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Abstract

We consider a p-dimensional normal population such that the different vari-
ables have a common correlation coefficient ρ ∈ [0, 1). We call such a pop-
ulation an equi-correlated normal population (ENP). We draw a sample of
size n from an ENP, and form a sample covariance matrix S and a sample
correlation matrix C. For a proportional limiting regime, we deduce that
the second largest eigenvalue of S converges in distribution to the type-1
Tracy-Widom distribution. From this, the number of principal components
(PCs) the Frontier’s broken-stick rule takes from S converges almost surely
to 0 for ρ = 0, and 1 for 0 < ρ < 1. For the limiting distributions, we
compare the second largest eigenvalue of C of ENP, to the eigenvalues of
the sample correlation matrix of a bounded spiked eigenvalues model.

1 Introduction

In multivariate statistical analysis, we often employ principal component analysis
(PCA) ([20],[24]) and factor analysis (FA) ([22],[33]) to find principal components (PCs)
and factors to illustrate a great part of the variance or the correlation in the p-
dimensional data by using the sample covariance matrix S or the sample correlation
matrix C of that data. The PCs and the factors are “significant” if the corresponding
eigenvalues of S or C of the data are large.

Estimating the number of significant PCs and factors in PCA and FA are important
in finance ([11, 12],[30],[13]), biology ([35]), engineering ([39]), psychometrics [25], and
so on. Components retention rules are methods to determine the number q of the most
important PCs. Components retention rules not only balance the accuracy (or fit) of
the model with ease of analysis and the potential loss of information, but also identify
the cause of phenomena. Many components retention rules have been proposed and
compared in [20],[24],[34],[8],[15], to cite a few.

In [2], the author and Husnaqilati handled Kaiser’s intercorrelation [26], by assum-
ing an equi-correlated normal population (ENP), that is, the multinormal population
such that the variables have a common correlation coefficient ρ ≥ 0. Let us call ρ a pop-
ulation equi-correlation coefficient (PECC). [2] assumed that both the data dimension
p and the sample size n tend to infinity with p/n → c > 0, and identified the limiting
spectral distribution of the sample correlation matrix C. Then, they studied the limit-
ing behavior of Kaiser’s rule in the limit c → 0, and explained Kaiser’s observation [27]
as the discontinuity of the limiting value at ρ = 0. The phase transitions of vari-
ous components retention rules concerning the PECC ρ could be interesting from the
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viewpoint of random matrix theory in relation to the recent study ([31],[7]) on a sam-
ple covariance matrix S having the unbounded largest eigenvalue (See [4] for bounded
largest eigenvalue case). Above all, an ENP is related to intraclass correlation [23].

The broken-stick rule (Frontier [14], Jackson [19]) is a components retention rule
motivated by the study of MacArthur [29] on animal community structure. Let BS(C)
(BS(S), resp.) be the number of PCs of a sample correlation matrix C ∈ Rp×p (sample
covariance matrix S ∈ Rp×p, resp.) that the broken-stick rule retains. The i-th (1 ≤
i ≤ p) largest eigenvalue of a symmetric matrix M ∈ Rp×p is written by λi(M).

BS(C) := inf

{
i ∈ [1, p]

∣∣∣∣∣ λi(C) ≤
p∑

k=i

k−1

}
− 1. (1)

By [18, Theorem 2.2], for i (1 ≤ i ≤ p), p−1
∑p

k=i k
−1 is the expectation of the length

of the i-th longest subinterval of I = [0, 1] divided by p−1 points independently obeying
the uniform distribution on I. Thus BS(C) < ∞, because otherwise λi(C) >

∑p
k=i k

−1

(1 ≤ i ≤ p) which implies p = traceC =
∑p

i=1 λi(C) >
∑p

i=1

∑p
k=i k

−1 = p. For

X1, . . . ,Xn
i.i.d.∼ Np(0, Σp(ρ)) and ρ ∈ [0, 1), letting inf ∅ = ∞, we define BS(S) to be

(1) with C replaced by S.

Let
a.s.→ and

P→ be the almost sure convergence and the convergence in probability,
respectively. For an ENP and the limiting regime n, p → ∞, p/n → c > 0, we will
prove BS(C)

a.s.→ 0 for ρ = 0, 0 < lim inf BS(C) (a.s.) for 0 < ρ < 1, BS(S)
a.s.→ 0 for

ρ = 0, and BS(S)
P→ 1 for 0 < ρ < 1.

This paper is organized as follows: The next section proves above results by studying
the limiting distribution of λ2(S) of an ENP. Section 3 analyzes the behaviors of the
broken-stick rule and various components retention rules, for real datasets of S&P
500 return time-series, Fama-French 100 portfolios time-series, and binary multiple
sequence alignment [35]. Section 4 does simulation study for the limiting distribution
of λ2(C) of an ENP, in comparison to the theoretical study [32] of a bounded spiked
eigenvalues model.

2 Limiting behavior of broken-stick rule for sample covariance ma-
trix of equi-correlated normal populations

Below µ ∈ Rp, σ2 > 0, ρ ∈ [0, 1) and c > 0 are deterministic, and Σp(ρ) = (1 −
ρ)Ip + [ρ] ∈ Rp×p. We derive lim

p,n→∞
p/n→c

λ1(S)/p = ρ (a.s.) for the population Np(0,Σp(ρ))

from [41], [31, Theorem 2.1], [7, Theorem 2.1] and so on.

Proposition 2.1 ([1]). Let X1, . . . ,Xn
i.i.d.∼ Np(µ, DΣp(ρ)D) with D ∈ GLp(R) being

deterministic and diagonal. Then lim
p,n→∞
p/n→c

λ1(C)/p = ρ (a.s.).

Guttman-Kaiser rule ([17],[25],[42]) is a components retention rule that retains the
eigenvalues λi(M) where M ∈ Rp×p is a sample covariance matrix S or a sample
correlation matrix C. Let GK(M) := # { i ∈ [1, p] | λi(M) ≥ traceM/p } .

Proposition 2.2 ([2]). Let X1, . . . ,Xn
i.i.d.∼ Np(µ, DΣp(ρ)D) with D ∈ GLp(R)

being deterministic and diagonal. If (M = S, µ = 0, D = Ip) or M = C, then
limp,n→∞

p/n→c
GK(M)/p almost surely converges as c → 0 to 1/2 (ρ = 0); 0 (ρ > 0).



In contrast, limp,n→∞
p/n→c

BS(C) increases from 0 as ρ increases from 0.

Theorem 2.3. Suppose X1, . . . ,Xn
i.i.d.∼ Np(0, σ

2Σp(ρ)) and n, p → ∞, p/n → c.

Then BS(S)
a.s.→ 0 (ρ = 0) and BS(S)

P→ 1 (ρ > 0).

The proof of the case ρ = 0 is by

Proposition 2.4 ([5, Theorem 3.1]). If {xij | i, j ≥ 1 } are i.i.d., Ex11 = 0, Ex2
11 = 1,

and E |x11|4 < ∞, then limp,n→∞
p/n→c

λ1(S) = (1 +
√
c)2 (a.s.).

We demonstrate Theorem 2.3 for the case ρ > 0 by establishing that the limiting
distribution of the second largest eigenvalue of S is the type-1 Tracy-Widom distri-
bution scaled by 1 − ρ. For this, we use [7, Theorem 2.5] of which setting and the
assumptions are reviewed below. Let the data matrix be

X = ΓΞ where Ξ = [ξij]1≤i≤p+l, 1≤j≤n = [ξ1 · · · ξn] ∈ R(p+l)×n (2)

satisfying the following two conditions:

Assumption 1 ([7, Assumption 1]). { ξj = [ξ1j · · · ξp+l,j]
⊤ | 1 ≤ j ≤ n } are i.i.d. ran-

dom vectors. { ξij | 1 ≤ i ≤ p+ l, 1 ≤ j ≤ n } are independent random variables such
that E(ξij) = 0, E |ξij|2 = 1, and supi,j E |ξij|4 < C for some constant C.

Assumption 2 ([7, Assumption 7]). supi,j E |ξij|k < ck for some constant ck (k ∈ N).

Let Γ ∈ Rp×(p+l) be a deterministic matrix with l/p → 0, Σ = ΓΓ⊤ ∈ Rp×p,
ℓi = λi(Σ) (1 ≤ i ≤ p), and Λ = diag(ℓ1, . . . , ℓp) ∈ Rp×p. Let Γ = VΛ1/2U be a
singular value decomposition with V ∈ Rp×p, U ∈ Rp×(p+l), and VV⊤ = UU⊤ = Ip.
For two sequences of positive numbers an and bn, an ≳ bn means an ≥ cbn for some
constant c > 0. Let an ∼ bn be an ≳ bn and bn ≳ an. Let an ≪ bn be an/bn → 0.

Let a deterministic integer K > 0 satisfy the following two assumptions:

Assumption 3 ([7, Assumption 2]). p ≳ n, di := p/(nℓi) → 0 (n, p → ∞) for
i = 1, 2, . . . , K, max

K+1≤i≤p
ℓi is bounded by a constant C, Kn−1/6 → 0, and K2dK → 0.

Assumption 4 ([7, Assumption 3]). There is a constant s not depending on n such
that ℓi−1/ℓi ≥ s > 1, i = 2, . . . , K.

Let ΛS = diag(ℓ1, . . . , ℓK), ΛP = diag(ℓK+1, . . . , ℓp), and

Σ1 = U⊤
2 ΛPU2 ∈ R(p+l)×(p+l)

where U =

[
U1

U2

]
∈ Rp×(p+l) with U1 ∈ RK×(p+l) and U2 ∈ R(p−K)×(p+l). The Stieltjes

transform of a finite measure µ on R is, by definition, sµ(z) :=
∫ dµ(x)

x−z
(z ∈ C\supp(µ)).

Let C+ be the complex upper half plane. Finally, we consider the following assumption:

Assumption 5 ([7, Assumption 8]). There are probability measures (µn)n∈N on R such

that sµn(z) = −
(
z − n−1 trace

(
(Ip + sµn(z)Σ1)

−1Σ1

))−1
(z ∈ C+, n ∈ N) and

lim sup
n

ℓK+1 ·
(
− lim

z∈C+→tn
sµn(z)

)
< 1 where tn := inf { t ∈ R | µn ((−∞, t]) = 1 } .



Let E be an event depending on n. Following [38], we say E holds with high
probability if P(E) ≥ 1−O(n−c) for some constant c > 0 (independent of n).

Proposition 2.5 ([7, Theorem 2.5]). Suppose Assumptions 1-5, l ≪ n1/6, and p ∼ n.
Let ϵ > 0 be sufficiently small. Assume 1 ≤ i−K ≤ log n. Then, with high probability,∣∣∣∣λi(S)− λi−K

(
1

n
Ξ⊤Σ1Ξ

)∣∣∣∣ ≤ n−2/3−ϵ.

In particular, λK+1 has limiting Type-1 Tracy-Widom distribution.

We will verify all the assumptions of Proposition 2.5 are satisfied by Theorem 2.3
with l = 0, K = 1, i = 2, ΛS = (p − 1)ρ + 1, and Σ1 = ΛP = (1 − ρ)Ip. Then,
the limiting distribution of the second largest eigenvalue λ2(S) of S will be that of
λ1((1 − ρ)n−1ΞΞ⊤) for Ξ introduced in (2), so we will apply the following results of

Soshnikov to Ξ, where the convergence in distribution is denoted by
D−→ and

µn,p := (n1/2 + p1/2)2, σn,p := (n1/2 + p1/2)(n−1/2 + p−1/2)1/3.

Proposition 2.6 ([37, Theorem 1, Corollary 1]). Let X = [xij] ∈ Rp×n have inde-
pendent random entries such that Exij = 0, Ex2

ij = 1, Exk
ij < ck for some constant

ck (k ∈ N), E(xij)
2m ≤ (const m)m, and xij follow symmetric laws of distribution

(1 ≤ i ≤ p, 1 ≤ j ≤ n). Suppose n, p → ∞, p/n → c. Then λ1(XX⊤)−µn,p

σn,p

D−→ TW1.

Moreover, λ1(XX⊤) ≤ µn,p +O
(
p1/2 log p

)
(a.s.).

Our case satisfies all the assumptions of Proposition 2.5. Assumptions 1 and 2
follow from the normality of the population. Assumption 3 is seen as follows: K = 1,
dK = p/(n((p− 1)ρ+ 1)) → 0 (n, p → ∞, p/n → c). Besides, ℓi = 1− ρ (i = 2, . . . , p)
are bounded, Kn−1/6 → 0, and K2dK → 0. Assumption 4 is by K = 1. Finally, we
check Assumption 5. By Σ1 = (1 − ρ)Ip, the equation of sµn(z) is quadratic. The
Marčenko-Pastur probability measure νy,t of the dimension-to-sample-size ratio y > 0
and the scale parameter t > 0, has a point mass 1 − y−1 at 0 for y > 1, and sνy,t(z)

is given in [40]. Then µn = (1− p/n) δ0 + (p/n)νp/n,1−ρ, so tn = (1 − ρ)(1 +
√
p/n)2.

Thus ℓK+1 ·(− limz∈C+→tn sµn(z)) = (1+
√
p/n)−1, which assures all the assumptions of

Proposition 2.5 for our case. Hence, by Proposition 2.5, the limiting distribution of the
second largest eigenvalue λ2(S) of S is that of the largest eigenvalue λ1((1−ρ)n−1ΞΞ⊤).

For ξ ∼ N(0, σ2), E ξ2k ≤ (2σ2k)k and E ξ2k−1 = 0 (k = 1, 2, . . .), so Proposition 2.6
implies:

Theorem 2.7. Let X1, . . . ,Xn
i.i.d.∼ Np(0, σ

2Σp(ρ)), ρ ∈ (0, 1), X = [X1 · · ·Xn],

and n, p → ∞, p/n → c. Then
(

λ2(XX⊤)
1−ρ

− µn,p−1

)
/σn,p−1

D−→ TW1. Moreover

λ2(XX⊤)

1− ρ
≤ µn,p−1 +O

(√
p− 1 log(p− 1)

)
(with high probability).

Recall
∑p

k=1 k
−1 = log p+ γ + ϵp where γ is the Euler constant and limp→∞ ϵp = 0.

From the last inequality of Theorem 2.7 and Proposition 2.1, Theorem 2.3 follows.
By the same proof argument,

Theorem 2.8. In the setting of Proposition 2.5, BS(S) ≤ K with high probability.



3 Broken-stick rule for real datasets

We consider the correlation matrices C of the following:

1. the dataset [1] obtained from S&P 500 return stock price time-series by removing
many quotes having missing values during the period. The dataset is available
via https://zenodo.org/record/8253821.

2. the datasets (Fan et al. [13]) obtained by cleaning outliers from the dataset of
the daily excess returns [21] of Fama-French 100 portfolios [11, 12]. The latter
dataset is from Prof. French’s data library http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/.

3. binary multiple sequence alignment [35] by the courtesy of Prof. Quadeer.

We compute the n, p/n, λ1(C)/p, p, BS(C), and the numbers GK(C), CPV(C), ACT(C)
of PCs the Guttman-Kaiser rule, Cumulative-Percentage-of-Variance rule (Jolliffe [24]),
and Adjusted Correlation Thresholding (Fan et al. [13]) retain from C.

CPV(C) = min

{
i ∈ [1, p]

∣∣∣∣∣
i∑

k=1

λk(C)/p ≥ .7

}
.

ACT(C) = max

{
i ∈ [1, p]

∣∣∣∣∣
[
1− ci,n−1

λi(C)
− ci,n−1mn,i

]−1

> 1 +
√
c0,n−1

}
(3)

ci,n−1 =
p− i

n− 1
, mn,i =

1

p− i

[
p∑

k=i+1

1

λk(C)− λi(C)
+

4

λi+1(C)− λi(C)

]
(1 ≤ i ≤ p).

The left side of the inequality in (3) is due to Bai-Ding [3], and the ratio against the i-th
largest spiked eigenvalue of the population correlation matrix converges in probability
to 1 under a mild condition [13]. Besides, the threshold 1+

√
c0,n−1 in (3) is optimal [13].

3.1 S&P 500 return time-series
In [10], Engle and Kelly employed their Dynamic Equicorrelation to forecast time-

series of economics. As in [1], we considered datasets of S&P 500 stock returns for the
period 2012-01-04/2021-12-31 (n = 2516=trading days−1), for the 11 sectors (from
each sector we choose p stocks without missing data) and the totality of the 11 sectors.
We do not clean “outliers” for any days, as “outliers” may contribute to the unbound-
edness of λ1(C). The rows of Table 1 are listed in the increasing order of λ1(C)/p. The
11 sectors have BS(C) = 1 probably because each of them is relatively homogeneous.

3.2 Fama-French 100 portfolios time-series
In asset pricing and portfolio management, Fama and French designed statistical

models, 3-factor model [11] and 5-factor model [12], to describe stock returns. For
the datasets of the daily excess returns of 100 companies French chose, Fan et al. [13]
computed the estimator ACT and confirmed the three Fama-French factors [11] but
not the momentum factor [9].

(A) Fan et al. [13] used the daily excess returns of 100 industrial portfolios formed on
the basis of size and book-to-market ratio from January 2, 1998, to December 31,
2007. (“Before 2007-2008 financial crisis”)

https://zenodo.org/record/8253821
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/


Sector n p/n λ1(C)/p p BS ACT GK CPV

Communication Services 2516 .0076 .3571 19 1 3 4 7
Consumer Discretionary 2516 .0207 .3843 52 1 5 8 15

Health Care 2516 .0187 .3948 47 1 5 7 14
Consumer Staples 2516 .0091 .4302 23 1 3 4 7

Information Technology 2516 .0246 .4648 62 1 4 6 14
Industrials 2516 .0258 .4985 65 1 5 6 12
Materials 2516 .0095 .499 24 1 2 4 6
Real estate 2516 .0119 .5819 30 1 3 3 3
Financials 2516 .025 .6086 63 1 4 5 4
Energy 2516 .0064 .6872 16 1 1 1 2
Utilities 2516 .0111 .6897 28 1 2 2 2

The totality 2516 .1705 .3819 429 4 10 46 54

Table 1: The stock return datasets of 11 sectors and the totality (2012-01-04/2021-12-31).

(a) (A) (b) (B) (c) (A) (d) (B)

Figure 1: Heat maps of the correlation matrices and the SECC time-series of the daily
excess returns of Fama-French 100 portfolios of (A) 1998-01-02/2007-12-31 and
(B) 2010-01-04/2019-04-30. The red lines are λ1(C)/p. See Subsection 3.2.

(B) The dataset for the daily excess returns of Fama-French 100 portfolios, from Jan-
uary 4, 2010, to April 30, 2019. (“After 2007-2008 financial crisis”)

By Figure 1, the correlation matrix CA of (A) has submatrices of larger positive
correlation coefficients and/or larger sizes than the correlation matrix CB of (B). So
BS(CA) = 2 and BS(CB) = 1. These two datasets are clearly compared, by fitting
them to Glosten-Jagannathan-Runkle’s Generalized Autoregressive Conditional Het-
eroskedasticity model (GJR GARCH) [16], the distribution for the univariate estima-
tion being normal, and the correlation model being the Dynamic Equicorrelation [10].
The resulting time-series of sample equi-correlation coefficient (SECC) of the daily ex-
cess returns are in Figure 1. The time-series (A) is lower than the time-series (B), as
the SECC time-series of the daily returns before February 2020 [1] is lower than that of
the daily returns after then; the worldwide stock markets crashed on February 2020 by
growing uncertainty due to the Coronavirus disease 2019 pandemic. In Figure 1 (c), the
time-series (A) is lower for 1999-2001 (“dot-com bubble”) than for the other periods.

The time-series (A) consists of two time-series, and thus has BS(C) = 2. the time-
series (B) is less changing, so BS(C) = 1. Table 2 shows that the broken-stick rule is
smaller than the ACT and the Guttman-Kaiser rule is almost the same as the ACT.

For SECC time-series, the time-average ρ satisfies ρ ∼ 1.02833λ1(C)
p

− 0.09152 with

adjusted R2 being 0.9924, by the linear regression analysis for the dataset combining



Period n p/n λ1(C)/p p BS ACT GK CPV ρ

(A) 2514 .0398 .6582
100

2 4 5 2 .6016
(B) 2346 .0426 .8062 1 3 3 2 .7511

Table 2: The daily excess returns of Fama-French 100 portfolios. (A) 1998-01-02/2007-12-
31 and (B) 2010-01-04/2019-04-30. ρ is the time-average of the SECC time-series.

Table 2 and [1, Table 1].
We conjecture limp,n→∞

p/n→c
(ρ− λ1(C)/p) = 0 (a.s.) for GJR GARCH+DECO model.

3.3 Binary multiple sequence alignment
We consider the binary multiple sequence alignment (MSA) [35] of a p-residue (site)

protein with n sequences where p = 475 and n = 2815. In [35, p. 7628], Quadeer et al.
did “identify groups of coevolving residues within HCV nonstructural protein 3 (NS3)
by analyzing diverse sequences of this protein using ideas from random matrix theory
and associated methods.” They also found “Sequence analysis reveals three sectors of
collectively evolving sites in NS3. ..., there remained α = 9 eigenvalues greater than

λrndmax, presumably representing intrinsic correlations.”[35, Section Results, p. 7631]
They detected signals by a randomization from the data.

On the statistical model of [35], Morales-Jimenez, one of the authors of Quadeer [36],
commented “the majority of variables (protein positions in the genome) are essentially
independent, and there are just some small groups of variables which are correlated,
giving rise to the different spikes. These group of variables can be modelled with equi-
correlation, but the size of these groups is modelled as fixed, i.e., not growing with
the dimension of the protein. That leads to a non-divergent spiked model, like the one
considered in our Stat Sinica paper.” [32].

Nonetheless, for the dataset of MSA [35], the broken-stick rule and the adjusted
correlation thresholding work well. The number 3 of the sectors is detected by the

n p/n λ1(C)/p p BS ACT GK CPV
MSA 2815 0.1687 0.0216 475 3 10 188 193

Table 3: The multiple sequence alignment dataset.

broken-stick rule BS(C) = 3. The number α = 9 of eigenvalues greater than λrnd
max is

nearly ACT(C) = 10.

4 Comparison of ENP to a bounded spiked eigenvalues model

As for the asymptotic behaviors of the eigenvalues of S and C, the first-order
behavior (i.e., location) are the same under a certain condition (El Karoui [28]), but
the second-order behavior (i.e., fluctuation) can be different [32].

For the null case, a sample covariance matrix S and a sample correlation matrix C
have the same limiting distribution of the largest eigenvalue:

Proposition 4.1 ([6, Theorem 1.6]). Let the population be Np(0, Ip). Suppose p, n →
∞, p/n → c ∈ (0, 1). Then (nλ1(C)− µn,p)/σn,p

D−→ TW1.

An ENP with the population covariance matrix Σp(ρ) (ρ > 0) is a divergent spiked
eigenvalues model. For such an ENP, λ2(C) (λ2(S), resp.) is effectively, so to say, the



largest eigenvalue of a sample correlation matrix (a sample covariance matrix, resp.)
of a population having covariance matrix (1−ρ)Ip−1. Table 4 and Figure 2 (a∼c) show
that the dependence of the (variance of the) fluctuation of λ2(C) on the equi-correlation
coefficient ρ > 0 is stronger than the dependence (Proposition 2.5) of that of λ2(S)
on ρ. Let τ(ρ) be the histogram obtained by 8000 replications of (nλ2(C)/(1 − ρ) −
µn,p−1)/σn,p−1 from the population Np(0, Σp(ρ)) for n = 1200 and p = 150. Then, the
means of τ(0.2), τ(0.3), and τ(0.4) are smaller than E[TW1].

Figure 2 (d) is the plot of c = 1/64, 1/50, 1/40, 1/32, 1/25, 1/20, 1/16, 1/10, 1/8, 1/5
vs. the means of the histogram obtained by 8000 replications of (8000λ2(C)/(1 −
0.1)−µ8000,8000c−1)/σ8000,8000c−1 from the population N8000c(0, Σ8000c(0.1)). The means
of the histograms seem nonlinear and bounded in c. It may be limp,n→∞

p/n→c
Eλ2(C) =

(1− ρ)(1 +
√
c)2 for any ρ ∈ [0, 1).

Mean Variance Skewness Excess kurtosis

τ(0.2) −1.599 2.050 0.207 0.061
τ(0.3) −1.512 2.857 0.169 0.059
τ(0.4) −1.470 3.970 0.125 0.011

TW1 −1.206 1.607 0.293 0.165

Table 4

(a) τ(0.2) (b) τ(0.25) (c) τ(0.4) (d) ρ = 0.1

Figure 2

However, for a bounded spiked eigenvalue model, λ2(C) converges almost surely
to a value larger than the corresponding eigenvalue λ of the population correlation
matrix, if λ is simple 1 and larger than 1 +

√
c:

Proposition 4.2 ([32, Theorem 1]). Let x =

[
ξ
η

]
∈ Rm+p be a random vector with

(4 + δ)-th moment for some δ > 0. Assume that ξ ∈ Rm has mean zero, and is
independent of η ∈ Rp, which has i.i.d. components ηi with mean zero and unit variance.
Let R be the correlation matrix of x such that λi(R) = 1 (m+ 1 ≤ i ≤ m+ p). Then,

λi(R) > 1 +
√
c is simple =⇒ lim

p,n→∞
p/n→c

λi(C) = λi(R) +
cλi(R)

λi(R)− 1
(a.s.).

1 In an ENP with ρ > 0 and p > 2, R = Σp(ρ) but λi(R) = 1− ρ (2 ≤ i ≤ p) is not simple.
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