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ON THE DISTRIBUTION OF POLYNOMIALS WITH

BOUNDED ROOTS II. POLYNOMIALS WITH

INTEGER COEFFICIENTS
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ABSTRACT. In the present paper we give a new type of statistical results on

the distribution of integral polynomials of given degree. The main feature of our

formula is that we can see a clear distinction with respect to the signature of poly-
nomials. For example, we see that among certain polynomials in question, totally

real ones are very rare. Further we show that reducible polynomials are negligible

in every formula. We derive asymptotic results on Pisot, Salem and expanding
polynomials that often appear as dilation constants of dynamical systems.
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1. Introduction

For a real polynomial P (X), its degree d is written as d = r+2s where r and
2s denote the numbers of its real and complex zeroes respectively. The pair (r, s)
is called the signature of P (X). Since d is fixed in the following discussion, we
call s the signature of P (X), for simplicity. In the previous paper [4], we inves-
tigated the distribution of polynomials with real coefficients, with zeroes inside
the unit disk and of given signature. The goal of this paper is to derive several
consequences from [4] when we confine ourselves to polynomials with integer
coefficients. An additional tool is a theorem of H. Davenport [8], which gives
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a sharp estimate on the number of lattice points within a given region circum-
scribed by algebraic surfaces. As we restrict our attention to monic polynomials,
the adjective ”monic” is omitted throughout this paper.

We show a new type of statistical result on the distribution of integral poly-
nomials of given degree and signature. A remarkable feature of our results is that
we can observe explicit dependence on signatures in our asymptotic formulas.

Let us review several known statistical results on polynomials. For a complex
polynomial P (X) let H(P ) denote its height, i.e., the maximum of absolute
values of the coefficients of P . Let B denote a - typically large - integer or a real
number. Clearly the number of integral polynomials of degree d and height at
most B is (2B)d +O(Bd−1), where the implied constant depends only on d. B.L.
van der Waerden [20] confirmed a ‘folklore’ belief that reducible polynomials are
negligible within Z[X]. He proved that among such (2B)d+O(Bd−1) polynomials
the frequency of reducible polynomials with height at most B and of degree
d = q+ r, which split into factors of degrees q and r, tends to B−q; if q < r, and
to B−r logB; if q = r.

The investigation of the distribution of integral polynomials having a pre-
scribed Galois group goes back to the beginning of the last century and has a
vast literature. It was proved by K. Dörge [9] in 1925 that the natural density
of integral polynomials of degree d; whose Galois groups are different from the
symmetric group tends to zero. Later P.X. Gallagher [12] proved that the num-
ber of the above polynomials is O(Bd−1/2 logB). We refer to D. Zywina [21] for
recent developments. Although the statistical theory of integral polynomials has
a rich history, we were not able to find an asymptotic formula for the number of
integral polynomials P (X) of degree d, signature s and H(P ) ≤ B.

We wish to replace H(P ) by a different quantity, which we call ‘measure’ in
this article. First, let us take |P |, the maximum modulus of zeroes of P (X).
This is called inclusion radius or house of P . This measure is widely used in
transcendental number theory [5] and in computer algebra [17]. The following
trivial inequalities

|P |
d

≤ H(P ) ≤ (2|P |)d

yield some estimates of the number of integral polynomials of degree d and
|P | ≤ B, but it does not lead us to an asymptotic formula in terms of |P |.
As a consequence of [4] and the above-mentioned result of H. Davenport [8], an
asymptotic formula for the number of such polynomials is proved in Theorem 3.1.
Moreover we obtain asymptotic formula for polynomials with a fixed signature.

We also deal with some interesting subsets of Z[X], choosing different but
suitable measures.
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A polynomial in Z[X] is called Pisot if it has one real root greater than one,
and the others are less than one in modulus. It is called Salem if it has one real
root greater than one, and others are not greater than one in modulus and at
least one root has modulus one. Pisot polynomials are irreducible and their real
root greater than one is called Pisot number. A Salem polynomial factors into an
irreducible Salem polynomial and cyclotomic polynomials. A Salem number is
the real root greater than one of a Salem polynomial. There is a good overview on
these polynomials and their applications in the book of M.J. Bertin et al. [6]. It is
well known that Pisot and Salem numbers often appear as dilation constants of
self-inducing structures in dynamical systems, and also in numeration systems,
see e.g. [1].

It seems that neither H(P ) nor |P | gives us an asymptotic formula for Pisot
and Salem polynomials. We employ the trace, T (P ) = −pd−1 of a polynomial
P (X) = Xd + pd−1X

d−1 + · · ·+ p0, as our measure. Clearly for Pisot and Salem
polynomials we have |H(P )−|T (P )|| ≤ d−1. In [3] S. Akiyama et al. proved an
asymptotic formula for the number of Pisot polynomials1 of degree d and trace
B. In Corollary 4.2 we obtain a better error term for Pisot polynomials and
Corollary 4.1 gives an asymptotic formula for Salem polynomials of degree 2d
and trace B. These results shows that Salem polynomials are much less frequent
than Pisot polynomials.

In the last section we are dealing with expanding polynomials, that is, polyno-
mials in Z[X] whose zeroes lie outside the unit disk. The expanding polynomials
also play an important role in numeration systems, see [1]. Similarly to Pisot
polynomials, H(P ) or |P | does not seem to give an asymptotic formula for the
number of expanding polynomials. Instead, we choose the norm N(P ) = (−1)dp0

of a polynomial P (X) = Xd+pd−1X
d−1+· · ·+p0 as the measure. For expanding

P , we easily get
|N(P )| ≤ H(P ) ≤ 2d|N(P )|.

In [2] S. Akiyama et al. proved an asymptotic formula for the size of the cor-
responding set. Combining results of [4] with the method of [2] we generalize
that formula for the number of integral expanding polynomials of degree d and
with norm B and with signature s. Finally we prove in a quantitative form that
reducible expanding polynomials are in minority.

Our asymptotic formulae have the common shape cd,sB
κ(d) + O(Bκ(d)−1).

Dependency on signature is far from uniform. Indeed, combining Theorem 3.1
with Theorem 6.1 of Part I [4] we see that the frequency of the totally real

1The proof in [3] indeed shows that the contribution of Salem polynomials is small and falls
into the error term of the formula.
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polynomials among all polynomials in consideration is asymptotically 2−d2/2,
much less than the anticipated uniform frequency 2/d.

2. Preliminary results

Let d be a positive integer. If P (X) ∈ R[X] is of degree d, then its signature
s satisfies the inequality 0 ≤ s ≤ bd/2c. Each set of polynomials can be divided
into bd/2c + 1 disjoint classes according to their signatures. Our results and
proofs will be true not only for these classes but also for their union, i.e., for the
original set as well. To simplify the description, we introduce the ”signature”
−1, which means the union of the classes.

Let B > 0, which is typically a big integer or a real number. With the
above convention on the signatures denote E(s)

d (B), s = −1, . . . , bd/2c the set
of vectors (pd−1, . . . , p0) ∈ Rd such that the corresponding polynomial P (X) =
xd + pd−1x

d−1 + · · · + p0 has signature s and satisfies the inequality |P | ≤ B.
We set2 E(s)

d for E(s)
d (1). The d-dimensional Lebesgue measure λd(E(s)

d ) will be
denoted by v(s)

d . The following theorem was proved by A.T. Fam [10].

Theorem 2.1. Let d ≥ 1 then

v
(−1)
d =


22m2

m∏
j=1

(j − 1)!4

(2j − 1)!2
, if d = 2m,

22m2+2m+1

m∏
j=1

j!2(j − 1)!2

(2j − 1)!(2j + 1)!
, if d = 2m+ 1.

(1)

For s ≥ 0 we do not have such explicit formula, but we proved in [4] that v(s)
d

can be computed by multiple integrals. In the next theorem Resx(P (x), Q(x))
denotes the resultant of the polynomials P (x) and Q(x).

Theorem 2.2. Let d ≥ 1, 0 ≤ s ≤ bd/2c and r = d − 2s. Then the set E(s)
d is

Jordan measurable. Let Rk(x) = x2 − yjx+ zj , j = 1, . . . , s and put

Dr,s = [−1, 1]r × [0, 1]× [−2
√
z1, 2

√
z1]× · · · × [0, 1]× [−2

√
zs, 2

√
zs].

Then we have

v
(s)
d = λd(E(s)

d ) =
1
r!s!

∫
Dr,s

|∆r|∆s∆r,s dX,

2In Part I the sets E(−1)
d (B) and E(−1)

d were denoted by Ed(B) and Ed respectively. We apol-

ogize for this small difference, but we were not able to find a uniform notation.
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where

∆r =
∏

1≤j<k≤r

(xj − xk),

∆s =
∏

1≤j<k≤r

Resx(Rj(x), Rk(x)),

∆r,s =
r∏

j=1

s∏
k=1

Rk(xj)

and dX = dx1 . . . dxrdy1dz1 . . . dysdzs.

The next theorem was proved for s = −1 by I. Schur [19], see also A.T. Fam
and J.S. Meditsch [11], and for 0 ≤ s ≤ bd/2c by ourselves [4].

Theorem 2.3. Let d ≥ 1 and −1 ≤ s ≤ bd/2c. Then the boundary of E(s)
d is

the union of finitely many algebraic surfaces.

Now we formulate an easy lemma, which connects E(s)
d and E(s)

d (B). It ap-
peared in a slightly different form as Lemma 4.2 in [3], but the present one is
more appropriate for our purposes.

Lemma 2.1. Let d ≥ 1 and −1 ≤ s ≤ bd/2c. Then we have

E(s)
d (B) = diag(B, . . . , Bd)E(s)

d , (2)

where diag(v1, . . . , vd) denotes the d-dimensional diagonal matrix, whose entries
are v1, . . . , vd.

Moreover
λd(E(s)

d (B)) = Bd(d+1)/2λd(E(s)
d ). (3)

P r o o f. It is clear that the second assertion is an immediate consequence of the
first one. To prove the first assertion, remark that if the absolute value of the
roots of P (X) = Xd + pd−1X

d−1 + · · · + p0 are at most one, then the roots
of PB(X) = Xd + pd−1BX

d−1 + · · · + p0B
d are of absolute value at most B.

Further, it is obvious that the signature of P and PB is the same. Define the
mapping ψB : E(s)

d 7→ E(s)
d (B) as ψB(z1, . . . , zd) = (z1B, . . . , zdB

d). Thus
(pd−1, . . . , p0) ∈ E(s)

d if and only if ψB(pd−1, . . . , p0) ∈ E(s)
d (B). �

Later we will estimate the number of elements of bounded subsets of Z[X]. We
will transform such problems into lattice point counting problems in bounded
regions. For our purpose the following result of H. Davenport is appropriate.
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Lemma 2.2 ([8, Theorem]). Let R be a closed bounded region in the n dimen-
sional space Rn and let N(R) and V(R) denote the number of points with integral
coordinates in R and the volume of R, respectively. Suppose that:

• Any line parallel to one of the n coordinate axes intersects R in a set of
points which, if not empty, consists of at most h intervals.

• The same is true (with m in place of n) for any of the m dimensional
regions obtained by projecting R on one of the coordinate spaces defined by
equating a selection of n−m of the coordinates to zero; and this condition
is satisfied for all m from 1 to n− 1.

Then

|N(R)−V(R)| ≤
n−1∑
m=0

hn−mVm,

where Vm is the sum of the m dimensional volumes of the projections of R on
the various coordinate spaces obtained by equating any n−m coordinates to zero,
and V0 = 1 by convention.

The assumptions of Lemma 2.2 are satisfied, if for example the boundary of
R is the union of finitely many algebraic surfaces. We will apply this lemma
in case when R = E(s)

d (B) or some transformation of it. By Theorem 2.3 the
boundary of E(s)

d is the finite union of algebraic surfaces, then, by Lemma 2.1
the same holds for E(s)

d (B). We obtain the volume of E(s)
d (B) from Theorems

2.1, 2.2 and Lemma 2.1. If we are able to estimate the remaining term precisely
enough, then we obtain the desired result. In the next sections we perform this
program.

3. The main distribution results

In this section we study the distribution of polynomials with integer coeffi-
cients and with bounded roots. For d ≥ 1 and 0 ≤ s ≤ bd/2c let N (s)

d (B) denote
the number of P (X) ∈ Z[X], which are monic, of degree d, with signature s and
with |P | < B. By our convention N

(−1)
d (B) =

∑bd/2c
s=0 N

(s)
d (B). Our aim is to

prove

Theorem 3.1. Let d ≥ 1, −1 ≤ s ≤ bd/2c and B > 0. Then there exists a
constant c1 depending only on s, d such that

|N (s)
d (B)− v

(s)
d Bd(d+1)/2| ≤ c1B

d(d+1)/2−1.
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P r o o f. In the proof of Lemma 2.1 we introduced the mapping ψB : E(s)
d 7→

E(s)
d (B). It is continuous and bijective and transforms algebraic relations into

algebraic ones. This implies together with Lemma 2.3 that the boundary of
E(s)

d (B) is the union of finitely many algebraic surfaces.

Let d, s and B be fixed. By Lemma 2.1 the volume of E(s)
d (B) is v(s)

d Bd(d+1)/2.
It is clear that P (X) ∈ Z[X] is monic, of degree d, with signature s and with
|P | < B if and only if the vector of its coefficients belongs to E(s)

d (B). Thus
N

(s)
d (B) = |E(s)

d (B) ∩ Zd|, i.e., the number of lattice points in E(s)
d (B).

As for this set the assumptions of Lemma 2.2 are satisfied we obtain

|N (s)
d (B)− v

(s)
d Bd(d+1)/2| ≤

d−1∑
m=0

hd−mVm,

where h denotes the maximal number of intervals, which cover the intersection
of E(s)

d (B) with any line parallel to one of the d coordinate axis. This number is
finite and is independent from B.

Further Vm is the sum of the m dimensional volumes of the projections of
E(s)

d (B) on the various coordinate spaces obtained by equating any d−m coor-
dinates to zero, and V0 = 1 by convention. Let v = (v1, . . . , vd) ∈ E(s)

d ⊆ E(−1)
d

and Pv(X) the corresponding polynomial to v. Then, as all roots of Pv(X) be-
long to the unit disc, we have the trivial bound |vm| < 2d,m = 1, . . . , d. Thus the
above described projections of E(s)

d are bounded. After applying ψB to E(s)
d we see

that the length of the projection of E(s)
d (B) to any line parallel to the m-th coor-

dinate axis is covered by an interval of length at most O(Bm),m = 1, . . . , d− 1.
Thus

Vm ≤ O(Bd(d+1)/2−(1+···+m)) ≤ O(Bd(d+1)/2−1).

The theorem is proved. �

The next theorem gives a similar asymptotic formula for the number of irre-
ducible polynomials P (X) ∈ Z[X] of degree d, signature s and with |P | ≤ B.
This number is denoted by I

(s)
d (B). The theorem is a quantitative version of

Corollary of [18] on p. 47.

Theorem 3.2. Let d ≥ 1, −1 ≤ s ≤ bd/2c and B > 0. Then there exists a
constant c2 depending only on s, d such that

|I(s)
d (B)− v

(s)
d Bd(d+1)/2| ≤ c2B

d(d+1)/2−1.

P r o o f. It is clear that we obtain the set of irreducible polynomials with the
required properties if we remove from all polynomials the reducible ones. If a
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polynomial of degree d is reducible then it has a factor of degree in the interval
[dd/2e, d − 1]. Notice that the signature of the divisors may differ from the
dividend, which we have to take into account. Thus

I
(s)
d (B) ≥ N

(s)
d (B)−

 d−1∑
j=dd/2e

Nj(B)Nd−j(B)

 .

Using Theorem 3.1 we obtain

I
(s)
d (B) ≥ v

(s)
d Bd(d+1)/2 −

 d−1∑
j=dd/2e

v
(−1)
j Bj(j+1)/2v

(−1)
d−j B

(d−j)(d−j+1)/2


+ O(Bd(d+1)/2−1).

Now
Bj(j+1)/2B(d−j)(d−j+1)/2 = Bj(j+1)/2+(d−j)(d−j+1)/2

and we have the inequality

(d− j)(d− j + 1)
2

+
j(j + 1)

2
≤ d(d+ 1)

2
− 1

for the exponents. Thus

I
(s)
d (B) ≥ v

(s)
d Bd(d+1)/2 − dO(Bd(d+1)/2−1) +O(Bd(d+1)/2−1)

= v
(s)
d Bd(d+1)/2 −O(Bd(d+1)/2−1).

The lower bound

I
(s)
d (B) ≥ v

(s)
d Bd(d+1)/2 +O(Bd(d+1)/2−1)

is an immediate consequence of Theorem 3.1. Thus the assertion is completely
proved. �

The following corollary is an immediate consequence of Theorems 3.1 and 3.2.

Corollary 3.1. Let d ≥ 1, −1 ≤ s ≤ bd/2c and B > 0. Then the number
of reducible polynomials P (X) ∈ Z[X] of degree d, signature s and such that
|P | ≤ B is O(Bd(d+1)/2−1).

This means that there are much more irreducible polynomials than reducible
ones in each signature classes. Theorems 3.1 and 3.2 show that N (s)

d (B) and
I
(s)
d (B) have for each s the same growth rate in B. Hence the frequency of the

appearance of a signature s depends on the volume v(s)
d . We quantify this by the

next corollary.
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Corollary 3.2. Let d ≥ 1, 0 ≤ s ≤ bd/2c and B > 0. Then

N
(s)
d (B)

N
(−1)
d (B)

=
v
(s)
d

v
(−1)
d

+O(B−1).

In Part I we studied the quotients v
(s)
d

v
(−1)
d

. We proved among others that they

are rational numbers, Theorem 5.1. In the case s = 0 we were able to show
that the size of this quotient is 2−d2/2, Theorem 6.1. This means that totally
real polynomials are extremely rare. On the other hand for even d, in the same

theorem, we obtained the conditional bound v
(d/2)
d

v
(−1)
d

∼ cd−3/8, i.e. totally com-

plex polynomials has much bigger frequency as the average. It is an interesting

problem to describe the asymptotic behavior v
(s)
d

v
(−1)
d

for other indices s.

4. Distribution of polynomials with a dominating root

Let d, s be as earlier, a ≥ 1 be fixed and B ∈ Z. Denote by B(s)
d,a(B) the set of

polynomials P (X) ∈ Z[X] with trace B, signature s and such that the absolute
value of all but one of its zeroes is at most a. The set containing the irreducible
elements of B(s)

d,a(B) will be denoted by B(s),irr
d,a (B). From the correspondence

P (X) with P (−X), we easily have |B(s)
d,a(B)| = |B(s)

d,a(−B)|, i.e., we may assume
B > 0 without loss of generality. Taking a = 1 and s = −1 we obtain the eminent
example of this concept, the set of Pisot and Salem polynomials.

In [3], S. Akiyama et al. proved∣∣∣|B(−1)
d,1 (B)| − v

(−1)
d−1 B

d−1
∣∣∣ = O(Bd−1−1/(d−1)).

A new embedding of B(s)
d,a(B) into a d − 1-dimensional lattice together with

Theorem 2.2, especially the case s = 0, allow us to estimate the number of Salem
polynomials, hence the Pisot polynomials as well. The main result of this section
is

Theorem 4.1. Let d, s,B be integers and a ∈ R such that d,B ≥ 1, a > 0 and
−1 ≤ s ≤ bd/2c. Then∣∣∣|B(s)

d,a(B)| − v
(s)
d−1a

d(d−1)/2Bd−1
∣∣∣ = O(Bd−2),

where the constant in the O depends only on d, s, a.

We obtain similar result for irreducible polynomials.
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Theorem 4.2. Let d, s, a,B as in Theorem 4.1. Then∣∣∣|B(s),irr
d,a (B)| − v

(s)
d−1a

d(d−1)/2Bd−1
∣∣∣ = O(Bd−2),

where the constant involved in the O depends only on d, s, a.

Before proving these theorems we formulate their consequences for Pisot and
Salem polynomials. You find a good overview on these polynomials and their
applications in the book of M.J. Bertin et al. [6]. It is well known that a Salem
polynomial has to be reciprocal and its degree is even. Let d ≥ 1, B be integers.
Denote S2d(B) the number of Salem polynomials P of degree 2d and with T (P ) =
B. By the explanation of the beginning of this section we may restrict ourselves
to the case B > 0. Finally the number of irreducible polynomials among the
Salem polynomials will be denoted by Sirr

2d (B).

Corollary 4.1. With the above notations∣∣∣S2d(B)− v
(0)
d−12

d(d−1)/2Bd−1
∣∣∣ = O(Bd−2)

and ∣∣∣Sirr
2d (B)− v

(0)
d−12

d(d−1)/2Bd−1
∣∣∣ = O(Bd−2),

where the constants in O depend only on the degree 2d.

Finally, let P (s)
d (B) denote the number of Pisot polynomials of degree d,

with signature s and with trace B. We may assume B > 0 again. As a Pisot
polynomial always has a real zero we have to modify the range of signatures as
follows: if d is odd, then−1 ≤ s ≤ (d−1)/2 and if d is even then−1 ≤ s ≤ d/2−1.
Notice that Pisot polynomials are always irreducible, thus we do not need to
introduce extra counting functions for them.

Corollary 4.2. With the above notations∣∣∣P (s)
d (B)− v

(s)
d−1B

d−1
∣∣∣ = O(Bd−2),

where the constant involved in the O depends only on d.

Now we turn to the proof of the statements.

Proof of Theorem 4.1. Let M be a positive integer and A(s)
d,a(M) be the set

of vectors (b0, b1, . . . , bd−2) ∈ Rd−1 such that all but one root of xd −Mxd−1 −
bd−2x

d−2 − · · · − b0 has modulus less than a. From the formula

(xd−1 + rd−2x
d−2 + · · ·+ r0)(x−M − rd−2) = xd−Mxd−1− bd−2x

d−2−· · ·− b0.
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we define the map (r0, . . . , rd−2) 7→ (b0, . . . , bd−2). More explicitly, for fixed
integers d, s,M and real number a we define χM : E(s)

d−1(a) 7→ A(s)
d,a(M) by

χM (r0, . . . , rd−2) = (rd−2(M+rd−2)−rd−3, . . . , r1(M+rd−2)−r0, r0(M+rd−2)).

This map is continuous and surjective. By uniqueness of the polynomial factor-
ization, χM is even injective provided M > da. This is true because the modulus
of the additional root, M + rd−2, is larger than a. Thus for M > da we have

|B(s)
d,a(M)| = |χM (E(s)

d−1(a)) ∩ Zd−1|.

As χM is a linear mapping and the boundary of E(s)
d−1(a) is the union of finitely

many algebraic surfaces, the same is true for χM (E(s)
d−1(a)).

To apply Lemma 2.2 we have to compute the volume of χM (E(s)
d−1(a)). Com-

putation of the Jacobian leads to the formula:

λd−1(χM (E(s)
d−1(a))) =

∫
E(s)

d−1(a)

|det(J1)| dr0 . . . drd−2

with

J1 =


0 . . . 0 −1 M + 2rd−2

0 0 . . . −1 M + rd−2 rd−3

. . . . . .
−1 M + rd−2 0 . . . 0 r1

M + rd−2 0 0 . . . 0 r0

 .

Readily det(J1) is a monic polynomial in M of degree d − 1 and its other coef-
ficients are polynomials in r0, . . . , rd−2, i.e. they are bounded in absolute value
by some polynomial in a. Thus

λd−1(χM (E(s)
d−1(a))) = Md−1

∫
E(s)

d−1(a)

dr0 . . . drd−2

+ O

d−2∑
j=0

M j

∫
E(s)

d−1(a)

pj(r0, . . . , rd−2) dr0 . . . drd−2


= λd−1(E(s)

d−1(a))M
d−1 +O(Md−2)

= v
(s)
d−1a

d(d−1)/2Md−1 +O(Md−2).

For the last step we used Lemma 2.1. From now on we may repeat the proof
of Theorem 3.1 because the assumptions of Lemma 2.2 hold for χB(E(s)

d−1(a)).
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Finally we obtain

|B(s)
d,a(B)| = v

(s)
d−1a

d(d−1)/2Bd−1 +O(Bd−2).

2

Proof of Theorem 4.2. Like in the proof of Theorem 3.2 we count the
number of reducible polynomials in B(s)

d,a(B). We assume that B > ad. Let

P (X) ∈ B(s)
d,a(B) be reducible and denote by β its dominating root, which exists

by the proof of the last theorem. There exist monic polynomials Q(X), R(X) in
Z[X] such that d − 1 ≥ degQ ≥ degR ≥ 1 and P (X) = Q(X)R(X). It is clear
that β can be a zero only one of Q and R, the zeroes of the other factor are
bounded in absolute value by a. Using the estimates of Theorems 3.1 and 4.1
the number of reducible elements in B(s)

d,a(B) is bounded by

d−1∑
m=bd/2c

v
(−1)
m−1a

m(m−1)/2Bm−1v
(−1)
d−ma

(d−m)(d−m−1)/2 +O(Bd−3)

= O(Bd−2),

where the constant in O depends only on d and a. Combining this estimate with
the result of Theorem 4.1 we complete the proof. 2

Now we turn to the proof of the Corollaries.
Proof of Corollary 4.1 It is well known, see e.g. [6, 14], that the degree of a

Salem polynomial is even, it has two real roots one of which is larger, the other
is less then one and all others are non-real complex numbers, lying on the unit
circle. Moreover they are reciprocal polynomials, i.e., P (X) = XdP (1/X). Let
B be an integer and assume that P (X) is a Salem polynomial of degree 2d and
trace B. Let β denote the dominating root of P (X).

Dividing P (X) by Xd leads to a polynomial Q(y) in y = X+1/X with integer
coefficients and of degree d. This polynomial has only real roots and its trace
is B. If γ denotes a zero of P (X) then γ + 1/γ is a zero of Q(y). Moreover if
γ 6= β, 1/β then |γ + 1/γ| ≤ 2. Thus

S2d(B) = |B(0)
d,2(B)| and Sirr

2d (B) = |B(0),irr
d,2 (B)|

and the statements follow immediately from Theorems 4.1 and 4.2. 2

Proof of Corollary 4.2 Let B be a fixed integer. It is clear that if P (X) =
xd −Bxd−1 + pd−2x

d−2 + · · ·+ p0 ∈ Z[X] is such that all but one of its roots lie
in the unit disk then it is a Pisot or Salem polynomial. Since the contribution
of Salem polynomials is by Corollary 4.1 much smaller, we obtain the result.
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5. Distribution of expanding polynomials

A polynomial is called expanding, if its zeroes lie outside the unit disk. There
are only finitely many expanding polynomials with integer coefficients of degree
d and with fixed constant term B. By the argument of the beginning of the last
section we may assume B > 0. Denoting this set by Cd(B) it was proved by S.
Akiyama et al. [2] that

lim
B→∞

|Cd(B)|
Bd−1

= v
(−1)
d−1 .

Later M. Madritsch and A. Pethő3 [16] proved a formula with error term:

|Cd(B)| − v
(−1)
d−1 B

d−1 = O(Bd−1−1/d).

Of course Cd(B) can also be split in disjoint union of subsets according the
signature of the occurring polynomials. In accordance of the earlier definitions
these subsets will be denoted by C(s)

d (B),−1 ≤ s ≤ bd/2c. Combining the method
of [16] with Theorem 3.1 it is easy to prove

Theorem 5.1. With the above notations

|C(s)
d (B)| − v

(s)
d−1B

d−1 = O(Bd−1−1/d).

As we being not able to improve the error term, we omit the details.

Through this paper we show that the number of irreducible polynomials is at
least one magnitude larger than the reducible ones in the investigated sets. This
was neither done in [2] nor in [16]. At the end of this paper we fill this gap. Let
C(s),irr

d (B) denote the subset of C(s)
d (B), which contains its irreducible elements.

Theorem 5.2. With the above notations

|C(s),irr
d (B)| − v

(s)
d−1B

d−1 = O(Bd−1−1/d).

P r o o f. As in the above proofs we estimate the number of reducible elements
in C(s)

d (B). Assume that P (X) is such an element and P (X) = Q(X)R(X) with
R,Q ∈ Z[X],degR and degQ ≥ 1. Of course both are expansive and one of
them is of degree at least bd/2c. Moreover, if the constant term of Q is q, then
q is a divisor of B and the constant term of R is B/q. Thus the number of
reducible polynomials is at most∑

q|B

d−1∑
m=bd/2c

|C(−1)
m (q)||C(−1)

d−m(B/q)|.

3In both cited papers slightly different notation was used.
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Each term of the inner sum is estimated in Theorem 5.2 by O(Bd−2), which
implies the same estimate for the whole inner sum. Hence the number of reducible
polynomials in C(s)

d (B) is at most

d(B)O(Bd−2),

where d(B) denotes the number of divisors of B, which is o(B), see e.g. [15].
�
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