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Abstract. Overlap coincidence in a self-affine tiling in Rd is equivalent to pure point
dynamical spectrum of the tiling dynamical system. We interpret the overlap coincidence
in the setting of substitution Delone set in Rd and find an efficient algorithm to check
the pure point dynamical spectrum. This algorithm is easy to implement into a computer
program. We give the program and apply it to several examples. In the course of the proof
of the algorithm, we show a variant of the conjecture of Urbański (Solomyak [43]) on the
Hausdorff dimension of the boundaries of fractal tiles.
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1. Introduction

To model self-inducing structures of dynamical systems, symbolic dynamical systems
associated with substitutions play an important role and many works describe their spectral
properties and geometric realizations (see [34]). To extend the symbolic substitutive systems
to higher dimensions, self-affine tiling dynamical systems are studied in detail in [41, 26]
and many related studies are done along this line. These tiling dynamical systems share
many properties with the symbolic substitutive systems and are intimately related to the
explicit construction of Markov partitions. It is a subtle question to determine whether
a given tiling dynamical system has pure point dynamical spectrum or not. It is known
from [41, 26] that ‘overlap coincidence’ (see Def. 2.4) is an equivalent criterion to check
this. However the overlap coincidence was not easy to compute there in practice because
it requires topological properties of the tiles. To settle this difficulty, we shall employ the
duality between self-affine tilings and substitutive Delone sets [22, 26, 23]. An aim of this
paper is to transfer the overlap coincidence to substitution Delone sets, find a computable
algorithm to check the pure pointedness and implement it into a program language.

Further motivation to show the pure pointedness comes from the study of aperiodic order.
It is an interesting question to ask what kind of point sets, modeling atomic configurations,
present pure point diffraction. This is related with the understanding of the fundamental
structures of quasicrystals. It has been known from [25, 14, 4] that pure point diffraction
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2 PURE POINTEDNESS OF SELF-AFFINE TILINGS

spectrum is equivalent to pure point dynamical spectrum in quite a general setting. So the
algorithm we give here can be used for checking pure point diffraction of general self-affine
quasi-periodic structures.

There are many equivalent criteria to the pure point dynamical spectrum in literature.
Among them, coincidences are very well known as a characterization of the pure point
dynamical spectrum. There are many different notions of coincidences but basically they
imply the same thing. In 1-dim substitution sequences, Dekking’s coincidence is well-known
for the case of constant-length substitutions [11]. For 1-dim irreducible Pisot substitution
sequences or tilings, super coincidence, strong coincidence, geometric coincidence, balanced
pairs, and boundary graph are known [16, 2, 6, 40, 38, 34]. In higher dimensions, modular
coincidence was introduced for lattice substitution Delone sets [24, 26, 12], and overlap
coincidence and algebraic coincidence are known for substitution tilings and substitution
Delone sets under the assumption of Meyer property [41, 23]. We are going to use the
overlap coincidence for computation here.

We note that it is essential to assume the Meyer property of the corresponding substitution
Delone set. Otherwise, the algorithm will either not terminate as the number of overlaps
becomes infinite, or terminate with incorrect outputs. It is shown in [27] that substitution
Delone sets with pure point dynamical spectrum necessarily have the Meyer property. It is
also studied in [28] under which conditions on the expansion maps of the substitutions, the
point sets are guaranteed to have the Meyer property.

There are a few results in literature for the actual computation of coincidence. For
1-dimension unit Pisot substitutions and self-affine tilings coming from their geometric re-
alizations, computable algorithm is discussed in [37, 38] using the boundary graph. For
irreducible 1-dimension Pisot substitution, balanced pair algorithm is implemented in [40].
For higher dimensions, Dekking’s coincidence and modular coincidence are used for the case
of lattice substitution Delone sets in Rd [11, 24, 26]. It was shown in [12] that the modular
coincidence in lattice substitution Delone sets can be determined within some bounded iter-
ations. The given bound is exponential to the number of colours of the Delone sets. It was
conjectured in [12] that the lowest upper bound is a quadratic value of m. Here we shall
give a quadratic bound of m for overlap coincidence. Note that checking overlap coinci-
dence takes less time than modular coincidence, though two coincidences are equivalent (see
Remark 1). Moreover overlap coincidence can be used not only for the lattice substitution
Delone sets but also for the substitution Delone sets with the Meyer property.

In this paper we compute overlap coincidence for general self-affine tilings. Our method
covers, non-unit cases, higher dimensional and non-lattice based self-affine tilings. With
regard to computation, already in the original paper by Solomyak [41], the number of
overlaps becomes too large to handle by hand. Apart from 1-dimensional case with connected
tiles (i.e. intervals), it is quite hard to check whether translated tiles have intersection. The
implementation is already difficult for polygonal tilings, and moreover, tiles often have
fractal boundaries in higher dimensional cases. To overcome this difficulty, we escape from
judging interior intersection. We interpret the overlaps in terms of points and translation
vectors, and only care distances between the corresponding translated tiles. If the distances
are within a rough bound (see (2.12)), we say they are potential overlaps. Of course by this
change, some pairs of translated tiles may not intersect, or only meet at their boundaries.
To distinguish these cases from overlaps with interior intersection, we introduce a potential
overlap graph with multiplicities. At the expense of having a larger graph, all computation
becomes simple and easy to implement into computer programs. Showing that our criterion
(Theorem 4.1 (ii)) is necessary, we prove partially a variant of the conjecture which asserts
that the boundaries of the self-affine tiles have Hausdorff dimension less than the space
dimension d (see [43] for the conjecture).
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The paper is organized in the following way: In Section 2, we give definitions and no-
tations. As a main result, we present a mathematical algorithm computing the overlap
coincidence. In Section 3 and 4, we give a justification on this algorithm. In Section 5, we
have built a ‘Mathematica’ program implementing the algorithm and apply it to 1, 2 and
3-dimensional examples. The spectral properties of some of the examples have not been
known before.

2. Preliminary

The notation and terminology we use in this paper is standard. We refer the reader to [26]
for more detailed definitions and to [21] for the standard notions.

2.1. Tilings. We begin with a set of types (or colours) {1, . . . ,m}, which we fix once and
for all. A tile in Rd is defined as a pair T = (A, i) where A = supp(T ) (the support of T )
is a compact set in Rd, which is the closure of its interior, and i = l(T ) ∈ {1, . . . ,m} is the
type of T . We let g + T = (g + A, i) for g ∈ Rd. We say that a set P of tiles is a patch if
the number of tiles in P is finite and the tiles of P have mutually disjoint interiors. The
support of a patch is the union of the supports of the tiles that are in it. The translate of a
patch P by g ∈ Rd is g + P := {g + T : T ∈ P}. We say that two patches P1 and P2 are
translationally equivalent if P2 = g + P1 for some g ∈ Rd. A tiling of Rd is a set T of tiles
such that Rd =

∪
{supp(T ) : T ∈ T } and distinct tiles have disjoint interiors. We always

assume that any two T -tiles with the same colour are translationally equivalent (hence there
are finitely many T -tiles up to translations). Let

Ξ(T ) := {x ∈ Rd : ∃ T = (A, i), T ′ = (A′, i) ∈ T for i ≤ m such that A′ = x+A}.

We say that T has finite local complexity (FLC) if for each radius R > 0 there are only
finitely many equivalent classes of patches whose support lies in some ball of radius R. We
define T ∩ A := {T ∈ T : supp(T ) ∩ A ̸= ∅} for a bounded set A ⊂ Rd. We say that T is
repetitive if for every compact set K ⊂ Rd, {t ∈ Rd : T ∩ K = (t + T ) ∩ K} is relatively
dense. We write BR(y) for the closed ball of radius R centered at y and use also BR for
BR(0).

2.2. Delone multi-colour sets. A multi-colour set or m-multi-colour set in Rd is a subset
Λ = Λ1 × · · · × Λm ⊂ Rd × · · · × Rd (m copies) where Λi ⊂ Rd. We also write Λ =
(Λ1, . . . ,Λm) = (Λi)i≤m. Recall that a Delone set is a relatively dense and uniformly discrete
subset of Rd. We say that Λ = (Λi)i≤m is a Delone multi-colour set in Rd if each Λi is
Delone and supp(Λ) := ∪m

i=1Λi ⊂ Rd is Delone. A cluster of Λ is, by definition, a family
P = (Pi)i≤m where Pi ⊂ Λi is finite for all i ≤ m. The translate of a cluster P by x ∈ Rd

is x+P = (x+ Pi)i≤m. We say that two clusters P and P′ are translationally equivalent if
P = x + P′ for some x ∈ Rd. We say that Λ ⊂ Rd is a Meyer set if it is a Delone set and
Λ − Λ is uniformly discrete ([19]). We define FLC and repetitivity on Delone multi-colour
sets in the same way as the corresponding properties on tilings. The types (or colours) of
points on Delone multi-colour sets have the same concept as the colours of tiles on tilings.

2.3. Substitutions. We say that a linear map Q : Rd → Rd is expansive if all the eigenval-
ues of Q lie outside the closed unit disk in C.

2.3.1. Substitutions on tilings.

Definition 2.1. Let A = {T1, . . . , Tm} be a finite set of tiles in Rd such that Ti = (Ai, i);
we will call them prototiles. Denote by PA the set of non empty patches. We say that
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Ω : A → PA is a tile-substitution (or simply substitution) with an expansive map Q if there
exist finite sets Dij ⊂ Rd for i, j ≤ m such that

(2.1) Ω(Tj) = {u+ Ti : u ∈ Dij , i = 1, . . . ,m}
with

QAj =

m∪
i=1

(Dij +Ai) for j ≤ m.(2.2)

Here all sets in the right-hand side must have disjoint interiors; it is possible for some of the
Dij to be empty.

Note that QAj = supp(Ω(Tj)) = Qsupp(Tj). The substitution (2.1) is extended to all
translates of prototiles by

Ω(x+ Tj) = Qx+Ω(Tj),(2.3)

in particular,

supp(Ω(x+ Tj)) = supp(Qx+Ω(Tj))

= Qx+Qsupp(Tj)

= Q(x+ supp(Tj)),(2.4)

and to patches and tilings by Ω(P ) = ∪{Ω(T ) : T ∈ P}. The substitution Ω can be
iterated, producing larger and larger patches Ωk(P ). We say that T is a substitution tiling
if T is a tiling and Ω(T ) = T with some substitution Ω. In this case, we also say that
T is a fixed point of Ω. We say that a substitution tiling is primitive if the corresponding
substitution matrix S, with Sij = ♯(Dij), is primitive. A repetitive fixed point of a primitive
tile-substitution with FLC is called a self-affine tiling. If Q is a similarity, then the tiling
will be called self-similar. For any self affine tiling which holds (2.2), we define Φ an m×m
array for which each entry is Φij ,

Φij = {f : x 7→ Qx+ d : d ∈ Dij}
and call Φ a matrix function system (MFS) for the substitution Ω. We compose

Φ ◦ Φ = ((Φ ◦ Φ)ij),

where (Φ ◦ Φ)ij = ∪m
k=1Φik ◦ Φkj and Φik ◦ Φkj :=

{
{ g ◦ f : g ∈ Φik, f ∈ Φkj }
∅ if Φik = ∅ or Φkj = ∅ . We

write Φ2 for Φ ◦ Φ and similarly Φn for n-times composition of Φ for n ∈ Z+. Let P (Rd)
be the set of subsets of Rd. For any U = (U1, · · · , Um) ∈ P (Rd)m, we write Φ(U) to mean
(∪j≤mΦij(Uj))i≤m where Φij(Uj) = ∪f∈Φij

f(Uj). We write Φn(x) for (Φn
ij{x})i≤m where

x ∈ Λj and n ∈ Z+.

2.3.2. Substitutions on Delone multi-colour sets.

Definition 2.2. Λ = (Λi)i≤m is called a substitution Delone multi-colour set in Rd if Λ is a
Delone multi-colour set and there exist an expansive map Q : Rd → Rd and finite sets Dij

for i, j ≤ m such that

Λi =
m∪
j=1

(QΛj +Dij), i ≤ m,(2.5)

where the unions on the right-hand side are disjoint.

We say that a cluster P is legal if it is a translate of a subcluster of a cluster generated
from one point of Λ, i.e. a+P ⊂ Φk(x) for some k ∈ Z+, a ∈ Rd and x ∈ Λ.
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2.3.3. Representability of Λ as a tiling. Let Λ be a primitive substitution Delone multi-
colour set. One can set up an adjoint system of equations

QAj =
m∪
i=1

(Dij +Ai), j ≤ m(2.6)

from the equation (2.5). It is known that (2.6) always has a unique solution for which
{A1, . . . , Am} is a family of non-empty compact sets of Rd. It is proved in [22, Th. 2.4 and
Th. 5.5] that if Λ is a primitive substitution Delone multi-colour set, all the sets Ai from
(2.6) have non-empty interiors and, moreover, each Ai is the closure of its interior. We say
that Λ is representable (by tiles) if

Λ+A := {x+ Ti : x ∈ Λi, i ≤ m}
is a tiling of Rd, where Ti = (Ai, i), i ≤ m, for which Ai’s arise from the solution to the
adjoint system (2.6) and A = {Ti : i ≤ m}. Then Λ+A is a substitution tiling and we can
define a tile-substitution Ω satisfying

Ω(Λ+A) = Λ+A
from (2.6). We call Λ + A the associated substitution tiling of Λ. Let Φ = (Φij) be a
MFS for Ω. For any subset Γ = (Γj)j≤m ⊂ Λ, Φij(Γj) = QΓj + Dij , for j ≤ m. Let
Φ(Γ) = (∪j≤mΦij(Γj))i≤m. Then Φij(Λj) = QΛj + Dij , where i ≤ m. For any k ∈ Z+

and x ∈ Λj with j ≤ m, we let Φk(x) = Φk−1((Φij(x))i≤m). Note that for any k ∈ Z+,

Φk(Λj) = (QkΛj + (Dk)ij)i≤m where

(Dk)ij =
∪

n1,n2,...,n(k−1)≤m

(Din1 +QDn1n2 + · · ·+Qk−1Dn(k−1)j)

and Φk(Λ) = Λ.
In [22, Lemma 3.2] it is shown that if Λ is a substitution Delone multi-colour set, then

there is a finite multi-colour set (cluster) P ⊂ Λ for which Φn−1(P) ⊂ Φn(P) for n ≥ 1 and
Λ = limn→∞Φn(P). We call such a multi-colour set P a generating set for Λ.

Theorem 2.3. [26] Let Λ be a repetitive primitive substitution Delone multi-colour set in
Rd. Then every Λ-cluster is legal if and only if Λ is representable.

On the other hand, if a self-affine tiling T = {Tj + Λj : j ≤ m} is given, we get an
associated substitution Delone multi-colour set ΛT = (Λi)i≤m of T (see [23, Lemma5.4]).

2.4. Pure point spectrum and overlap coincidence. Let T be a self-affine tiling in
Rd. We define the space of tilings as the orbit closure of T under the translation action:

XT = {−h+ T : h ∈ Rd}, in the well-known “local topology”: for a small ϵ > 0 two point
sets S1,S2 are ϵ-close if S1 and S2 agree on the ball of radius ϵ−1 around the origin, after a
translation of size less than ϵ. The group Rd acts on XT by translations which are obviously
homeomorphisms, and we get a topological dynamical system (XT ,Rd). Let µ be an ergodic
invariant Borel probability measure for the dynamical system (XT ,Rd). We consider the
associated group of unitary operators {Ug}g∈Rd on L2(XT , µ) :

Ugf(S) = f(−g + S).

A vector α = (α1, . . . , αd) ∈ Rd is said to be an eigenvalue for the Rd-action if there exists
an eigenfunction f ∈ L2(XT , µ), that is, f ̸≡ 0 and

Ugf = e2πig·αf, for all g ∈ Rd.

The dynamical system (XT , µ,Rd) is said to have pure point(or pure discrete) spectrum if the
linear span of the eigenfunctions is dense in L2(XT , µ). Recall that a topological dynamical
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system of a self-affine tiling is uniquely ergodic i.e. there is a unique invariant probability
measure [26].

2.5. Overlaps. Overlap and overlap coincidence are originally defined with tiles in substi-
tution tilings [41]. For computational reason, we define overlaps with the corresponding
representative points of tiles here. A triple (u, y, v), with u+ Ti, v + Tj ∈ T and y ∈ Ξ(T ),
is called an overlap (or real overlap) if

(u+Ai − y)◦ ∩ (v +Aj)
◦ ̸= ∅,

where Ai = supp(Ti) and Aj = supp(Tj). We define (u+ Ai − y) ∩ (v + Aj) the support of
an overlap (u, y, v) and denote it by supp(u, y, v). We say that two overlaps (u, y, v) and
(u′, y′, v′) are equivalent if there exists g ∈ Rd such that u− y = g + u′ − y′ and v = g + v′,
where u+Ti, u

′+Ti ∈ T and v+Tj , v
′+Tj ∈ T for some 1 ≤ i, j ≤ m. Denote by [(u, y, v)]

the equivalence class of an overlap. An overlap (u, y, v) is a coincidence if

u− y = v and u+ Ti, v + Ti ∈ T for some i ≤ m.

Let O = (u, y, v) be an overlap in T , we define k-th inflated overlap

ΦkO = {(u′, Qky, v′) : u′ ∈ Φk(u), v′ ∈ Φk(v), and (u′, Qky, v′) is an overlap}.

Definition 2.4. We say that a self-affine tiling T admits an overlap coincidence if there
exists ℓ ∈ Z+ such that for each overlap O in T , ΦℓO contains a coincidence.

Theorem 2.5. [26, 23] Let T be a self-affine tiling in Rd such that Ξ(T ) is a Meyer set.
Then (XT ,Rd, µ) has a pure point dynamical spectrum if and only if T admits an overlap
coincidence.

In actual computation, it is not easy to determine whether a given triple is an overlap,
since two points can be very close without having the interiors of the corresponding tiles
meet. So we introduce a notion of potential overlaps.

Let ξ ∈ Rd be a fixed point under the substitution such that ξ ∈ Φii(ξ) for some i ≤ m.
When there is no confusion, we will identify ξ with a coloured point (ξ, i) in ΛT . So we
write ξ ∈ Φ(ξ). We find a basis of Rd

B = {α1, . . . , αd} ⊂ Ξ(T )

such that

ξ + α1, . . . , ξ + αd ∈ Φℓ(ξ) for some ℓ ∈ Z+.(2.7)

Let

αmax := max{|αi| : αi ∈ B}.(2.8)

For any n ∈ Z+, let

e(n) := max{|dij − d′kℓ| : dij ∈ (Dn)ij , d
′
kℓ ∈ (Dn)kℓ, where 1 ≤ i, j, k, ℓ ≤ m},

Let ∥ · ∥ be the operator norm induced by Euclidean norm. Since Q is an expansive map,
we can find k ∈ Z+ such that

∥Q−k∥ < 1.(2.9)

Note that for any v ∈ Rd,

|Qkv| ≥ 1

∥Q−k∥
|v|.(2.10)

Let

R =
e(k) · ∥Q−k∥
1− ∥Q−k∥

.(2.11)
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We say that a triple (u, y, v), with u + Ti, v + Tj ∈ T for some i, j ≤ m and y ∈ Ξ(T ), is
called a potential overlap if

(2.12) |u− y − v| ≤ R

and we say that the potential overlap (u, y, v) occurs by the translation y.

Lemma 2.6. If (u, y, v) is an overlap, then (u, y, v) is a potential overlap.

Proof. From (2.6), we get

QkAj =

m∪
i=1

((Dk)ij +Ai), j ≤ m.

For any i ≤ m and a ∈ Ai, we can write

a = Q−kdi1i +Q−2kdi2i1 + · · · , where din+1in ∈ (Dk)in+1in .

Thus for any i, j ≤ m, a ∈ Ai, and b ∈ Aj ,

|a− b| ≤
∞∑
n=1

∥Q−k∥n|dinin−1 − d′inin−1 | ≤
e(k) · ∥Q−k∥
1− ∥Q−k∥

.

If (u, y, v) is an overlap where u+ Ti, v + Tj ∈ T for some i, j ≤ m, then

(u+Ai − y) ∩ (v +Aj) ̸= ∅.

Let z ∈ (u+Ai − y) ∩ (v +Aj). Then z − u+ y ∈ Ai and z − v ∈ Aj . So

|u− y − v| ≤ e(k) · ∥Q−k∥
1− ∥Q−k∥

= R.

�

Similarly to the k-th iterated overlap, for each potential overlap O = (u, y, v) in T , we
define k-th inflated potential overlap

ΦkO = {(u′, Qky, v′) : u′ ∈ Φk(u), v′ ∈ Φk(v), and (u′, Qky, v′) is a potential overlap}

and the equivalence class of ΦkO

[ΦkO] = {[O′] : O′ ∈ ΦkO} .

For the computation of overlap coincidence, it is important to have the Meyer property
of Ξ(T ). The next theorem gives a criterion on Q for the Meyer property. A set of algebraic
integers Θ = {θ1, · · · , θr} is a Pisot family if for any 1 ≤ j ≤ r, every Galois conjugate γ of
θj with |γ| ≥ 1 is contained in Θ.

Theorem 2.7. [28] Let T be a self-affine tiling in Rd with a diagonalizable expansion map
Q. Suppose that all the eigenvalues of Q are algebraic conjugates with the same multiplicity.
Then Ξ(T ) is a Meyer set if and only if the set of all the eigenvalues of Q is a Pisot family.

Summarizing the results of this paper, we provide an algorithm to determine the pure
point spectrum of a substitution tiling dynamical system. Let G be a subset of a set
of potential overlaps. We construct a graph with multiplicities for G viewing potential
overlaps as vertices and defining multiple edges by counting the vertices in the inflated
potential overlaps and give the same name G for the graph.
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Algorithm : We assume that T is a self-affine tiling in Rd with expansion map Q for which
Ξ(T ) is a Meyer set and Ti = (Ai, i), i ≤ m, are prototiles such that

QAj =
∪
i≤m

(Dij +Ai) for j ≤ m.

• Input: Φ is an m×m matrix whose each entry is a set of functions from Rd to Rd

such that Φ = (Φij), where Φij = {f : x → Qx+ d, d ∈ Dij}, i.e. Φ is a MFS for T .
• Output: True, if and only if T has pure point spectrum.

(1) Find an initial point x such that x ∈ Φii(x) for some i ≤ m.
(2) Find a basis {α1, . . . , αd} ⊂ Rd such that αk ∈

∪
i≤m((Φn(x))i − (Φn(x))i) for some

n ∈ Z+, for each 1 ≤ k ≤ d.
(3) For each 1 ≤ k ≤ d, find all the potential overlaps Gα,0 which occur from the

translation αk.
(4) Find all the potential overlaps G which occur from the translations Qnαk with 1 ≤

k ≤ d and n ∈ Z+.
(5) Find all the potential overlaps Gcoin which lead to coincidences within ♯G-iterations.
(6) If ρ(Gcoin) > ρ(G \Gcoin), where ρ(G) is the spectral radius of the graph G, return

true. Else, return false.

3. Computing coincidence

In the rest of the paper, we assume that T is a self-affine tiling in Rd such that Ξ(T ) is a
Meyer set. We can choose a representing point of each tile to be in the interior of the tile.
In fact, from (2.2), for any ai ∈ Ai with i ≤ m, we can get

Q(Aj − aj) =

m∪
i=1

(Dij −Qaj + ai + (Ai − ai)) for j ≤ m.(3.1)

We may consider new prototiles

{T1 − a1, . . . , Tm − am}
with new digit sets

D′
ij = Dij −Qaj + ai.(3.2)

Without loss of generality we can assume that for any Ti = (Ai, i) ∈ A, i ≤ m,

0 ∈ Ai.

Note that the choice of the representing point does not change the translation distance
between two tiles of the same type.

3.1. Meyer sets. Let Λ be a Meyer set and [Λ] be the Abelian group generated by Λ.
Then [Λ] is finitely generated. So [Λ] = ⊕s

i=1Zei. We define || · || : [Λ] → N such that
||
∑s

i=1 niei|| =
∑s

i=1 |ni|. For each positive integer n, let

F (n) := {u ∈ [Λ] : ||u|| ≤ n}.
Note that F (n) is finite. Choose h > 0 such that every open ball of radius h in Rd meets
at least one element in Λ. Since Λ− Λ := {x− y : x, y ∈ Λ} is uniformly discrete from the
Meyer property of Λ, we let L ∈ Z+ be an upper bound for the number of points in Λ− Λ
that can lie in an open ball of radius 2h. Let

ℓ := max{||u|| : u ∈ Λ− Λ, |u| < 3h} .
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Proposition 3.1. [19, 33] Let Λ be a Meyer set. Then

Λ− Λ ⊂ Λ + F, where F = F (2ℓ(L− 1)).

It is proved in [26, LemmaA.8] that the number of equivalence classes of overlaps for
a tiling which has the Meyer property is finite. We apply the same argument to get the
number of equivalence classes of potential overlaps for a tiling and give an explicit upper
bound for the number.

Lemma 3.2. Let T be a self-affine tiling and ΛT = (Λi)i≤m be the associated substitution
Delone multi-colour set of T . Let Λ =

∪
i≤m Λi. Suppose that Λ is a Meyer set. The number

of equivalence classes of potential overlaps for T is less than or equal to m2I, where

I = #((Λ + F + F + F ) ∩BR(0)),

with F = F (2ℓ(L− 1)) as in Prop. 3.1.

Proof. Let (u, y, v) be a potential overlap in T for which u+Ti, v+Tj ∈ T . Then |u−y−v| ≤
R. Note that u− y − v ∈ (Λ− Λ)− (Λ− Λ). From Prop. 3.1,

(Λ− Λ)− (Λ− Λ) ⊂ Λ + F − (Λ + F )

⊂ Λ + F + F + F .

The equivalence classes of the potential overlaps are completely determined by i, j and the
vector u− y − v. Thus the claim follows. �
Remark 1. Let Λ = (Λi)i≤m be a substitution Delone multi-colour set for which Λ =
∪i≤mΛi is a lattice. It has been shown in [39] that modular coincidence, which is equivalent
to the overlap coincidence in lattice substitution Delone multi-colour sets, can be determined
within an exponential bound 2m−m−2. Note that there are only m2I number of potential

overlaps where I = #(Λ∩BR(0)), since Λ−Λ = Λ. In fact, there are at most m(m+1)
2 number

of overlaps in TΛ, since all tiles have congruent supports and so all overlaps are formed
by order insensitive pairs of tiles. Overlap coincidence for TΛ can be determined within
m(m−1)

2 number of iterations of each overlap. However to observe the modular coincidence,

we need to iterate more. For 1-dimension lattice substitution Delone sets1, a polynomial

bound m3−m
6 seems to be the lowest bound known so far for the occurrence of modular

coincidence. In fact, this problem is equivalent to finding the best upper bound for the
length of synchronizing words in deterministic m states automata. Černý’s conjecture says
that the best bound would be (m− 1)2 (see [45]).

2. We note from [27, Th. 4.14] that Λ is a Meyer set if and only if Ξ(T ) is a Meyer set in
the self-affine tiling T .

3.2. Coincidence and computation. From now on, we assume that T is a self-affine
tiling with an expansion map Q for which Ξ(T ) is a Meyer set.

For α ∈ Ξ(T ), define

Eα := {(u,Qnα, v) : (u,Qnα, v) is overlap in T , n ∈ N }.
For any n ∈ Z≥0, define

DQnα := T ∩ (T −Qnα)

and

dens(DQnα) = lim
n→∞

Vol(DQnα ∩Bn)

Vol(Bn)
.

1We thank Dirk Frettlöh, Johan Nilsson, and Wolfgang Steiner for the following comment.
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The following lemma is proved in [26, Lemma A.9] with the subdivision graph for overlaps.
The third statement in [26, Lemma A.9] is stated for each overlap having coincidence in
some iteration. However, since there are only finite number of overlaps for the tiling, we
can restate the statement for any overlap as follows.

Lemma 3.3. [26, Lemma A.9] Let α ∈ Ξ(T ). The following are equivalent:

(i) limn→∞ dens(DQnα) = 1.
(ii) 1− dens(DQnα) ≤ brn for any n ≥ 1, for some b > 0 and r ∈ (0, 1).

(iii) There exists ℓ ∈ Z+ such that for any overlap O in Eα, ΦℓO contains a coincidence.

The next theorem is basically in [41] and [26, Th. 4.7]. We notice here that we only need
to consider the overlaps in Eα for all α ∈ B to check the overlap coincidence of T . We
rewrite the theorem in the form that we use here.

Theorem 3.4. [41], [26, Th. 4.7] Let T be a self-affine tiling for which Ξ(T ) is a Meyer set.
Then there exists ℓ ∈ Z+ such that for any α ∈ B and any overlap O ∈ Eα, ΦℓO contains a
coincidence if and only if T admits an overlap coincidence.

Proof. We only prove the sufficiency direction, since the other direction is clear. Suppose
that for any α ∈ B and any overlap O ∈ Eα, ΦℓO contains a coincidence. From the argument
of [26, LemmaA.9], for some b > 0 and r ∈ (0, 1)

1− dens(DQnα) ≤ brn for any n ∈ N .

Hence
∞∑
n=0

(1− dens(DQnα)) < ∞ .

Since B forms a basis for Rd, by [41, Thm. 6.1] the dynamical system of Delone multi-
colour set has pure point spectrum. By [26, Thm. 4.7 and LemmaA.9], T admits an overlap
coincidence. �

In order to find first all equivalent classes of potential overlaps which occur from the trans-
lations of αi for any 1 ≤ i ≤ d, we want to know how much region of the intersection of T
and T − αi, 1 ≤ i ≤ d, we have to look. We use same notations for points with colours in
ΛT and points in Rd. This should not cause any confusion.

Let

J (ΛT ) = {[P] : P = {y, z} ⊂ ΛT satisfies |y − z| < R+ ∥Q−k∥αmax} ,

where k and αmax are defined as (2.8) and (2.9), respectively. Let

J (Γ) := {[P] ∈ Θ : P ⊂ Γ}, where Γ ⊂ ΛT .

Lemma 3.5. If J (ΦN (ξ)) = J (ΦN+k(ξ)) for some N ∈ Z+, then

J (ΦN (ξ)) = J (ΛT ) .

Proof. Let P be a cluster in ΦN+k+1(ξ) such that [P] ∈ J (ΛT ). There must be a cluster
P′ = {y, z} ⊂ ΦN+1(ξ) satisfying P ⊂ Φk(P′). We claim that [P′] ∈ J (ΛT ). We only need
to show that |y − z| ≤ R+ ∥Q−k∥αmax. Suppose that |y − z| > R+ ∥Q−k∥αmax. Then

|Qky −Qkz| ≥ 1

∥Q−k∥
|y − z| > 1

∥Q−k∥
(R+ ∥Q−k∥αmax) =

R

∥Q−k∥
+ αmax.
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For any y′ ∈ Φk(y) and z′ ∈ Φk(z), y′ = Qky + d1 and z′ = Qkz + d2 for some d1, d2 ∈
∪i,j≤m(Dk)ij . Thus

|y′ − z′| = |Qky −Qkz + d1 − d2| ≥ |Qky −Qkz| − e(k)

>
R

∥Q−k∥
+ αmax − e(k) = R+ αmax from (2.11)

> R+ ∥Q−k∥αmax.

It contradicts to the choice of P. Hence [P′] ∈ J (ΛT ). From the assumption, note that

J (ΦN (ξ)) = J (ΦN+1(ξ)) = · · · = J (ΦN+k(ξ)) .

So there exists a cluster P′′ in ΦN (ξ) which is equivalent to P′. Then Φk(P′′) contains a
cluster which is equivalent to the cluster P. Thus

J (ΦN+k(ξ)) = J (ΦN+k+1(ξ)) .

Hence

J (ΦN (ξ)) = J ( lim
n→∞

Φn(ξ)) .

By the repetitivity of ΛT , all the clusters in ΛT whose equivalent classes are in J (ΛT )
should occur in J (limn→∞Φn(ξ)). Therefore J (ΦN (ξ)) = J (ΛT ). �

Lemma 3.6. If J (ΦN (ξ)) = J (ΛT ), then for each α ∈ B,

Gα,0 := {[(y, α, z)] : y, z ∈ ΦN+k(ξ) and |y − α− z| < R}

contains all the different equivalence classes of potential overlaps which can occur from the
translation of α.

Proof. If {y, z} ⊂ ΛT such that |y − α− z| < R for α ∈ B, there exist u, v ∈ ΛT such that
y ∈ Φk(u) and z ∈ Φk(v). Let y = Qku+ d1 and z = Qkv+ d2, where d1, d2 ∈ ∪i,j≤m(Dk)ij .

Let P = {u, v}. We claim that [P] ∈ J (ΦN (ξ)). Suppose that |u − v| > R + ∥Q−k∥αmax.
Then

|y − z| = |Qku−Qkv + d1 − d2| ≥ |Qk(u− v)| − e(k)

≥ 1

∥Q−k∥
|u− v| − e(k) >

R

∥Q−k∥
+ αmax − e(k) = R+ αmax

It contradicts to the choice of {y, z} ⊂ ΛT . Since J (ΦN (ξ)) = J (ΛT ), [(y, α, z)] ∈ Gα,0. �

Lemma 3.7. If J (ΦN (ξ)) = J (ΛT ) for some N ∈ Z+, then for each n ∈ Z≥0 and α ∈ B,

{[(y,Qnα, z)] : y, z ∈ ΦN+k+n(ξ) and (y,Qnα, z) is a potential overlap}

contains all the different equivalence classes of potential overlaps which occur from the trans-
lation of Qnα.

Proof. We argue this by induction. Note that when n = 0, the claim is true. Suppose that
it is true for n = i, i ∈ Z+. Consider n = i+ 1. Let O be a potential overlap which occurs
from the translation of Qi+1α. Then there exist y, z ∈ ΦN+i+s(ξ) ⊂ Λ for some s ∈ N such
that

O = [(y,Qi+1α, z)].

Then there exists a potential overlap (u, α, v) with u, v ∈ ΦN+i+s−1(ξ) such that

(y,Qi+1α, z) ∈ Φ(u,Qiα, v) .
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But we know that there exists a potential overlap (u′, Qiα, v′) with u′, v′ ∈ ΦN+k+i(ξ) which
is equivalent to a potential overlap (u,Qiα, v) by the assumption. Thus there exists an equiv-
alent potential overlap (y′, Qi+1α, z′) to (y,Qi+1α, z) which is contained in Φ(u′, Qiα, v′).
Note that

y′, z′ ∈ ΦN+k+i+1(ξ) .

Thus

{[(y,Qi+1α, z)] : y, z ∈ ΦN+k+i+1(ξ)}
contains all the different types of equivalent potential overlaps which occur from the trans-
lation Qi+1α. Thus the claim is proved. �

Suppose that J (ΦN (ξ)) = J (ΛT ) for some N ∈ Z+. For any α ∈ B and any M ∈ Z≥0,
define

Gα,M :=
∪

0≤n≤M

{[(y,Qnα, z)] : y, z ∈ ΦN+k+n(ξ) and (y,Qnα, z) is a potential overlap}

Gα :=
∪

M∈Z≥0

Gα,M and G =
∪
α∈B

Gα.

Lemma 3.8. Let α ∈ B. If Gα,M = Gα,M+1 for some M(= Mα) ∈ Z≥0, then

Gα,M = Gα.

Proof. Let [(y,Qnα, z)] ∈ Gα,M+2, where 0 ≤ n ≤ M + 2. Then there exists a potential

overlap (y′, Qn−1α, z′), with y′, z′ ∈ ΦN+k+M+1(ξ), such that

(y,Qnα, z) ∈ Φ(y′, Qn−1α, z′).

Since Gα,M = Gα,M+1, (y′, Qn−1α, z′) is equivalent to (y′′, Qn′
α, z′′) for some y′′, z′′ ∈

ΦN+k+n′
(ξ) where 0 ≤ n′ ≤ M . So

[Φ(y′, Qn−1α, z′)] = [Φ(y′′, Qn′
α, z′′)] .

Thus [(y,Qnα, z)] ∈ Gα,M+1. �

Let H be the set of all equivalent classes of overlaps in T and Gcoin be the set of all
equivalence classes of overlaps in T which lead to coincidence after some iterations. Note
that

Gcoin ⊂ H ⊂ G
and for each α ∈ B, Mα ≤ m2I, since there are at most m2I equivalence classes of potential
overlaps in T by the Lemma3.2.

Theorem 3.9. If an overlap in T has a coincidence after some iterations, it should happen
before ♯G number of iterations. In other words,

Gcoin = {[(u,Qnα, v)] ∈ G : Φt
ℓi(u−Qnα) ∩ Φt

ℓj(v) ̸= ∅
for some 1 ≤ ℓ ≤ m and 0 ≤ t < ♯G, where u+ Ti, v + Tj ∈ T }.

Proof. Note that there are at most ♯G number of equivalence classes of potential overlaps
in T . For any overlap O, if coincidence does not occur in Φt(O) for some 0 ≤ t ≤ ♯G,
coincidence will never occur in Φn(O) for any n ∈ Z≥0. Since Q is an expansive map, it is
sufficient to check for 0 ≤ t < ♯G.
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4. The potential overlaps that are not real overlaps

We aim to prove the following Theorem4.1 in this section. The algorithm given by this
theorem is quite simple and easy to implement and applies to all self-affine tilings whenever
the expansion maps Q and digit sets Dij , which define the self-affine tilings, are given.

In the sequel, we construct a graph with multiplicities viewing potential overlaps in G as
vertices and define multiple edges by counting the vertices in the inflated potential overlaps.
Hereafter we deal with the representatives of equivalence classes of potential overlaps in G.
Let (u, y, v) be a potential overlap, where u+ Ti, v + Tj ∈ T , Ti = (Ai, i) and Tj = (Aj , j).
Inflating the corresponding tiles in the potential overlap (u, y, v) and intersecting them, we
observe

Q(u+Ai − y) ∩Q(v +Aj)

=

m∪
k=1

(Ak +Dki +Qu−Qy) ∩
m∪
ℓ=1

(Aℓ +Dℓj +Qv)(4.1)

=
m∪
k=1

m∪
ℓ=1

∪
dki∈Dki

∪
dℓj∈Dℓj

(((Ak + dki − dℓj +Qu−Qy −Qv) ∩Aℓ) + dℓj +Qv).

The equivalence class [(u, y, v)] can be viewed as an element (i, y, j) where 1 ≤ i, j ≤ m and
z = u− y − v with |z| ≤ R where R is as defined in (2.11). We define the multiple edge

(4.2) (i, z, j)
e→ (k, z′, ℓ)

if z′ = dki − dℓj + Qxi − Qy − Qxj with |z′| ≤ R for dki ∈ Dki and dℓj ∈ Dℓj , where the
multiplicities of the edge is given by #{(dki, dℓj) ∈ Dki×Dℓj | z′ = dki−djℓ+Qu−Qy−Qv}.
Keeping the multiplicity in the graph is essential to distinguish real overlaps from potential
overlaps that are not. Recall that (i, y, j) is a coincidence if i = j and y = 0. We consider
Gcoin as the induced graph of G to the vertices which have a path leading to a coincidence.
Also we define Gres by the induced graph generated by the complement of such set from G,
i.e. Gres = G \Gcoin. For any graph G, we denote by ρ(G) the spectral radius of the graph
G.

Theorem 4.1. Let T be a self-affine tiling for which Ξ(T ) is a Meyer set. Then the
following are equivalent;

(i) T admits an overlap coincidence.
(ii) ρ(Gcoin) > ρ(Gres).

The potential overlaps (u, y, v) can be divided into three cases.

• No intersection overlap: (u+Ai − y) ∩ (v +Aj) = ∅,
• Boundary touching overlap: u+Ai− y and v+Aj are just touching at their bound-
aries,

• Real overlap: (u+Ai − y)◦ ∩ (v +Aj)
◦ ̸= ∅.

If (u+Ai−y)∩(v+Aj) is empty, then the distance between two tiles u+Ti−y and v+Tj

becomes larger by the iterations of the tile-substitution Ω. Therefore this potential overlap
does not produce an infinite walk on the graph of potential overlaps by the iterations of Ω.
However, when they are touching at their boundaries, this gives infinite walks on the graph
and it may contribute to the number of possible paths and consequently to the spectral
radius by repeated inflation. Our task is to prove that this contribution is small so that we
can distinguish them from real overlaps.

Let (V,Γ) be a directed graph with a vertex set V = {1, . . . ,M} and an edge set Γ.
We call {fe : e ∈ Γ}, a collection of contractions fe : Rd → Rd, a graph-directed iterated
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function system (GIFS). Let Γkℓ be the set of edges from vertex k to ℓ, then there are unique
non-empty compact sets {Ek}Nk=1 satisfying

(4.3) Ek =
M∪
ℓ=1

∪
e∈Γkℓ

fe(Eℓ), for k ≤ M

(see [30]). We say that (4.3) satisfies the open set condition (OSC) if there are open sets Uk

so that
M∪
ℓ=1

∪
e∈Γkℓ

fe(Uℓ) ⊂ Uk, for k ≤ M

and the left side is a disjoint union. Further if Uk ∩Ek ̸= ∅ for all k ≤ M , then we say that
the GIFS satisfies the strong open set condition (SOSC).

We observe from (4.1)

(Ai + u− y − v) ∩Aj =∪
k≤m

∪
ℓ≤m

∪
dki∈Dki

∪
dℓj∈Dℓj

Q−1 (((Ak + dki − dℓj +Qu−Qy −Qv) ∩Aℓ) + dℓj) .(4.4)

If (k, z′, ℓ), where z′ = dki − dℓj + Qu − Qy − Qv, is not a potential overlap, we discard it
from (4.4).

Let M be the number of elements in Gres. Now we construct a graph for Gres identifying
the potential overlaps in Gres with the numbers in {1, · · · ,M}. In the graph Gres, if vertices
have no outgoing edges, we can remove them from Gres successively. For each potential
overlap (i, v, j) which corresponds to a vertex k ≤ M , let

Ek := (Ai + z) ∩Aj , where z = u− y − v.(4.5)

Let Γkℓ be the set of edges from k to ℓ where 1 ≤ k, ℓ ≤ M . From (4.4), we notice that Ek’s
satisfy GIFS (4.3), where fe(x) = Q−1(x+ de) and de ∈ Dℓj for some ℓ ≤ m. Denote by Γn

kℓ

the set of paths of length n from k to ℓ and for I = e1 . . . en ∈ Γn
kℓ we put dI =

∑n
i=1Q

n−idei .

Remark 4.2. If Gres does not contain the vertices of real overlaps, each Ek with k ≤ M is
a subset of ∂Aj for some tile Tj = (Aj , j) ∈ A.

We use the recent development by He and Lau [15] which slightly modifies the Hausdorff
measure. They introduced a new type of gauge function, called pseudo norm w : Rd → R+

corresponding to Q having key properties:

(4.6) w(Qx) = | det(Q)|1/dw(x)
and

(4.7) w(x+ y) ≤ c(w)max(w(x), w(y))

for some positive constant c(w). This w induces the same topology as Euclidean norm. By
w, they modified the definition of Hausdorff measure by: for an open set U ⊂ Rd, a subset
X ⊂ Rd and s, δ ∈ R+,

diamw(U) = sup
x,y∈U

w(x− y),

Hs,δ
w (X) = inf

X⊂∪iUi

{∑
i

diamw(Ui)
s

∣∣∣∣∣ diamw(Ui) < δ

}
and

Hs
w(X) = lim

δ↓0
Hs,δ

w (X).
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Our new Hausdorff dimension is defined by

dimw
H(X) = sup{s|Hs

w(X) = ∞} = inf{s|Hs
w(X) = 0}.

Using the pseudo norm w, one can treat self-affine attractors almost as easy as self-similar
ones.

To prove Theorem 4.1, we need the next lemma of Luo-Yang [29]. This generalizes a
result in [15] and its proof basically follows from the idea of Schief [36], but using pseudo
norm instead of Euclidean norm. Note that strong connectedness of GIFS is essential.

Lemma 4.3. [29, Th. 1.1] Assume that the GIFS is strongly connected. Then the following
conditions are equivalent:

(1) {dI | I ∈ Γn
kℓ} give distinct #(Γn

kℓ) points whose distance between two points has a
uniform lower bound r > 0 for all k, ℓ ≤ M and n ≥ 1.

(2) The GIFS satisfies strong open set condition (SOSC).

Proof of Theorem4.1 (ii) ⇒ (i). Consider an overlap (u, y, v) where u + Ti, v + Tj ∈ T .
Applying Qn to the overlapping part of the overlap, we have

µd(Q
n((u+Ai − y) ∩ (v +Aj))) = | detQ|nµd((u+Ai − y) ∩ (v +Aj))

where µd is the d-dim Lebesgue measure. We know | detQ| = β where β is the Perron
Frobenius root of substitution matrix (#(Dij)) (see [22]). Since there are only finitely many
overlaps up to translations, there exist r > 0 and R > 0 such that (u+Ai − y)◦ ∩ (v+Aj)

◦

contains a ball of radius r and is surrounded by a ball of radius R. After n-iteration of
inflation, the number of potential overlaps Kn generated from (u, y, v) is estimated:

c1β
n ≤ Kn ≤ c2β

n

with some positive constants c1 and c2. Each real overlap gives this growth of potential
overlaps. It implies that Gres cannot contain any real overlap (Recall that we are taking
into account the multiplicities of overlap growth). This shows the claim.

(i) ⇒ (ii). We show that if all overlaps lead to a coincidence then Gres cannot have a
spectral radius β = |detQ|(= ρ(Gcoin)). By the assumption, Gres does not contain overlaps.

So from Remark 4.2, Y =
∪M

k=1Ek, where Ek’s are defined as in (4.5), is the subset of the
union of boundaries of tiles. By Lemma 4.3 the GIFS satisfies OSC because the uniform
discreteness condition (1) of the Lemma4.3 automatically follows from the fact that (Dn)ij ’s
are uniformly discrete for any i, j ∈ m and n ≥ 1(see [22]).

We follow Mauldin-Williams [30] to compute a new Hausdorff dimension using pseudo
norm w instead of Euclidean norm. Let

s = d log γ/ log β,

where γ = ρ(Gres) and β = |detQ|. We study the value Hs
w(Y ). First, assuming strong

connectedness of GIFS and OSC, we show 0 < Hs
w(Y ) < ∞ by using standard mass distri-

bution principle (c.f. Theorem 1.2 in [29]). Second we use a simple fact: an infinite path
on GIFS must eventually fall into a single strongly connected component. Thus for GIFS
without strong connectedness, we classify infinite walks on GIFS by the prefixes before they
fall into the last strongly connected components. This gives an expression of an attractor
of general GIFS as a countable union of contracted images of attractors which belong to
strongly connected components. In this way we can show the Hausdorff measure Hs

w is
positive and σ-finite, by applying Lemma 4.3 to each strongly connected component. This
shows the new Hausdorff dimension of Y with respect to the pseudo norm w

dimw
H(Y ) = s.
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Notice that the value Hs
w(Y ) can be infinite since we do not know that our GIFS is strongly

connected (c.f. [30, Th. 4]).
Now if s = d, then Hs

w is a translationally invariant Borel regular measure having
positive value for any open sets because the pseudo norm is comparable with Euclidean
norm ([15, Prop. 2.4]). Therefore Hs

w must be a constant multiple of the d-dimensional
Lebesgue measure, by the uniqueness of Haar measure. But this is impossible because the
d-dimensional Lebesgue measure of the boundary of self-affine tiles must be 0(see [32]). This
shows s = d log γ/ log β < d which completes the proof. �

The following conjecture is a folklore. It is mentioned as an open problem in [43] from
personal communication with M. Urbański.

Conjecture 4.4. For d-dimensional non-polygonal self-affine tiling T , each tile T = (A, i)
satisfies

d− 1 < dimH(∂A) < d.

We partially solve a version of this conjecture in the following Theorem4.5. Indeed if the
matrix Q gives similitudes, this settles the right inequality of Conjecture 4.4.

Theorem 4.5. For d-dimensional self-affine tiling T , each tile T = (A, i) satisfies

dimw
H(∂A) < d.

Proof. We consider a collection of all pairs of tiles in T whose boundaries are touching. As
in (4.2) and (4.4), we get a new GIFS which is defined on this collection. Applying the same
argument as in Theorem4.1, we get s = d log γ/ log β < d which shows the claim. �

5. Examples

We implemented Mathematica programs which perform our algorithm to check the over-
lap coincidence for self-affine tilings. Readers can get the Mathematica programs in the
following website.

http://mathweb.sc.niigata-u.ac.jp/~akiyama/Research1.html

For a given expanding matrix Q and digit sets Dij of a self-affine tiling which has the
Meyer property, the program gives outputs ρ(Gcoin) and ρ(Gres). By Theorem 4.1, we can
determine whether it satisfies overlap coincidence or not. If the tiling does not satisfy the
Meyer property, it may not stop, or stop but produce incorrect outputs.

In actual computation, it is the bottleneck of the program to find all initial potential
overlaps for Lemma 3.5 and 3.6. So we use two major tricks in the program to make the
computation fast. First, we translate the digits Dij to D′

ij as shown in (3.2) such that

the number of potential overlaps and e(k) are small. The size of e(k) is significant in the
computation of collecting all the initial potential overlaps in Lemma3.5. To make e(k) small,
we obtain some number of points in Ai using the tile equation (2.2) and choose ai among
them which is located closest to their centroid. Then we shift tiles Ai to Ai−ai. Second, in
order to get all the initial potential overlaps Gα,0 in Lemma3.6, we try to find a fine lattice

in Rd such that we make an embedding of an iterated point set into the lattice taking the
closest lattice point for each point of the set. Using the lattice, we can easily compute the
candidates of initial potential overlaps, which is much faster than dealing with the original
point set. We list selected examples of our computation below.

For an 1-dimension substitution sequence, we can obtain a self-similar tiling by suspen-
sion associating to each letter the interval whose length is each entry of a left eigenvector
of the incidence matrix of the substitution. Pure point spectrum for the Z-action on a sub-
stitution sequence dynamical system is equivalent to pure point spectrum for the R-action
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Figure 1. Fibonacci substitution tiling

on its suspension tiling dynamical system [8]. The following Example 5.1 and 5.2 show how
to obtain a tile substitution when a symbolic letter substitution is given. Since the tile
equation is generated automatically in symbolic letter substitutions, we give also a separate
computational program in the above website to check overlap coincidence directly from the
given symbolic substitution.

We show the results of the following examples in Table 1.

Example 5.1. Fibonacci substitution tiling is a well-known 1-dimension tiling whose sub-

stitution is given by 0 → 01 and 1 → 0. Then the substitution matrix is

(
1 1
1 0

)
and (τ, 1)

is a left eigenvector of PF-eigenvalue τ = 1+
√
5

2 . Giving length τ (or 1) interval to 0 (or 1)
letter and letting it A1 (or A2) respectively, we can consider the following tile equation

τA1 = A1 ∪ (A2 + τ)

τA2 = A1

and get its suspension tiling. The corresponding MFS is Φ =

(
{f1} {f1}
{f2} ∅

)
where f1(x) =

τx and f2(x) = τx + τ . We check that the tiling admits overlap coincidence and so the
dynamical system has pure point spectrum. See Figure 1.

Example 5.2. (1) Baker-Barge-Kwapisz give a reducible Pisot substitution tiling whose
dynamics is not pure discrete in [7, Ex. 5.3]. The substitution is given by 0 → 051000,
1 → 324100, 2 → 24100, 3 → 324333, 4 → 051433, 5 → 51433. The PF-eigenvalue of the

substitution matrix is α = 3 + 2
√
2. Let β = α−1

4 = 1+
√
2

2 . The tiles are the intervals of
lengths β, β, 1, β, β, 1. The tile equations are given by

αA1 = A1 ∪ (A6 + β) ∪ (A2 + β + 1) ∪ (A1 + 2β + 1) ∪ (A1 + 3β + 1) ∪ (A1 + 4β + 1)

αA2 = A4 ∪ (A3 + β) ∪ (A5 + β + 1) ∪ (A2 + 2β + 1) ∪ (A1 + 3β + 1) ∪ (A1 + 4β + 1)

αA3 = A3 ∪ (A5 + 1) ∪ (A2 + β + 1) ∪ (A1 + 2β + 1) ∪ (A1 + 3β + 1)

αA4 = A4 ∪ (A3 + β) ∪ (A5 + β + 1) ∪ (A4 + 2β + 1) ∪ (A4 + 3β + 1) ∪ (A4 + 4β + 1)

αA5 = A1 ∪ (A6 + β) ∪ (A2 + β + 1) ∪ (A5 + 2β + 1) ∪ (A4 + 3β + 1) ∪ (A4 + 4β + 1)

αA6 = A6 ∪ (A2 + 1) ∪ (A5 + β + 1) ∪ (A4 + 2β + 1) ∪ (A4 + 3β + 1)

(2) B. Sing gives alternative constructions of reducible Pisot substitution tilings which are

not pure point in [39, Sec. 6c.3]. We have computed a substitution 0 → 03, 1 → 0, 2 → 21,
3 → 2 [personal communication from B. Sing] constructed in the same manner. The PF-
eigenvalue of the substitution matrix is τ . The tiles are the intervals of lengths τ, 1, τ, 1.
The tile equations are given by

τA1 = A1 ∪ (A4 + τ)

τA2 = A1

τA3 = A3 ∪ (A2 + τ)

τA4 = A3

We can confirm that the dynamical systems of the both examples do not admit overlap
coincidence.



18 PURE POINTEDNESS OF SELF-AFFINE TILINGS

Example 5.3. Dekking in [9, 10] constructed self-similar tilings from endomorphisms of a
free group. Kenyon extended this idea in [17, §6]. We examined Example 7.5 in [41] derived
by this method (see Figure 2(a)).

Let θ(a) = b, θ(b) = c, θ(c) = a−1b−1. Later we identify letters a, b, c with vectors starting
from the origin defined by 1, α, α2 ∈ C, where α ≈ 0.341164 + i1.16154 is the complex root
of α3 + α + 1 = 0. We start with words representing three basic parallelograms [a, b] =
aba−1b−1, [b, c], [a, c]. Notice that θ([a, b]) = [b, c], θ([b, c]) = (a−1[a, c]a)(a−1b−1[b, c]ba),
θ([a, c]) = a−1[a, b]a. Let Un = θn([a, b]), Vn = θn([b, c]), and Wn = θn([a, c]), where n ≥ 1.
By the above identification, let A1(or A2, A3) be corresponding tiles whose boundaries are
given by limn→∞ α−nUn(or limn→∞ α−nVn, limn→∞ α−nWn) respectively. Then these tiles
make a self-similar tiling satisfying the tile equation

αA1 = A2

αA2 = (A2 − 1− α) ∪ (A3 − 1)

αA3 = A1 − 1

with α ≈ 0.341164+ i1.16154 which is a root of the polynomial x3+x+1. It is known that
the corresponding tiling dynamical system is not weakly mixing and has a large discrete
part in the spectrum. We check that the dynamical system has pure point spectrum.

We identify C with R2 to simplify the notation; the multiplication of α in C is expressed

by the multiplication of a matrix Q =

(
a −b
b a

)
in R2, where α = a + bi. The Delone

multi-colour set is given by:

Λ1 = αΛ3 − 1

Λ2 = αΛ1 ∪ (αΛ2 − 1− α)

Λ3 = αΛ2 − 1 .

We take a basis B of translation vectors {1 + α, α+ α2} ⊂ Λ2 − Λ2 ⊂ Ξ(T ). In Table 1, we
write this choice Λ2 as Colour 2. The MFS is

Φ =

 ∅ ∅ {f3}
{f1} {f2} ∅
∅ {f3} ∅


where f1 = αx, f2 = αx − 1 − α and f3 = αx − 1. We obtain #Gcoin = 15, #Gres = 242,
ρ(Gcoin) ≈ 1.46557 and ρ(Gres) ≈ 1.32472. This shows overlap coincidence and therefore
the tiling dynamical system associated with this tiling has pure point spectrum. Since this
case is self-similar, the Hausdorff dimension w.r.t. the pseudo norm coincides with the
usual Hausdorff dimension. So the Hausdorff dimension of the boundary of each tile3 is
2 log(ρ(Gcoin))/ log(ρ(Gres)) = 1.47131.

Example 5.4. Continuing Ex. 5.3, we also looked at the self-affine tiling example in [18,
Fig. 2 and 3]. Let α ≈ 2.19869, β ≈ −1.91223 be two real roots of x3 − x2 − 4x + 3 = 0.
The construction is similar to the previous example with a, b, c corresponding to vectors
(1, 1), (α− 1, β − 1), (α2 − α, β2 − β) in R2, endomorphisms θ(a) = ab, θ(b) = c, θ(c) = ab4,
and the basic parallelograms [b, a], [b, c], [a, c]. Then the self-affine tiling is defined with a

2This number depends on other parameters we choose for computation.
3The graph Gres is weakly connected and has only one strongly connected component of spectral radius

greater than one. Therefore the boundary of each tile has the same dimension. The same holds for all
examples in this paper.
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(a) Example 5.3 (b) Example 5.4

Figure 2

diagonal expansion matrix Q =

(
α 0
0 β

)
and the tile equations are

QA1 = (A2 + 1) ∪A3

QA2 = (A2 + 1) ∪ (A2 + v) ∪ (A2 + 2v − 1) ∪ (A2 + 3v − 2 · 1) ∪A3

QA3 = (A1 + v) ∪ (A1 + 2v − 1) ∪ (A1 + 3v − 2 · 1) ,
where 1 = (1, 1) and v = (α, β). It gives overlap coincidence as well. See Table 1 with the
notation v2 = (α2, β2). See Figure 2(b).

Example 5.5. Domino tiling is defined with tiles composed of two unit squares. It does not
have pure point spectrum [41, Ex. 7.3]. The tiling is shown in Figure 3(a). The expansion

map is Q =

(
0 −2
2 0

)
and the tile equations are given by

QA1 = (A1 + (−2, 0)) ∪ (A1 + (−2, 3)) ∪ (A2 + (−2, 1)) ∪ (A2 + (−1, 1))

QA2 = (A1 + (−3, 0)) ∪ (A1 + (−3, 1)) ∪ (A2 + (−1, 0)) ∪ (A2 + (−4, 0)) .

We confirm that the tiling does not admit overlap coincidence.

Example 5.6. In the relation to the explicit construction of Markov partition of toral
automorphism, Thurston in [44] introduced (d − 1)-dimensional self-similar tilings from
greedy expansion based on Pisot unit of degree d which is called Pisot dual tilings. Their
basic properties are studied in Akiyama [1]. Such tiling dynamics are expected to be pure
point. We confirm that Pisot dual tilings associated to x3−x2−x−1, x3−x−1, x3−2x2−x−1,
x3 − 3x2 − 1 and x4 − x3 − x2 − x − 1 admit overlap coincidences by our algorithm. We
present here two Pisot dual tilings which are 2-dimensional and 3-dimensional.

(1) The minimal Pisot number x3 − x − 1 gives the Hokkaido tiling4, found in [44] whose
expansive factor is α ≈ −0.877439 + i0.744862 where 1/α is a complex root of x3 − x − 1.
The corresponding symbolic dynamics is a shift of finite type over two letters {0, 1} with

4The first author named this after the northern island of Japan.



20 PURE POINTEDNESS OF SELF-AFFINE TILINGS

forbidden words 11, 101, 1001, 10001, i.e. the letter 1 must be separated by at least four
consecutive 0’s. Therefore the graph which accepts its language is:

• • • • •0
??

1 // 0 // 0 // 0 //

0

mm

and the associated substitution is

a → ab, b → c, c → d, d → e, e → a.

To construct a dual tiling, we reverse arrows of the graph. The MFS Φ is
{g0} {g0} ∅ ∅ ∅
∅ ∅ {g0} ∅ ∅
∅ ∅ ∅ {g0} ∅
∅ ∅ ∅ ∅ {g0}

{g1} ∅ ∅ ∅ ∅


with gi = α(x+ i). See Figure 3(b).
(2) The Pisot dual tiling associated to x4−x3−x2−x− 1 is 3-dimensional whose symbolic
system is a shift of finite type over {0, 1} with a single forbidden word 1111. The associated
graph is

• • • •0
??

1 //

0
oo

1 //

0

kk

1 //

0

__

whose substitution is

a → ab, b → ac, c → ad, d → a.

Let us identify R3 with C× R. Then the expansion matrix Q and MFS Φ are

(
α1 0
0 α2

)
and


{g0} {g0} {g0} {g0}
{g1} ∅ ∅ ∅
∅ {g1} ∅ ∅
∅ ∅ {g1} ∅

 ,

with α1 ≈ −0.11407 + i1.21675 and α2 = −1.29065 where 1/α1, 1/α1 ∈ C and 1/α2 ∈ R
are three roots of x4 − x3 − x2 − x − 1 = 0 of modulus less than one, g0 = Qx and
g1 = Q(x+(1, 1)). The translation vectors we choose to compute the overlap coincidence are
(2α1

2−α1
3, 2α2

2−α2
3), (2α1+α1

2−α1
3, 2α2+α2

2−α2
3), (2+α1+α1

2−α1
3, 2+α2+α2

2−α2
3).

Example 5.7. Geometric realization of 1-dimensional substitutions has been studied for
a long time, which is motivated by Markov partition of toral automorphism. The original
idea came from Rauzy [35] and got extended in a great deal to Pisot substitutions in [2]
by Arnoux-Ito. They have a domain exchange structure coming from substitutions and
inherit their spectral properties (see also [13]). Recently Arnoux-Furukado-Harriss-Ito in
[3] generalized the idea to create a special class of complex Pisot expansion tiling. We
examined the example in [3, Prop. 6.8] generated from an automorphism of the free group
on four letters:

a → b, b → c, c → d, d → da−1.
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(a) Example 5.5 (b) Example 5.6. (1)

Figure 3

The dual of geometric extention of this automorphism defined in [2] acts on 6 exterior
products of 4 fundamental vectors, projected to the contractive plane of:

M =


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 1

 .

The tile equation for the tiling generated in the contractive plane (identified with C) is

αA1 = A2 ∪A3

αA2 = A4 ∪A5

αA3 = A6

αA4 = A1

αA5 = A2 + α− α2

αA6 = A4 + 1− α2

with α ≈ −0.727136 + i0.934099 which is a root of x4 − x3 + 1 = 0. This tiling no longer
has a direct domain exchange structure. Together with the tiling in the expanding plane, it
gives an explicit Markov partition of 4-toral automorphism x 7→ Mx. Then MFS Φ is


∅ ∅ ∅ {f1} ∅ ∅

{f1} ∅ ∅ ∅ {f3} ∅
{f1} ∅ ∅ ∅ ∅ ∅
∅ {f1} ∅ ∅ ∅ {f2}
∅ {f1} ∅ ∅ ∅ ∅
∅ ∅ {f1} ∅ ∅ ∅



where f1 = αx, f2 = αx + 1 − α2 and f3 = αx + α − α2. The result shows that
ρ(Gcoin) ≈ 1.40127 and ρ(Gres) ≈ 1.22074 and it implies overlap coincidence. We note
that the Hausdorff dimension of the boundary of each tile is 1.18242. See Figure 4(a).
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(a) Example 5.7 (b) Example 5.8

Figure 4

Example 5.8. Bandt-Gummelt in [5] gave a fractal Penrose tiling by fractal kites and darts
having exact matching condition. The tile equations are given by

τAn = (An+7 + τwni) ∪ (Bn+4 + τwnc) ∪ (An+3 + τwni)

τBn = (An+7 + τwni) ∪ (Bn+4 + τwnc)

where An = wnA0 and Bn = wnB0 for which n is a cyclic index modulo 10, w = cos(π/5)+

i sin(π/5), τ = 1+
√
5

2 , and c ∈ C fulfills g(τ2i) = i with g(z) = z
τw

4 + c. We confirm that
this tiling admits overlap coincidence. Note that the Hausdorff dimension of the boundary
of each tile is 1.26634. See Figure 4(b).

Example 5.9. Higher dimension chair tiling is discussed in [24]. We consider a 3-dim chair

tiling which is defined by the expansion matrix

2 0 0
0 2 0
0 0 2

 and the MFS Φ is



{f1, f5} {f1} {f1} {f1} ∅ {f1} {f1} {f1}
{f2} {f2, f6} {f2} {f2} {f2} ∅ {f2} {f2}
{f3} {f3} {f3, f7} {f3} {f3} {f3} ∅ {f3}
{f4} {f4} {f4} {f4, f8} {f4} {f4} {f4} ∅
∅ {f5} {f5} {f5} {f1, f5} {f5} {f5} {f5}

{f6} ∅ {f6} {f6} {f6} {f2, f6} {f6} {f6}
{f7} {f7} ∅ {f7} {f7} {f7} {f3, f7} {f7}
{f8} {f8} {f8} ∅ {f8} {f8} {f8} {f4, f8}


where f1 = Qx + (0, 0, 0), f2 = Qx + (1, 0, 0), f3 = Qx + (0, 1, 0), f4 = Qx + (1, 1, 0), f5 =
Qx + (1, 1, 1), f6 = Qx + (0, 1, 1), f7 = Qx + (1, 0, 1), and f8 = Qx + (0, 0, 1). This tiling
admits overlap coincidence.

Example 5.10. A 3-dimension Thue-Morse tiling can be given by the expanding matrix
and the MFS

Q =

2 0 0
0 2 0
0 0 2

 and Φ =

(
{f1, f4, f6, f7} {f2, f3, f8, f5}
{f2, f3, f5, f8} {f1, f4, f6, f7}

)
where fi, 1 ≤ i ≤ 8, are given as above in Ex. 5.9. This tiling does not admit overlap
coincidence.

Acknowledgments. We thank Boris Solomyak and Benôıt Loridant for helpful discussions.
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Tiling Dim. Colour
Translation

vectors #Gcoin ρ(Gcoin) ρ(Gres)
Pure

pointedness

Ex. 5.1 1 1 τ − 1 8 1.6180 1 Yes

Ex. 5.2(1) 1 1 (1 + α)/2 24 5.8284 5.8284 No

Ex. 5.2(2) 1 1 3 + 4τ 20 1.61803 1.61803 No

Ex. 5.3 2 2

−1 − α

−α − α2 15 1.4656 1.3247 Yes

Ex. 5.4 2 2

−v + v2

−3 − 3v + v2 10 4.2044 2.19869 Yes

Ex. 5.5 2 1

(−3, 0)

(0, 3) 2 4 4 No

Ex. 5.6(1) 2 1

2 − α2

−2 − α + 2α2 20 1.3247 1.1673 Yes

Ex. 5.7 2 2

α − α2

1 − α2 + α3 88 1.4013 1.2207 Yes

Ex. 5.8 2 1

(
√
v, 0)

(
√
v/2,−v/2),

v2 − 10v + 5 = 0 751 2.6180 1.8393 Yes

Ex. 5.9 3 1

(1, 1, 1)

(0, 0, 2)

(0, 2, 0) 16 8 4 Yes

Ex. 5.10 3 1

(1, 0, 1)

(0, 1, 1)

(1, 1, 0) 2 8 8 No

Ex. 5.6(2) 3 1 See Ex. 5.6(2) 19 1.9276 1.6234 Yes

Table 1
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