Lehmer Numbers and an Asymptotic Formula for π

SHIGEKI AKIYAMA

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-21, Japan

Communicated by H. Zassenhaus

Received November 3, 1989

Let $\{a_n\}_{n=0}^{\infty}$ be an integer sequence defined by the non-degenerate binary linear recurrence $a_n = A$ $a_{n-1} + Ba_{n-2}$, where $a_0 = 0$, $a_1 \neq 0$, and A, B are fixed non-zero integers. It is proved, for a certain constant κ , that

$$\left(\frac{6(1-\kappa)\log|a_1a_2\cdots a_n|}{\log[a_1,a_2,...,a_n]}\right)^{1/2} = \pi + O\left(\frac{1}{\log n}\right),\,$$

which is the generalization of the formula of P. Kiss and F. Mátyás. © 1990 Academic Press, Inc.

Let $\{a_n\}_{n=0}^{\infty}$ be an integer sequence defined by the binary linear recurrence

$$a_n = Aa_{n-1} + Ba_{n-2}$$

where $a_0 = 0$, $a_1 \neq 0$, and A, B are fixed non-zero integers. Denote by α , β the roots of the characteristic polynomial $x^2 - Ax - B$. We assume that $|\alpha| \geq |\beta|$ and α/β is not a root of unity.

P. Kiss and F. Mátyás [1] showed, subject to the conditions (A, B) = 1 and $a_1 = 1$, that

$$\left(\frac{6\log|a_1 a_2 \cdots a_n|}{\log[a_1, a_2, ..., a_n]}\right)^{1/2} = \pi + O\left(\frac{1}{\log n}\right),\tag{1}$$

where $[a_1, a_2, ..., a_n]$ denotes the least common multiple of the terms $a_1, a_2, ..., a_n$.

In this paper, we show

THEOREM. Let $\kappa = \log(A^2, B)/2 \log |\alpha|$. Then we have

$$\left(\frac{6(1-\kappa)\log|a_1a_2\cdots a_n|}{\log[a_1, a_2, ..., a_n]}\right)^{1/2} = \pi + O\left(\frac{1}{\log n}\right).$$

Remark. The formula (1) follows from our theorem because if (A, B) = 1 then $\kappa = 0$.

To prove our theorem, we first recall notations and some results about Lehmer numbers. Let γ , δ be the complex numbers satisfying

$$(\gamma + \delta)^2 = C, \qquad \gamma \delta = D,$$

where C, D are coprime non-zero integers. We assume $|\gamma| \ge |\delta|$ and γ/δ is not a root of unity. Then the Lehmer numbers L_n associated with γ , δ are defined by

$$L_n = \begin{cases} (\gamma^n - \delta^n)/(\gamma - \delta), & \text{for } n \text{ odd,} \\ (\gamma^n - \delta^n)/(\gamma^2 - \delta^2), & \text{for } n \text{ even.} \end{cases}$$

Note that $\{L_n\}_{n=0}^{\infty}$ is an integer sequence. This sequence is introduced by Lehmer [3] and applied to the primality test of the numbers of type $A2^p-1$.

LEMMA 1.

$$\log [L_1, L_2, ..., L_n] = \frac{3 \log |\gamma|}{\pi^2} n^2 + O\left(\frac{n^2}{\log n}\right).$$

Proof. Let p be a prime and denote by $p^e \parallel L_n$ when $p^e \mid L_n$ and $p^{e+1} \not\mid L_n$ for $e \ge 1$. Let T_n be the product of p^e 's with $p^e \parallel L_n$ and $p \not\mid L_1 L_2 \cdots L_{n-1}$. Then we have, for $n \ge 13$,

$$T_n = \lambda_n^{-1} \prod_{d \mid n} (\gamma^d - \delta^d)^{\mu(n/d)},$$

where $\mu(\cdot)$ is the Möbius function and λ_n is equal to 1 or the greatest prime divisor of n/(3, n) (see [4, Lemmas 6, 7, 8; 2, Lemma 1]).

To prove (1), P. Kiss and F. Mátyás [1] used this expression of T_n essentially when C is a square, and showed the asymptotic formula of our Lemma 1 (see [1, Lemma 2, 3]). We can easily see that these arguments are also true when C is an arbitrary non-zero integer.

LEMMA 2.

$$\log |L_1 L_2 \cdots L_n| = \frac{\log |\gamma|}{2} n^2 + O(n \log n).$$

Proof. In the light of Baker's method, we have

$$|1-\omega^n|>n^{-\epsilon}$$

where ω is an algebraic number whose absolute value is 1 and ω is not a root of unity. The constant c depends only on ω (see [2, Lemma 3]). Thus we have

$$|\gamma|^n n^{-c_1} \leq |\gamma^n - \delta^n| \leq c_2 |\gamma|^n$$

and

330

$$|\gamma|^n n^{-c_3} \leqslant |L_n| \leqslant c_4 |\gamma|^n,$$

where c_i (i = 1, 2, 3, 4) are constants which depend only on γ , δ . Using this estimate, we can prove the lemma (see [1, Lemma 5]).

Proof of the Theorem. Put $T = (A^2, B)$, $c_n = T^{-n/2}a_n$, $A_1 = A/\sqrt{T}$, and $B_1 = B/T$; then

$$c_n = A_1 c_{n-1} + B_1 c_{n-2}$$

holds with $c_0 = 0$ and $c_1 = a_1 / \sqrt{T}$. So c_n is written in the form

$$c_n = \frac{a_1}{\sqrt{T}} \frac{\alpha_1^n - \beta_1^n}{\alpha_1 - \beta_1},$$

with $\alpha_1 = \alpha/\sqrt{T}$ and $\beta_1 = \beta/\sqrt{T}$. Noting $(A_1^2, B_1) = 1$, we denote by L_n the Lehmer numbers associated with α_1, β_1 . From the definition of L_n , we have

$$a_n = \begin{cases} a_1 T^{(n-1)/2} L_n & \text{for } n \text{ odd,} \\ A a_1 T^{n/2 - 1} L_n, & \text{for } n \text{ even.} \end{cases}$$
 (2)

Now we prove

$$\log \left[a_1, a_2, ..., a_n \right] = \frac{3 \log |\alpha_1|}{\pi^2} n^2 + O\left(\frac{n^2}{\log n}\right), \tag{3}$$

and

$$\log |a_1 a_2 \cdots a_n|$$

$$= \left(\frac{\log |\alpha_1|}{2} + \frac{\log T}{4}\right) n^2 + O(n \log n). \tag{4}$$

It suffices to show when n is even.

From (2), we have

$$\begin{aligned} \log \left[L_{1}, L_{2}, ..., L_{2m} \right] \\ &\leq \log \left[a_{1}, a_{2}, ..., a_{2m} \right] \\ &\leq \log \left| a_{1} A T^{m-1} \right| + \log \left[L_{1}, L_{2}, ..., L_{2m} \right]. \end{aligned}$$

Using Lemma 1, we obtain (3). By Lemma 2

$$\begin{aligned} \log |a_1 a_2 \cdots a_{2m}| \\ &= \log |a_1^{2m} A^m T^{m(m-1)}| + \log |L_1 L_2 \cdots L_{2m}| \\ &= \frac{\log |\alpha_1|}{2} (2m)^2 + m^2 \log T + O(2m \log 2m). \end{aligned}$$

Therefore we have (4).

Putting these estimates together, we get

$$\left(\frac{6 \log |a_1 a_2 \cdots a_n|}{\log [a_1, a_2, ..., a_n]}\right)^{1/2}$$

$$= \left[\frac{6 (\log |\alpha_1|/2 + \log T/4) n^2 + O(n \log n)}{(3 \log |\alpha_1|/\pi^2) n^2 + O(n^2/\log n)}\right]^{1/2}$$

$$= \pi \left(1 + \frac{\log T}{2 \log |\alpha_1|}\right)^{1/2} + O\left(\frac{1}{\log n}\right),$$

with $\alpha_1 = \alpha/\sqrt{T}$. This completes the proof.

REFERENCES

- P. Kiss and F. Mátyás, An asymptotic formula for π, J. Number Theory 31 (1989), 255-259.
- 2. P. Kiss, Primitive divisors of Lucas numbers, in "Application of Fibonacci Numbers" (A. N. Philipou et al., Eds.), pp. 29–38, Kluwer, Hingham, MA, 1988.
- 3. D. H. LEHMER, An extended theory of Lucas functions, Ann. of Math. 31 (1930), 419-448.
- C. L. STEWART, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, Proc. London Math. Soc. 35 (1977), 425–447.