On canonical number systems

Shigeki Akiyama* and Attila Petho!

Abstract. Let P(x) = pga? + ...+ po € Z[z] be such that d > 1,p; = 1,pg > 2 and
N ={0,1,...,p0 — 1}. We are proving in this note a new criterion for the pair {P(z), N'} to
be a canonical number system. This enables us to prove that if po,...,p4_1, Z;«izl p; > 0 and
po > 2L, |pil, then {P(x), N} is a canonical number system.
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1 Introduction

Let P(z) = pgr® + ...+ py € Z[x] be such that d > 1 and p; = 1. Let R denote the
quotient ring Z[z|/P(x)Z[z]. Then all a € R can be represented in the form

a=a)+axr+...+ ad,lxd’l
with a; € Z,1=0,...,d — 1.
The pair {P(z), N} with N = {0,1,...,|po| — 1} is called canonical number system,
CNS, if every o € R, a # 0 can be written uniquely in the form

() '
a = Zajx]7 (1)
Jj=0

where a; € N,j =0,...,0(a), ayq) # 0.

If P(z) is irreducible, then let v denote one of its zeros. In this case Z[z]|/P(z)Z[x] is
isomorphic to Z[y], the minimal ring generated by - and Z, hence we may replace x by ~y
in the above expansions. Moreover N forms a complete representative system mod v in
Z[y]. We simplify in this case the notation {P(x), N'} to {~,N}.

Extending the results of [7] and [3], I. Katai and B. Kovacs and independently W.J.
Gilbert [2] classified all quadratic CNS, provided the corresponding P(x) is irreducible.
B. Kovécs [8] proved that in any algebraic number field there exists an element ~ such
that {7, N} is a CNS ! . J. Thuswaldner [13] gave in the quadratic and K. Scheicher [12]
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in the general case a new proof of the above theorems based on automaton theory. B.
Kovacs [8] proved further that if p; < pg1 < pa—2 < ... < po,po > 2, and if P(x) is
irreducible and 7 is a zero of P(z) then {7, N} is a CNS in z[7]. In [9] B. Kovdcs and A.
Pethd gave also a characterization of those irreducible polynomials P(x), whose zeros are
bases of CNS.

Interesting connections between CNS and fractal tilings of the Euclidean space were
discussed by several mathematicians. D.E. Knuth [7] seems to be the first discoverer of
this phenomenon in the case + = —1 + v/—1. For the recent results on this topic, the
reader can consult [4] or [1] and their references.

The concept of CNS for irreducible polynomials was generalized to arbitrary polynomi-
als with leading coefficient one by the second author [11]. He extended most of the results
of [8] and [9] and proved among others that if {P(x), N'} is a CNS then all real zeroes of
P(z) are less than —1 and the absolute value of all the complex roots are larger than 1.
This implies that if {P(x), N'} is a CNS then py > 0, which we will assume throughout
this paper.?

The aim of the present paper is to give a new characterization of CNS provided py is
large enough. It enables us to prove for a large class of polynomials that their zeros to-
gether with the corresponding set AN yield a CNS. Unfortunately our criterion in Theorem
1 cannot be adapted to polynomials with small pg, but it suggests us that the characteri-
zation problem of CNS does not depend on the structure of the corresponding field, such
as fundamental units, ramifications or discriminants, but only on the coefficients of its
defining polynomials.

2 Notations and results

For a polynomial P(z) = pgz® + ...+ po € Z[z], let

L(P) = Zl |pz'|,

which we call the length of P. Every a € R = Z[x]/P(x)Z[x] has a unique representation
in the form

d—1
o= Z a;x’.
j=0

Put ¢ = {%J, where | | denotes the integer part function. Let us define the map

T:R— Rby

d—1

T<Oé) = Z(%’H - qu+1)$j;
=0

where ay = 0. Putting

TO()=a and T (a) =T(TY(a))

2 In Theorem 6.1 of [11] it is assumed that g(t) is square-free, but this assumption is necessary only
for the proof of (iii).



we define the iterates of 7. As T (a) € R for all non-negative integers i, and a € R,
the element 7 () can be represented with integer coefficients in the basis 1, z, ...,z

The coefficients of this representation will be denoted by Tj(i)(oz),i >0,0<7<d—-1.1t

is sometimes convenient to extend this definition by putting Tj(i)(a) = 0 for 5 > d. This
map T obviously describes the algorithm to express any o« € R in a form (1) since we

have
2:: T(J)( )‘ |

when {P(z), N} is a CNS. With this notation we have

and
T9() = 31" (@), @)
- Z(r—@(ﬁl)(&)—%—lwrl)xja (3)

75 Y(a)
Po

where ¢;_1 =

‘foriZl.

After this preparation we are in the position to formulate our results. The first as-
sertion is a new characterization of CNS provided py > L(P). By Lemma 1 in §3, the
roots of such a P have moduli greater than 1, which is a necessary condition for a CNS.
So we are interested in such a class of polynomials. The spirit of Theorem 1 below and
Theorems 3 of [9] and 6.1 of [11] is the same: it is proved that {P(z), N} is a CNS
in R if and only if every element of bounded size of R is representable in {P(z), N}.
The dlfference is in the choice of the size. Whereas Kovacs and Peth6 used the height,
max {’T( ) — 1} we use the weight, defined by (13) in §4.

Theorem 1 Let M be a positive integer. Assume that po > (14+1/M)L(P), if p; # 0 for
i=1,...,d—1, and assume that py > (1 + 1/M)L(P) otherwise. The pair {P(x),N'} is
a CNS in R if and only if each of the following elements o € R has a representation in

{P(z), N'}:

=0 \j=1t
wheree; € [1 — M, M|NZ for0<j<d-—1.

= (i €jDari- J) (4)

Our algorithm is easier and more suitable for hand calculation than the ones in [9]
and [11], since we do not need any information on the roots of P. We need only to
check whether (2M)? elements have representations in {P(x), N} or not. Running time
estimates for the Kovacs and Pethé algorithm of [9] is difficult, since it depends on the
distribution of the roots of P. But in many cases, our method is very rapid when pg or d
is large.



Example 1 We compare for three CNS polynomials the number of elements needed to be
checked for representability in {P(x), N'} by our algorithm and by the algorithm of Kovdcs
and Petho.

Case 23 + 2% +5:

(Our algorithm) 8 elements (M=1),

(Kovdcs and Pethd algorithm) 89 elements.

Case 2% +22* —x + T:
(Our algorithm) 64 elements (M=2),
(Kovdcs and Pethd algorithm) 123 elements.

Case 2 + 23 — 2% + x + 8:
(Our algorithm) 16 elements (M=1),
(Kovdcs and Pethd algorithm) 1427 elements.

Using Theorem 1 we are able to prove that a wide class of polynomials correspond
to a CNS. Similar results were proven in [8] and in [11]. Using the idea of B. Kovéacs [§]
it was proved in [11] that if 0 < pg_y < ... < po,po > 2 then {P(z), N} is a CNS. We
however do not assume the monotonicity of the sequence of the coefficients. Moreover p;
is allowed to be negative.

Theorem 2 Assume that pa,...,pa—1, >0 0i > 0 and po > 2%, |ps| Then {P(z),N'}
is a CNS in R. The last inequality can be replaced by po > 2%, |pi| when all p; # 0.

Note that the conditions po, ..., p4_1, Z?Zl p; > 0 are necessary if d = 3 by Proposition
1 in §3. So Theorem 2 gives us a characterization of all cubic CNS provided py > 2L(P).
Generally, the inequality ¢, p; > 0 is by Lemma 4 below necessary for { P(z), N'} to be a
CNS. On the other hand the following examples show that the inequalities po, ..., ps_1 > 0
are not necessary if d > 4.

Example 2 In fact, we can show that the roots of each polynomials
et 423 — 2 —x 45, 2t =3+ 20— 2043, PP+t -+ 4
form a CNS by the criterion of [9].

We are also able to prove that p;_; cannot be too small. More precisely the following
theorem is true.

Theorem 3 If po > S0, |pi| and {P(z), N} is a CNS then p, + X0_,,1 Ipj| > 0 holds
for all £ > 0. In particular pg_1 > —1.

The characterization of higher dimensional CNS where py is large is an interesting problem
left to the reader. Numerical evidence supports the following:

Conjecture 1 Assume that pa, ..., pa_1, >0 pi > 0 and po > X%, |pi|. Then {P(x),N'}
is a CNS.

Conjecture 2 The pair {P(z),N} is a CNS in R if and only if all « € R of the form
(4) with e; € {—1,0,1}, 0<j<d—1, have a representation in {P(x),N}.

This conjecture is best possible in the sense that that we can not remove —1 or 1 from
the allowed set of ¢;. Considering polynomial P(z) = 2% + 42? — 2z + 6, the element
—x? — 5x — 1 does not have a representation in {P(z),{0,1,2,3,4,5}}.



3 Auxiliary results
Several general results of CNS are shown in this section. Some of them are used in the
proof of our Theorems.
Lemma 1 If py > L(P) then each root of P has modulus greater than 1.
Proof: Assume that v is a root of P with |y| < 1. Then we have

d .
ZPNZ

=1

S L(P) <p07

which is absurd. O
In the sequel we will put Tj(i)(oz) =0for j >d—1and p; =0 for j > d.

Lemma 2 Let « € R and 1i,j,k be non-negative integers such that k > 1. Let qp =
{Ték>(@)J Th
. Then

Po
k k—1 :
T) = TH7(@) =3 geipjie, (5)
/=1
k—1 (E)
a = ST (@) = qpo)a’ + 2" T® (). (6)
=0

Proof: Identity (5) is obviously true if ¢ = 0. Assume that it is true for an i such that
0 <1< k. We have ‘ '
7}(.]?7)(@) = YﬁZEU(@) = Qr—i—1Dj+i+1
by (3). Inserting this into (5) we obtain at once the stated identity for i 4 1.
Identity (6) is obviously true for £ = 0. Assume that it is true for k — 1 > 0. Using
that P(z) = 0 in R we have

T¢ D) = Y 1% V(a)2!

=0
d—1 (h-1) ) d )

= 2T (@) =g Y p
=0 j=0
d, k1) j

= 2 (7" (@) = gsapj)e’
j=0

= (13"(@) = groapo) + 2T (a).
Considering (6) for £ — 1 and using the last identity we obtain
k=2
a = Y (T37(a) — gpo)a’ + 2*1T* V()

=0
2 k—1

= > (1(a) = gipo)a + 2 (TF V(@) = guaapo) + 2T @)
=0
k-1

= Y17 (@) — apo)’ + 2TV (a).
=0



Thus (6) is proved for all £ > 0. O

Lemma 3 The element a € R is representable in {P(x), N'} if and only if there exists a
k >0 for which T™®(a) = 0.

Proof: The condition is sufficient, because if « is representable in { P(x), N'} then we

can take k = {(«).
To prove the necessity, assume that there exists a k > 0 for which 7" (a) = 0. Then

k—1

a= ;< (@) = gopo)a

by Lemma 2, and since T3 (a) — qipo € N this is a representation of o in {P(z), N'}. O
Lemma 4 If {P(z),N'} is a CNS, then >, p; > 0.

Proof: By the results of [11], stated in the introduction, we have P(1) = 2%, p; > 0,
since otherwise P(x) would have a real root greater or equal to 1.
Assume that % p; < 0. Then P(1) = py + >4, pi < po, i-e., P(1) € N. Let

d—1d-1

= Z Zpdﬂ‘*jxi'

i=0 j=i

Then T” (a) = %, p;, hence —py < Téo)(a) < 0, which implies ¢ = |T,” (@) /po] = —1.
Thus T'(«) = @ # 0 and « does not have a representation in {P(z), N'} by Lemma 3. O

We wish to summarize some inequalities satisfied by a cubic CNS. These were proved
by W.J. Gilbert [2]. For the sake of completeness we are given here a slightly different
proof.

Proposition 1 Let {P(z), N} be a cubic CNS. Then we have the following inequalities:

IL+p+p = 0, (7)
po+p2 > 1+p1, (8)
pop2+1 < pj+pi, (9)
p2 < po+1, (10)

P < 2po, (11)

p2 > 0. (12)

Proof: Lemma 4 implies (7). By a similar argument to Lemma 4, we see P(—1) > 0.
This shows (8). If P(—pg) > 0 then there exists a real root less than or equal to —py.
Since pg is the product of the three roots of P(x), this implies that there exists a root
whose modulus is less than or equal to 1. This shows P(—pg) < 0 which is (9).

Let v; (i = 1,2,3) be the roots of P(x). Noting xy + 1 > x + y for =,y > 1, we see

ID2| = |71 + 72 + sl < |72l + sl +1 < |mveysl +2=po + 2.



Thus we have (10). Using (8) we have (11).
Finally we want to show (12). By (7), if po < 0 then p; > 0. Let w = z + po. By (8),
we have py > —pg. Thus
T(w) = 2 + pox +py + 1.

Since 1 < p; + 1 < py + p2 < po, we see p; +1 € M. Thus we have
T®(w) =z + py = w.

Hence T®M (w) = w and T+ (w) = 2% + pox +p; + 1 for all k > 0, i.e., TV (w) # 0
holds for all j > 0. By Lemma 4 w is not representable in {P(x), N'}. This completes the
proof of the proposition. O

We can find a CNS with pg;_1 = —1 when d =2 or d > 4.

4 Proof of Theorem 1.

Proof:
Let n be a positive number and put p; = p; if p; # 0 and p; = 7 otherwise. Taking a
small 7, we may assume

=1
Define the weight of a € R by

71 ()]
W(a) =max (M, max —;— "~ )
1=0,1,...,d—1 Zk i+1 |pk’

Obviously the weight of a takes discrete values. We have

7% ()] < W(a z i,

k=i+1

by definition. Remark that this inequality is also valid when ¢ = d.
First we show that W(T'(«)) < W(«) for any o € R. If |Téo)(a)/p0\ > M then we
have
‘ -

If |T” () /po| < M, we see |T" (@) /po) € [~M, M —1]NZ. (Here we used the fact that
M is a positive integer.) This shows HTO(O)(Q)/pOJ] < M < W(a). So we have shown

0
73(a)
Do

0
737 ()
Po

75(a)

(0)
Do

R

1
1< (1 +—
(e y)

73" (a)

o < W(a)




for any . We note that the equality holds only when ¢y = |T| (50) (a)/po] = —M. This
fact will be used later. Recall the relation:

d—1
T(a) = Y (T (@) = qopisa)a’
=0
with ¢ = LTO(O)(a)/pOJ. So we have
(0) .
TO(@) = aopisa] W) S k] + W(@)pisi]
Ziziﬂ |PZ| N Zgzi—&-l |pZ;|
< W(a),

which shows W(T'(«)) < W(«).

If {P(x), N} is a CNS then every element of form (4) must have a representation in
{P(z), N'}.

Assume that {P(z), N} is not a CNS. Then there exist elements of R which do not
have any representation in { P(z),N'}. Let k € R be such an element of minimum weight.

Our purpose is to prove that there exists some m such that T(m)(/ﬁ) must have the form
(4). First we show W(k) = M. So assume that W(x) > M. Then we have

70 ()]

W(’i) - i=0,1,...,d—1 m

Since pf # 0, reviewing the above proof, we easily see W(T'(k)) < W(k) when ¢q # —M.
By the minimality of &, we see |To”(k)/po] = —M and W(T'(x)) = W(k). Repeating
this argument we have

7 (k)
Po

j =

‘:—M, j=0,1,...,d—1.

By (5) with k =i = d and o = K, we have

d—j

d
Tj( k) = — > Qa-ipire
=1
d

= - Z qd—e+5Pe
f=j+1

d
= M >

(=j+1

but this implies W(T¥(k)) = M, which contradicts the inequality W(x) > M. This
shows W(k) = M and moreover W(T)(k)) = M for any j. So we have

() (4) 2
L I L S VLR
Po (I4+1/M) Y lpp| — 1+ M



which shows ¢; = [-M, M —1]NZ for j > 0. Again by (5) with k =i =d and a = K, we

have
d—1

d
T (k) = = typare—s.
j=t

Letting ¢; = —¢q; € [1 — M, M| N Z, we have

d—1 [d—1
T (k) =" €Pari—j | 7,

=0 \j=¢
which has the form (4). This proves the assertion. O

Remark 1 The integer assumption on M is not necessary for the above proof but we
cannot get a better bound by choosing non-integer M > 1.

Remark 2 To derive a result of this type, we first used the length of a (Y44 |T¢(O)|>
instead of the weight and used a technique inspired by the analysis of the running time of
the euclidean algorithm. (See e.g. [10].) Under this choice, we could only show a rather
bad bound but it was an inspiring experience for us.

5 Proof of Theorem 2.

Proof: Define
d—1 [d—1 '
CM(E(), e ,€d,1) = Z (Z €jpd+ij) .’L'Z.
i=0 \ j=i
Since the assumption of Theorem 1 is satisfied with M = 1, it is enough to prove that every

element of the form a = (e, ...,e4-1) wWith ¢; € {0,1},0 < j < d —1 is representable in
{P(z),N'}. A simple computation shows that

1% ()| < L(P) < po.

This means that if 7% () > 0 for some i, then T\” (o) € N, otherwise py — T.”(ar) € N

If p; > 0, then Ti(o) () > 0 for all 4, such that 0 < i < d — 1 and for all choices of
g;€4{0,1},0 < j <d— 1. Similarly, as ps, ..., ps—1 are non-negative T”(@) > 0 for all 4,
such that 1 <i<d—1.If 4.1 = 0 then T[)(O)(oz) = Z?;g €;pa—; > 0. In these cases every
a of form (4) is representable in {P(x), N'}.

We assume p; < 0 and €41 = 1 in the sequel. Let ; € {0,1},0 < j < d — 1 be fixed.
Put a = afeq,...,e4-1). If T[)(O)(a) > 0, then « is representable in {P(z), N'}. Thus we
may assume T."(a) < 0. Then there exists an ¢ with 0 < i < d — 1 such that &; = 0
because 2?21 p; > 0 by Lemma 2. Let j be the index such that ¢; = ... =¢41 = 1, but
gj—1 = 0. We apply to a the transformation 7" several times and ultimately we obtain an
element, which is represented in {P(z), N}



= —1. Putting ¢4 = 1 we obtain

d—1 [d—
T( = (Z ]+1pd+i—j) x.

Hence TW(a) = aley,...,&q). If To(l)(a) > 0 then this is already the representation
of TW(a) in {P(z),N'}. Otherwise, i.e., if T(l)(oz) < 0 we continue the process with
73" ()
Po
T (a) < 0 for all k with 0 < k < j—1. In the second case we have TU=D(a) = a(1,.. ., 1).

Thus there exists always a k > 0 such that T®)(«) is representable in { P(z), N'}. Theorem
2 follows now immediately from Lemma 3. O

q1 =

‘ = —1 and €441 = 1. Hence either Ték)(a) > 0 for some k < j—1 or

6 Proof of Theorem 3.

For d—1 d—1
a=ale,...,e4-1) § ;de—i-z j (14)
withe; €72,i=0,...,d—1 let
E(a) =max{lg],i=0,...,d — 1}.

With this notation we prove the following useful lemma.

Lemma 5 Assume that py > L(P) and that « is given in the form (14). Then
E(T(a)) < E(a).
Proof: Taking

ll dz:lgapd ]‘

Do §=0
we have
1 d—1 d—1
7Z€de j—1<q< *Zéjpd j
pOJ =0 poj =0
The inequality
R, E(a)L(P
*Zapd—' < L() < E(a>
jPd—j
Po =0 Po
implies
lq] < E(w).

10



Putting ¢, = —q we obtain
d—1 d—1 ‘
T(e) = > (D &j1pari—j)a",
i=0 j=i

which implies
E(T(a)) = max{|e|,...,|ea-1],|ed|} < E(a).

The lemma is proved. O

Now we are in the position to prove Theorem 3.

Assume that there exists some ¢ with 0 < ¢ < d, such that p, + Z;-l:gﬂ Ipj| < 0. We
show that —1 is not representable in {P(z),N'}. More precisely we prove for all k > 0
that at least one of the Tj(k)(—l),j =0,...,d— 1, is negative.

This assertion is obviously true for £ = 0. Let £ > 0 and assume that at least one of
the Tj(k)(—l),j =0,...,d — 1, is negative. We have

d—1 d—1

—1=3 (> eparij)x

i=0 j=i
with eg = -l and e; =0,7 =1,...,d — 1. Hence
d—1 d—1 ‘
TW(=1) = 33 ejeapari—)a’

i=0 j=i

holds with |e;14] <1,7=0,...,d —1, by Lemma 5 for all £ > 0. Hence we have

d—1 d—1
T (1) = 3 (3" gjirtapariy)’
=0 j=i
with g4 = — LTO(k)(— 1)/po]. We distinguish three cases according to the values of ;4.
Case 1: g44x = —1. Then Tékﬂ)( 1) = eqyxpa = —1. Hence the assertion is true for
kE+1.

Case 2: €41 = 0. Then Tj(kﬂ)(—l) Tﬁl( 1) for j=0,...,d—2, and T(kJrl (—1) =
0. There exists by the hypothesis a j with 0 < j < d — 1 such that Tj( (—1) < 0. This

index cannot be zero because €444 = 0. Hence j > 0 and T kH)( 1) = Tj(k)(—l) < 0. The
assertion is true again.
Case 3: g4, = 1. In this case we have

k1
T( N )( 1) = ekrepa+ ...+ €prd—1Des1 + ExtdDe

d
= EprPat -+ Epra—1Per1 e <pet+ Y, |pi| <0
j=+1

because |egi;| < 1,7 =2¢,...,d—1, by Lemma 5. Theorem 3 is proved.

11
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