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Let {a,}_,be an integer sequence defined by the non-degenerate binary linear
recurrence a,= A a,_, + Ba, _,, where ay=0, a, #0, and 4, B are fixed non-zero
integers. It is proved, for a certain constant «, that

6(1 —k)1 12
(L—r)loglaa-—a,\*_ (1)
log[a,,a;, .., a,] logn
which is the generalization of the formula of P.Kiss and F.Matyas. © 199%

Academic Press, Inc.

Let {a,} ., be an integer sequence defined by the binary linear
recurrence

anzAan~l + Ban72s

where a, =0, a, #0, and A, B are fixed non-zero integers. Denote by o, B
the roots of the characteristic polynomial x> — 4x— B. We assume that
|} = | B} and 2/B is not a root of unity.

P. Kiss and F. Matyas [1] showed, subject to the conditions (4, B) =1

and a, =1, that
<6log|a1a2---a,,|)1/2_7[_%0( : ) (1)
log [a,, a5, ..., a, - logn)’

where [a,, a3, .., a,] denotes the least common multiple of the terms
ayy Ay, s Ay
In this paper, we show

THEOREM. Let x =log(A?, B)/2log |a|. Then we have

<6(l——r<)log|a1a2-~~a,, )12 -|—0< I
=7 .
log {ay, as, ... a, log n)
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Remark. The formula (1) follows from our theorem because if
(A, B)=1 then kx=0.

To prove our theorem, we first recall notations and some results about
Lehmer numbers. Let 7, 6 be the complex numbers satisfying

(y+9)’=C, yé=D,

where C, D are coprime non-zero integers. We assume |y|>|d] and 7/ is

not a root of unity. Then the Lehmer numbers L, associated with y, J are
defined by

I _{(V"—(S")/(V—é), for n odd,
"= 8M)/(y2 =82, for n even.

Note that {L,}*_, is an integer sequence. This sequence is introduced by
Lehmer [3] and applied to the primality test of the numbers of type
A27 — 1.

LEMMA 1.

3log |yl , n?
L L= 0(—).
log [ 1> LZ’ ] 12 n-+ lOg n

Proof. Let p be a prime and denote by p*|| L, when p| L, and p**'fL,
for e>1. Let T, be the product of p¢’s with p“||L, and p{L,L,---L
Then we have, for n > 13,

n—1-

_/1—1 1"[ (')} 5d u(n/d)

dln

where u(-) is the Mbius function and 4, is equal to 1 or the greatest prime
divisor of n/(3, n) (see [4, Lemmas 6, 7, 8; 2, Lemma 1]).

To prove (1), P.Kiss and F.Matyas [1] used this expression of T,
essentially when C is a square, and showed the asymptotic formula of our
Lemma | (see [1, Lemma 2, 3]). We can easily see that these arguments
are also true when C is an arbitrary non-zero integer.

LEMMA 2.

O
log | L Ly L,| = gz'y'n +O(nlog n).

Proof. In the light of Baker’s method, we have

11— " >n"c
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where  is an algebraic number whose absolute value is 1 and w is not a
root of unity. The constant ¢ depends only on w (see [2, Lemma 3]). Thus
we have

I <y = 0" < e Iyl”
and
/"'n <L, | < eyl

where ¢, (i=1, 2, 3, 4) are constants which depend only on 7, 6. Using this
estimate, we can prove the lemma (see [1, Lemma 5]).

Proof of the Theorem. Put T= (4% B), c,=T "’a,, A, =A/ﬁ, and
B, = B/T; then
cn=A10n71+Blcn72

holds with ¢, =0 and ¢, =al/ﬁ. So ¢, is written in the form
a; af—pi
ﬁoh “‘ﬂl

with o, =a/ﬁ and f3, =ﬁ/ﬁ. Noting (42, B;) =1, we denote by L, the
Lehmer numbers associated with o, f,. From the definition of L,, we
have

T -HRL fi dd
n_{al n or n odd, 2)

Aa, T"*~ 'L, for n even.

Now we prove
31 2
log [a,, ay, ..., an]:_ngL"nH—O(n—), 3)
v logn
and
loglaa,---a,l|

_ (log | o] logT
T\ 2 4

>n + O(nlog n). (4)
It suffices to show when » is even.
From (2), we have
log[L, Ly, s Ly, ]

<log [ay, a3, ..., G2, ]

<log|a, AT" '|+log [L,, Ly, ... L,,].
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Using Lemma 1, we obtain (3). By Lemma 2
log !alal '“alnl‘
:lOg |a%mAm Tm(m— 1)\ + log ]LILZ . L?_ml

l A 3 b
- 35% (2m)? +m* log T + O(2m log 2m).

Therefore we have (4).
Putting these estimates together, we get

(610g |[11612"'a”| )I ?

log [a,, a5y .. 4,

[6(log la,|/2+log T/4)n® + O(nlogn)]'”
(3 log | «,|/n?) n? + O(n*/log n)

) 12+0< : >
=" T log (4| logn)’

with o, = oc/ﬁ. This completes the proof.
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