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Let {a(n)} _, be a sequence defined by the recurrence a(n+2)=Aa(n+1)+
Ba(n), where a(0)=0 and a(1), 4, B are non-zero integers satisfying A2+ 4B #0.
Assume that the ratio two roots of x2— Ax — B is not a root of unity. It is proved,
for each positive integer /, that

la(1ya(2)---aw) _{I+1) w(n)
log TN a@) mah] - 1-x 7 ° (T)

where

w(n)=<logn for I=

1 for 1=2

and « is a constant, depends only on 4 and B. This formula is an improvement and
a generalization of the results of S. Akiyama (1990, J. Number Theory 36, 328-331).
In the proof of this formula, we propose a new type of inclusion exclusion principle
in a multiplicative sense which itself is of interest.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Let {a(n)}>_, be a sequence defined by the recurrence
a(n+2)=Aa(n+ 1) + Ba(n),

where a(0)=0 and 4, B, a(1) arec non-zero integers satisfying 4>+ 4B #0.
Denote by a, # (Ja| =|B]) the roots of x> — Ax — B. We also assume that
a/B is not a root of unity, to assure a(n)#0 for n>0. When (4, B)=1,
then {a(n)}r_, is called a Lucas sequence. P. Kiss and F. Matyas [4]
showed that

log la(1) a(2) - - - a(n)| _ 1
log[a(1), a(2), ..., a(n)]—C(zH-O(logn)’ (D
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where [uy, u,, .., u,] denotes the least common multiple of the terms
Uy, Uz, . i, and {(s) the Riemann zeta function. It is well known that
{(2)=r?/6. The condition (4, B)=1 was removed by the author [1],
showing

log la(1) a(2) ---a(n)] _ {(2) +0< 1 > 2)

log[a(1), a(2), .., a(n)] 1—x log n

where x =log((42, B))/(2log {a}).
In the present paper, we improve the error term of (1) and (2) to
O ((log n)/n). Moreover we show, for each integer /> 1, that
lo 1)a2"y---a(n' {(+1
gla(l’)a(2)---a(n’)| _{(+ )+0(1>

log[a(1’), a(2"), .., a(n)] 11—«

n

(3)

Altough these results are concrete in nature, we employ an axiomatic
description in Section 2. The reader will soon find that the basic idea lies
in the purely elementary Theorem 1, which is what we call an “inclusion
exclusion principle for sequences” in a multiplicative sense. Let us explain
our idea roughly. Let {c(n)}”_, be the non-zero integer sequence with the
property

m|n— c(m)| c(n). (P)

Then the division c(n)/c(m) can be seen as the result of ruling out the older
factor ¢(m) from c(n). If the sequence {c(n)}>_, admits the “inclusion
exclusion principle,” then the value

M(n)=]T c(njd)“®

dln

should be the “proper” new factor appearing in c(n). Thus we have

Lc(1), ¢(2), ..o e(m)] =[] M) (1)

isn

This ideal situation is achieved by axioms (A1) and (A2) in Section 2.
The Lucas sequence is a good example of a sequence which has these
properties.

In Section 3, we evaluate log[c(1), ¢(2), ..., ¢(n)] from the estimation of
c(n), using Theorem 1. From this evaluation, we have no difficulty in
obtaining a formula like (3).

In Section 4, we show another example of asymptotics formulas, which
is not treated under the idea of Theorem 1.

202 SHIGEKI AKIYAMA

Notations

N The set of positive integers.
ord,(n) The multiplicities of the prime p when the integer # is
decomposed into prime factors. If n=n,/n, is a rational
- number then define ord,(n) by ord,(n,)—ord,(n,).
o) Euler’s totient function.
| x| The absolute value of x.
[x] The greatest integer not exceeding x.

Let f be a function from N U {0} to itself. We say f is weakly increasing
if a<b implies f(a) < f(b). We write a|b if b is divisible by a, and alb
if not.

2. THE KEY THEOREM

Let {c(n)}*_, be a non-zero integer sequence. We consider two
conditions:

(A1) For each prime p, we denote by S, the set of positive integer n’s
so that c(n) is divisible by p. If §,# ¢, there exists an integer r(p) and S,
coincides with the set of positive r(p) multiples.

(A2) There exists a weakly increasing function f from Nu {0} to
itself with the property ord,(c(n))= f(ord,(n)), for neS,. (Especially,
ord,(c(n)) is determined only by ord,(n).)

Note that (A1) and (A2) imply property (P) introduced in Section 1. For
a completely multiplicative function m — ¢(m), axioms (Al) and (A2) are
not always satisfied, while (P) is trivial. We mention several examples with
axioms (Al) and (A2).

O

ExampLE 1. Let /eNu {0} and c(n)=n" It is obvious that {n'} |
satisfies (A1) and (A2). It is easily seen that, up to a constant factor, these
are the only polynomials with these properties.

ExaMpPLE 2. Let A be a weakly increasing function from Nu {0} to
itself. When ne N is decomposed into prime factors as [], p¢', we define
p(n)=T1,p2). Then we see that the sequence {p(n)} . , satisfies (A1)
and (A2).

ExXAMPLE 3. Let c(n)=a(n), where a(n) is a sequence defined in
Section 1. If (A4, B)=1 then {a(n)}; | satifies (A1) and (A2). (This is the

in
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reason why we put a(0)=0.) Further, let y and § be complex numbers
satisfying

(y+8)*=C, v6=D,

where C, D are mutually coprime non-zero integers and y/J is not a root
of unity. Then the Lehmer sequence {L(n)}7_, is defined by

n=1

_[y"=0")/(y*=06*)  for neven,
Lom = {(V" —0")/(y —9) for n odd.

It is proved in [6, Theorem 1.6] that {L(n)}_, satisfies (A1) and (A2),
which can easily be verified again by binomial expansion.

Remark 1. In [4, Lemma 1], it is asserted that the function f corre-
sponding to the axiom (A2) of the Lucas sequence {a(n)}*_, is

fx}y=x+ord, a(r(p)),

n=1

for any prime p. This is true when p > 2. But when p =2, it is false. In this
case, we have

_(ord; a(r(2)) for x=0,
f(x)_<ord2a(2r(2))+x—1 for x> 1.

For example, take 4 =B=a(l)=1 (the Fibonacci sequence). Then we
have a(6) =8 while a(3) =2. But this minor fact does not cause any change
of the results of [4].

PROPOSITION 1. Let {c,(n)}7., and {cy(n)} 7, be two sequences with
properties (A1) and (A2). Then the composition sequence {c\(c,(n))}>_,
also has properties (A1) and (A2).

Proof. Let p be a prime, and c,(c,(n)) be divisible by p for some n. Let
r.(p) (i=1,2) be the positive integer determined by {c;(n)} ., (i=1,2),
respectively, by axiom (Al). Put

e;(p)=ord,(r,(p)) (i=1,2)
Then we have

plei(ex(n)) < ri(p)cy(n)

o pile,(n) for i=1,..,u,
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where r(p)=[1" ,po. Using (Al) and (A2), the last statement is
equivalent to
ry(p;) praxien «e-Oiy for i=1,..,u
— LCM of terms r,(p;) pmaxic <m0y,
Thus we have proved axiom (Al) for {c,(cy(n))}_,. Let f; be the

function determined by {c;(n)}*_, (i=1, 2), respectively, by axiom (A2).
Considering the composition f; - f5, we easily see that (A2) is satisfied by

{Cl(cz(”))};o:l-

The next proposition, which we do not use in the next section, provides
interesting sequences with properties (Al) and (A2) as well as
Proposition 1.

ProOPOSITION 2. Let {c(n)}>_, and {cs(n)} | be two sequences with
properties (A1) and (A2). Then the sequence of greatest common divisors
{(¢\(n), cx(n))} 2., also has the same properties.

Proof. We use the notation of the proof of Lemma 1. Then we have
pl(ci(n), cy(n)) & [ri(p), ra(p)]in,
ord,((c,(n), cy(n))) = min{ordp c¢,(n), ord, cy(n)}.
Hence axioms (A1) and (A2) hold.

Now we prove our key theorem.

THEOREM 1. Let {c(n)};_, be a non-zero integer sequence with proper-
ties (A1) and (A2). Defzne M(i) by

M(i)=T] e(i/dy"*,
dli

where u(-) is the Mobius function. Then {M(i)} | is an integer sequence
and we have

=

Le(1), ¢(2), o, c(n)] H (D)l

Proof. First, let us calculate ord, M(i). Using (A1), we have
ord, M(i)= Y  wu(d)ord,c(i/d)
dii ripYi/d

= Y u(d)ord, c(i/d).

diir(p)
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Regard the last sum as O when i/r(p) is not an integer. With division into
parts by p divisibility, the sum becomes

Y. u(pd)ord, c(i/pd)+ Y u(d) ord, c(i/d).

dli/r(p) p dlijr(p), (d, py=1

When i is not a multiple of r(p) p, then the first sum vanishes. As the value
of the Mdbius function u(n) is zero when 7 is not square free, the sum
becomes

Y wuld)ord,c(i/dy— Y u(d)ord, c(i/pd).

dji/r(p) dliir(p) p
(d, p)=1 (d p)=1

Let
ir(py=pyp?---py and  p,=p,

where p;, (i=1,2,.,r) is a prime and e,eNuU {0}, be the prime
decomposition. For the simplicity, put e =e¢,. (To express the case i =r(p)
or the case i=r(p) p, we use N u {0} instead of N.) Then we have

ord, M(i)= Y pu(d)ord,c(i/d)—5 Y u(d) ord, c(i/pd),
dlpy---pr dipa-- pr

where

5:<1 if r(p)pli
0 if r(p)pli

By axiom (A2), we see that ord, c(i/d) and ord,(i/pd) are invariant with
respect to d. Thus we have

ord, M(i)=46, ord, c(i) — 6, ord, c(i/ p),
where

5. — 1 if i=r(p)p’,
7\o otherwise.

We regard ord, c(i/p) as 0 when i/p is not an integer. From this formula
and axiom (A2), we see that ord, M(i) > 0 for any prime p. This shows that
M(i) is an integer.

Next we consider ord,([c(1), ..., c(i)]/[e(1), ..., c(i—1)]), which we
denote by w(i) (i=2).
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Case 1 (when r(p) p'|i and ¢>0). If r(p) p'li (¢>0) and i #r(p) p*
then w(i}) =0, because if i=r(p) kp*, k=2, and (k, p)=1 then

c(r(p) p) Le(l), .y c(i—1) ]

and ord, c(r(p) kp®)=ord, c(r(p) p¢) by (A2). So we must consider the
case i=r(p)p°. Using (Al) and (A2), we sec that if ord, c(r(p) p*) >
ord, c(r(p) p°~"') then i=r(p)p® is the first index for which c(i) is
divisible by p%<«» 7). Thus we have w(r(p) p*)=ord, c(r(p) p*) -
ord, c(r(p) p*~"'). If ord, c(r(p) p®) is equal to ord, c(r(p) p*~"), then

ord,[c(1), .., c(i—1)]=ord,[c(1), ..., c(i)],

and we have w(i)=0.

Case 2 (otherwise). In this case, if i#r(p) we see that w(i)=0 by a
reason similar to that of Case 1. And we have w(r(p))=ord,(c(r(p))),
because i=r(p) is the first index for which ¢(i) is divisible by p.

Summing up, we have shown, for i > 2,

ord,[c(1), ..., c(i)1/[c(1), ..., c(i—1)] = ord,, M(i),

for any prime p. By definition, we have M(1)=¢(1). This completes the
proof by induction.

3. THE APPLICATIONS OF THEOREM 1

Suppose we have enough precise information about the asymptotic
behavior of ¢(n) or M(n). Then we can evaluate the least common multiple
[c(1), ..., ¢(n)], using Theorem 1.

PROPOSITION 3. Let [ be a positive integer and {c(n)}>_, be a non-zero

n=1
integer sequence with properties (Al) and (A2) in Theorem 1. Assume that
there exist constant C,; (i=1, .., I} such that

log c(n)|=C' +C,_ 0"~ '+ --- + C,n+ O(log n),

where C,;#0. Then we have

{41

" 3
C, “+”§([+l)+0(m)(n)).

log[c¢(1), ... e(n)] =
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where

(n) = log n for I=1
“= for 1>2.

Proof. Using Theorem 1, we must evaluate

tog[c(1), ..., c(n)] = Z log |M(i)|

i=1

= Z 2. u(d) log |e(i/d)|

i=1 d|i

n

=2 wu(d) Y logle(k)l.

d=1 k <nid

Put Pn)=Cn'+ C,_n'~' 4+ --- + C,n and Q(n) =
Separate the last sum into two parts:

S oud) Y PRI+ Y uld) Y 0k
d=1

k<n/d d=1 k<n/d

We see easily see that

[n/d]
Y Pkk)=C, Y k'+0((n/d))
k<n/d k=1
n d I+1
=y o).
So the first sum becomes
1+1 i < , zn: 1)
n el
d= d=1 d/
n1+1 0 ,
= C1m+ (n'w(n)).
Here we used the estimation
- 5 wd) _
C(l'i"l Z Z dl+1+0(n [)
d=1 d=

Thus to prove Proposition 3, it suffices to show that

S ud) Y Qk)=Onlogn),
d=1

k<n/d

log |e(n)| —

207

P(n).

(4)
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If we change the order of the summation, the left hand side becomes

iQ(k) 2 ud).

. It is known that there exists a positive constant v such that

Y u(d)=O(x exp(—v ./log x)).

d< x

By the assumption, we have
n/2

iQ ) 2 ud)= Z Q(k)+Z Q(k) 3. wu(d)

d<nlk k>n/2 d< n/k

= Z O(log k)

k>nj2
n/2 k
0 < Y logk Mk ) .
k=1 exp(v «/log(n/k)
=0O(nlogn)

72 log u du )
* 0( L U exp(v./log(n/u))

So it remains to prove

J-"/2 log u du (5)
1 U exp(v./log( n/u)

If we change the variable, the left hand side is equal to

r log(n/v) n(—v~3?)

nnfv exp(v,/logv)

1
=logn oBY

n dl) n
L vexp(v/logv) L vexp(v./log v)
The last two integrals are bounded when # tends to infinity, because
exp(—v./logv) = O(1/(log v)?).

This completes the proof.

Remark 2. To prove (4), we followed the argument of P. Kiss [5]. It
seems that there is a minor error evaluating the integral (5) in [5]. which
is corrected in the above way.
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Now, let us state the result, which implies the improvement of the asser-
tions (1) and (2) of the Introduction.

THEOREM 2. Let {c(n)}7_, be a non-zero integer sequence with axioms
(A1) and (A2), which has the asymptotic behavior

loglc(n)i=Cn'+C,yn'" '+ -+ + Cin+ O(log n),

where C, (i=1, .., 1) are constants and C,;#0. Then we have

log e(1) c(2)---c(n)] w(n)
Toglc(1), c(2), c(n)]—C(H_lH_O( p >

where w(n) is defined in Proposition 3.

Proof. We easily see that

1+1

log le(1) ¢(2) ()| = €, 7

+ O(n'w(n)).

Using the estimation of log[¢(1), ¢(2), ..., c{n)] in Proposition 3, we have
the assertion.

COROLLARY 1. Let {c(n)} _, be the Lucas sequence or the Lehmer
sequence defined in Section 2, Example 3. Then we have

log |c(1)c(2)---c(n)] log n
log [c(1),c(z),...,c(n)]_“2)+0< p )

Proof. We prove the case of the Lucas sequence. By definition, we have
“n . Bn
a—p’

where «, f (|a| = | 8|) are complex numbers and a/f is not a root of unity.
So

c(ny=-c(1)

log |c(n)| =nlog || +log [t — (B/2)"| +log |e(1)/(e — B)I.
If jo| is strictly bigger than |f|, then it is seen that
log |1 —(B/x)"| = O((B/a)").

In the case |a| =|f|, using the result of Baker on the summation of the
logarithm of algebraic numbers, we see that

1= (a/B)'|>n"¢
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for some positive constant ¢ because «/f is not a root of unity (sce [5]).
At any rate, we have

log |c(n)| =nlog |a] + O(log n).

Thus we can apply Theorem 2. For the Lehmer sequence, the proof is
almost the same, so we omit it.

In Corollary 1, above in the case |a| > ||, we have

log c(n) =nlog |«| + log |c(1)/(x— B)| + O(| B/|")-

Using the notation of Proposition 3, we have
log[c(1), ..., ¢(n)]

Y wd) Y PR+ Y ud) Y Q)

k<n/d =1 k<n/d
where P(k)=k log |a| and Q(k)=1log |c(1)/(x— B)| + O(| B/a|¥). From this,

we easily have

log [e(1), ..., c(n)] =log |«| zn: Y uw(d)k+O(n)

m=1 dk=m
=loglal Y, @(m)+O(n).
m=1

And we also have

2

log |e(1) -+~ c(n)| = log |a| "3+ o(n).
Put

Em)='3 o(m)—5n (©)

m=1

The estimation of E(n) is a classical problem. S. S. Pallai and S. Chowla
[7] showed that

E(n)=Q2(nloglog log n).
Thus we have

COROLLARY 2. Let {c(n)})_, be the Lucas sequence or the Lehmer
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sequence defined in Section2, Example3. If the absolute values of the
characteristic roots which define the sequence {c(n)}<_, are distinct, we have

log [c(1) e(2)---c(n)l E(n)
Tog [c(1), ¢(2), — c(n)]_C(z)“LO( " >

where E(n) is defined by (6).

It seems that the best estimation of E(n) up to now is

E(n)=0(nlog?** n(log log n)*?)

due to A. Walfisz [8]. Applying this estimate to Corollary 2 gives a condi-
tional improvement of Corollary 1. Tt seems interesting that the problem of
the estimation of the least common multiple of Lucas and Lehmer numbers
also needs deep results of analytic number theory.

Finally, in this section, we show the asmptotic formula of {(k) cited in
the Introduction.

THEOREM 3. Ler {a(n)}_, be the sequence defined by the recurrence

a(n+2)= Aa(n + 1) + Ba(n),

where a(0)=0 and A, B, a(1) are non-zero integers satisfying A>+4B#0.
Denote by o, B (|a| = |B|) the roots of x> — Ax — B. Assume that o/ is not
a root of unity. Then we have, for an integer |,

log [a(1)) a(2))---a(n’)] _{(I+1) <w(n)>
- +0 :
log[a(1’), a(2"), .., a(n’)] 1—x n

where w(n) is defined in Proposition 3 and x =log((A*, B))/log |a|*.
Remark 3. We easily see that the condition of o/f implies 0 <k < 1.
Proof. We follow the argument of the author [1] to deduce the
problem of Proposition3. Let T'= (A% B), o, = oz/ﬁ and 8, = B/ﬁ.
Then we have

a(1) T =Y2L(n) for n odd,
a(n) = 21
Aa(1)T™*~'L{n) for n even,

where L(n) is the Lehmer sequence associated to «;, f§, (see the formula (2)

oo

of [1]). By Proposition 1, the sequence {L(n')}7_, satisfies axioms (Al)
and (A2) and has the asymptotic behavior

log |L(n")] = n'log |2,| + O(log n).
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Here we used the argument of Corollary 1. From Proposition 3,

log |a,|

IOg [L(ll), ey L(I’l[)] = m

n’ 1+ O(n'w(n)).

- Using arguments similar to those of [1], we have

log Ja, |

log[a(l’), ey a(n[)] = (l_+1—)€(—l+—1_5

n'* 4+ O(n'w(n))

and

_log laty ] ey logT

log |a(1') - -- a(n’)| = 1 T 1)n’+1 + O(n'w(n)).

Putting these estimates together, we obtain the result.

Remark 4. We see that Theorem 3 implies Corollary 1. And if
(4, B)=1 then k=0 and {a(n)}>_, is a Lucas sequence, and we also sce

that Theorem 3 is an immediate consequence of Theorem 2.

Remark 5. We can also treat the sequence {a(sn’)}>_,, where s is a

n=1°

non-zero integer. But this is not of interest because we have
a(sn’) = b(n') a(s),

where b(n) is a sequence of the type described in Theorem 3 correponding
to the characteristic roots o’ and f8°.

Remark 6. In the case /=1 and |a| > |B|, the error term of Theorem 3
can be replaced by O(E(n)/n?), using arguments similar to those of
Corollary 2.

4. EXAMPLES AND CONCLUDING REMARKS

We have treated the sequences with axioms (Al) and (A2) so far. To
generalize these arguments, the following problems should be answered.

(I) Is there any other sequence with properties (A1) and (A2) and
with a good asymptotic behavior?

(I1) How can we characterize the sequence {c(n)}_,., which has a
good asymptotic behavior and for which

n

Le(1), s e(m)Y =TT IM(D)]

i=1
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holds ? Similarly, what about the case

n

[c(1), o c(m)] = [T IMO)I? (7)
i=1

In this section, we demonstrate that there are some sequences which have

property (7). We do not have satisfactory answers to problems (T) and (II).

Let {a(n)}*_, be the Lucas sequences defined in Sectionl. Put

b(n) = a(tn), where t is a positive integer greater than 1. By Proposition 1,

the sequence {h(n)}*_, also has properties (Al) and (A2). Define

c(n) = a(n) b(n). The sequence {c(n)},;_, does not satisfy axioms (Al} and
(A2).

THEOREM 4. With notation as above, we have
log[c(1), ..., c(n)] =log[a(1), ..., a(n)J[b(1), ..., b(n)] + O(n).

From this theorem, we have

log le(1)--e(n)] _ (ee1)
fogleD. el "B\ )

for example. The proof of Theorem4 is elementary but somewhat
complicated, especially for two power divisibility. We omit the proof. We
only mention that there is an explicit formula for

[a(1), ..., a(m)][B(1), ..., b(n)]/[c(l), o c(n)]. (8)

In another direction, J. P. Jones and P. Kiss [3] treated the sequencg of
type {b(n)/a(n)};_, with notation as above, which is a generalization

of the results of J. P. Bézivin [2]. They derived an asymptotic fomula of
similar type.

Note. The idea of Theorem 4 came from the following example, which
I was informed of by Y. Tanigawa. Define {a(n)};_, and {b(n)} _, by the
recurrence

a(n+2)=a(n+1)+a(n), b(n+2)y=11b(n+ 1)+ b(n),
where a(0)=5(0)=0 and a(1)=5h(1)=1. Let
g(n)=[a(1), ..., a(n)1[b(1), ..., b(n)}/[a(l) b(1), ..., a(n) b(n)].
Tanigawa then found that

1 for n<2lor110<n< 150,
g(”)_(n for 22<n<110.
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This example is the case r=35 as stated above, up to a constant factor.
Using the explicit formula mentioned above, we know that g(n) is a squarc
free integer and each prime factor is congruent to 1 modulo 10. And we
have, for example,

ord ()—<1 for 2-11°<n<10-11¢,
&0 otherwise,

ords, g(n) = 1 for 6-31°<n<30-31°
#EWZ0 otherwise,

ord (n) 1 for 4.-41°<n<20-41°

n)y=

n8 0  otherwise,

Ord (n)_<1 for 3'6le<n<15.619’
a8 =0  otherwise,

where e=1,2,.... Not every prime which is congruent to 1 modulo 10
appears as a factor of g(n). The first two counter-examples are 211 and 281,
The general explicit formula for (8) will be publised elsewhere.

ACKNOWLEDGMENT

I express my gratitude to P. Kiss, who sent me his new results.

REFERENCES

1. S. AKivaMA, Lehmer numbers and asymptotic formula for =, J. Number Theory 36 (1990),
328-331.

2. J. P. BEziviN, Plus petit commun multiple des termes consécutifs d’une suite récurrente
linéaire, Collect. Math. 40, No. 1 (1989), 1-11.

3. J. P. Jones anp P. Kiss, An asymptotic formula concerning Lehmer numbers, to appear.

4. P. Kiss anp F. MATYAs, An asymptotic formula for n, J. Number Theory 31 (1989),
255-259.

5. P. Kiss, Primitive divisors of Lucas numbers, in “Application of Fibonacci Numbers”
(A. N. Philipou et al., Eds.), pp. 29-38, Kluwer, Hingham, MA, 1988.

6. D. H. LEAMER, An extended theory of Lucas functions, Ann. of Math. 31 (1930), 419 448.

7. 8. S. PaLrLal aND S. D. CHOwLaA, On the error terms in some asymptotic formulae in the
theory of numbers, I, J. London Math. Soc. 5 (1930), 95-101.

8. A. WaLFisz, “Weylsche Exponentialsummen in der neuren Zahlen Theorie,” Mathe-
matische Forschungsberichte, Vol. XV, Deutscher Verlag Wissen.. Berlin, 1963.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium



