3.3\). Next suppose that \(a^+(t,\theta) \neq 0\) in \((t,\theta)\). Then there are \(\nu_0, l \in \mathbb{Z}_+\) such that

\[\partial^k_\nu \theta^0 a^+(t,\theta)|_{t=t_0,\theta=0} = 0 \quad \text{if} \quad k < l,\]

\[\partial^k_\nu \theta^0 a^+(t,\theta)|_{t=t_0,\theta=0} \neq 0.\]

Therefore, by the Weierstrass preparation theorem there are real analytic functions \(e^\pm(t,\theta)\) defined in \([t_0-\delta, t_0+\delta] \times [-\theta_0, \theta_0]\) and real analytic functions \(a^\pm_k(\theta)\) \((1 \leq k \leq l)\) defined in \([-\theta_0, \theta_0]\) such that \(a^\pm_k(0) = 0\) \((1 \leq k \leq l)\) and

\[a^+(t,\theta) = \theta^0 e^+(t,\theta)q^+(t,\theta) \quad \text{for} \quad (t,\theta) \in [t_0-\delta, t_0+\delta] \times [-\theta_0, \theta_0],\]

where \(q^+(t,\theta) = (t-t_0)^l + a^+_l(\theta)(t-t_0)^{l-1} + \cdots + a^+_1(\theta),\) with modifications of \(\delta\) and \(\theta_0\) if necessary. Now we can repeat the argument in \(\S 5\) of [11] to prove Theorem 1.3, replacing \(b(t,x,\xi)\) and \(m\) by \(\beta(t,x,\xi)\) and \(l\), respectively, when \(n = 2\).

Next assume that \(n \geq 3\). Let \((t_0, x^0, \xi^0) \in [0,\infty) \times \mathbb{R}^n \times S^{n-1}\), and assume that \((L^\prime)_{(t_0,x^0,\xi^0)}\) is not satisfied. Then there is \(j_0 \in \mathbb{N}\) with \(1 \leq j_0 \leq r(t_0, \xi^0)\) such that \((3.2)\) with \(j = j_0\) does not hold. Recall that \(b_{j_0}(t_0, \xi^0) = \tau_{j_0}\) and \(a_{j_0}(t_0, \xi^0) = 0\). We may assume that \(a_{j_0}(t, \xi) \neq 0\) in \((t,\xi)\). Indeed, if \(a_{j_0}(t, \xi) \equiv 0\) in \((t,\xi)\), then we have sub \(\sigma(P)(t_0, x^0, b_{j_0}(t_0, \xi^0), \xi^0) \neq 0,\) modifying \((t_0, \xi^0)\) if necessary. With \(T(\theta) \equiv 0\) and \(\Xi(\theta) \equiv \xi^0\) the condition \(C(t_0, x^0, \xi^0, \kappa; T, \Xi)\) is satisfied, where \(1 \leq \kappa \leq m\) and \(\lambda_n(t,\xi) = b_{j_0}(t,\xi) - \sqrt{a_{j_0}(t,\xi)} = b_{j_0}(t,\xi).\) Theorem 3.1 implies that the Cauchy problem \((CP)\) is not \(C^\infty\) well-posed. We also choose \(\delta > 0\) so that

\[(t,\xi) \in (t_0-\delta_0, t_0+\delta_0) \times \Gamma_0 \quad \text{if} \quad |t-t_0|^2 + |\xi-\xi^0|^2 \leq \delta^2,\]

71
and define

\[A = \{(t, \xi, y) \in \mathbb{R}^{n+2}; \ |t - t_0|^2 + |\xi - \xi_0|^2 \leq \delta^2, \ t \geq 0 \text{ and } y = a_{j_0}(t, \xi)\}, \]

\[B = \{(t, \xi, y) \in \mathbb{R}^{n+2}; \ |t - t_0|^2 + |\xi - \xi_0|^2 \leq \delta^2, \ t \geq 0 \text{ and } y = |\text{sub } \sigma(P)(t, x^0, b_{j_0}(t, \xi), \xi)|^2\}, \]

\[C = \{(t, \xi, y) \in \mathbb{R}^{n+2}; \ |t - t_0|^2 + |\xi - \xi_0|^2 \leq \delta^2, \ t \geq 0 \text{ and } y = \min\left\{\min_{s \in \mathcal{R}_0(\xi/|\xi|)} |t - s|^2, 1\right\}\}. \]

It is obvious that \(A \) and \(B \) are semi-algebraic sets. Put

\[\Xi_0 = \{\xi \in \mathbb{R}^n; \ |\xi - \xi_0|^2 \leq \delta^2, \ D_M(s_0, \xi) \neq 0 \text{ for some } s_0 \in \mathbb{R}\}, \]

\[\Xi_j = \{\xi \in \mathbb{R}^n; \ |\xi - \xi_0|^2 \leq \delta^2, \ D_{M-j+1}(s, \xi) = 0 \text{ for any } s \in \mathbb{R} \text{ and } D_{M-j}(s_0, \xi) \neq 0 \text{ for some } s_0 \in \mathbb{R}\} \quad (1 \leq j \leq M). \]

Note that the \(\Xi_j \) are semi-algebraic sets and that

\[\Xi_j \cap \Xi_k = \emptyset \quad (j \neq k), \quad \bigcup_{j=0}^{M} \Xi_j = \{\xi \in \mathbb{R}^n; \ |\xi - \xi_0|^2 \leq \delta^2\}. \]

Choose \(\delta' > 0 \) so that \(\delta' \leq 1 \) and

\[\{t + i\tau \in \mathbb{C}; \ t \in [-\delta', t_0 + 2], \ \tau \in \mathbb{R}, \ |\tau| \leq \delta'\} \subset \Omega, \]

where \(\Omega \) is the complex neighborhood in §1. Put

\[\mathcal{D}_j = \{(t, \xi) \in \mathbb{R}^{n+1}; \ \xi \in \Xi_j, \ D_{M-j}(t_1 + i\tau, \xi) = 0, \ t_1 \in [-\delta', t_0 + 2], \ \tau \in \mathbb{R}, \ |\tau| \leq \delta', \ t_2 \geq 0, \ t_2^2 = t_1^2 \text{ and } t = (t_1 + t_2)/2 \} \quad (0 \leq j \leq M), \]

\[\mathcal{D} = \bigcup_{j=0}^{M} \mathcal{D}_j. \]

Then we have

\[C = \{(t, \xi, y) \in \mathbb{R}^{n+2}; \ |t - t_0|^2 + |\xi - \xi_0|^2 \leq \delta^2, \ t \geq 0 \}
\]

\[\text{"}(\hat{s}, \xi) \in \mathcal{D} \text{ or } \hat{s} = t - 1", \]

\[|t - s|^2 \geq |t - \hat{s}|^2 \text{ for any } (s, \xi) \in \mathcal{D} \text{ and } y = |t - \hat{s}|^2, \]

which implies that \(C \) is semi-algebraic. Putting

\[\Lambda = \{(\rho, t, \xi, \lambda) \in \mathbb{R}^{n+3}; \text{ there are } y, u, v, w \in \mathbb{R} \text{ satisfying } \}
\]

\[(t, \xi, y) \in A; \ (t, \xi, u) \in B; \ (t, \xi, v) \in C; \ \rho y = 1, \]

\[w(|\xi - \xi_0|^2 + |t - t_0|^2)\rho uv + 1) = 1 \text{ and } \lambda = \rho uw\}, \]

we can repeat the argument at the end of §6 in [11] to prove Theorem 1.3 when \(n \geq 3 \).
4. Remarks

Theorem 1.2 is valid for any set-valued function \(R(\xi) : S^{n-1} \ni \xi \mapsto R(\xi) \in \mathcal{P}(\mathbb{C}) \) satisfying (1.2), where \(\mathcal{P}(\mathbb{C}) \) denotes the power set of \(\mathbb{C} \). Therefore, there are various choices in defining the condition (L). The following lemma clarifies the situations.

Lemma 4.1. The condition \((L)_0\) is satisfied if the condition \((L)\) is satisfied.

Lemma 4.1 easily follows from Lemma 4.2 below and the compactness argument. Let \(U \) be an open subset of \(\mathbb{R}^n \), and let \(a(t, \xi) \) be a real analytic function defined in \([0, \delta_0] \times \overline{U} \), where \(\delta_0 > 0 \). Then there is a compact complex neighborhood \(\Omega_a \) of \([0, \delta_0] \) such that \(a(t, \xi) \) is regarded as an analytic function defined in \(\Omega_a \) for \(\xi \in \overline{U} \). We assume that \(a(t, \xi) \neq 0 \) for \((t, \xi) \in [0, \delta_0] \times \overline{U} \).

Lemma 4.2. There are positive constants \(\delta_1 \) and \(A \equiv A(a, \delta, c) \) independent of \(\xi \) such that

\[\min\left\{ \min_{s \in R_{a,\delta,\epsilon}(\xi)} |t - s|, 1 \right\} |b(t, \xi)| \leq AC\sqrt{a(t, \xi)} \quad \text{for} \quad (t, \xi) \in [0, \delta_1] \times U\]

if, with \(C \geq 1 \),

\[\min\left\{ \min_{s \in R_{a,\delta}(\xi)} |t - s|, 1 \right\} |b(t, \xi)| \leq C\sqrt{a(t, \xi)} \quad \text{for} \quad (t, \xi) \in [0, \delta_1] \times U,\]

where \(\min_{s \in \emptyset} |t - s| = 1 \).

Lemma 4.2 can be proved by combining the arguments used in the proof of Lemma 2.1 in [12] and Hironaka’s resolution theorem. For details we refer to [17].

References

[17] Wakabayashi, S., Remarks on the conditions (L) and (L)_0 in the paper “On the Cauchy problem for hyperbolic operators with double characteristics whose principal parts have time dependent coefficients”, located in http://www.math.tsukuba.ac.jp/~wkbysh/.

Seiichiro Wakabayashi
(Professor Emeritus)
Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305-8571
Japan
e-mail: wkbysh@math.tsukuba.ac.jp