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MAHLER’S Z-NUMBER AND 3/2 NUMBER
SYSTEMS

SHIGEKI AKIYAMA

ABSTRACT. We improve the results in [1] on the characterization of multiple
points in rational based number system, in connection with Mahler’s Z-number
problem. As a by-product, we show that when p > ¢2, there exists a positive
« such that the fractional part of z(p/q¢)" (n = 0,1,...) stays in a Cantor set
(Theorem 2.5). Hausdorff dimension of the set is positive but tends to zero as
p — oo when q is fixed.

Communicated by Yann Bugeaud

1. Representations in a rational base

Let us review the result in [1]. Let p,q be coprime integers with p > ¢ > 1
and consider a digit set A = {0,1,...,p — 1}. Every positive integer u has a
unique representation:

1 p »? I
U=Uy— + U5 +U2—5 + -+ U
q e e gt

with u; € A. The digits u; are successively determined by taking module p of
both sides in the ring Z, = {z/¢" | z € Z,n > 0}, the localization of Z by q.
Following the convention of decimal expression, we write u = upug_1 ... u1Ug
and identify with the word in A*. The set of words which represent positive
integers is denoted by L,/, C A*. Then the set L,,, is not even context free
since no infinite repetition is allowed but 0°°. However the odometer is given
by an automaton. A positive real number x not greater than a given constant
6 =0(p/q) > 1 has a representation in a form:

x:x,ll—l—x,gi—l—---—i—m,gq—e—i—--- =.X_1T_2...
D P2 plte
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with the property that z_12_5...x_,, € L/, for all positive integers m. This
0(p/q) corresponds to the maximal word W(0) by the notation of [1] and is

explicitly written as:
P — (4Gt ) (qy
o(L) = vt ) (4
(5)-%(57-4)(;

with Go = 0 and G;41 = [(pG; +p —1)/q]. For any real number z, there exists
M > 0 that z(q/p)™ < 6(p/q). This means that we can expand any z > 0 into
r=TMITM—-1.--L0-L-1L_-2...
using the decimal point ‘" in a usual manner. From the property of L/,
there are no eventually periodic expansions. The p/g-integer part (resp. p/g-
fractional part) of z is defined to be xpzpr—1...20. (resp. .x_12_o...). We
put the decimal point to distinguish them with other representations. This
representation is unique but countably many exceptions.
Define (z) = x — |x], the fractional part of z. If p > 2¢ — 1, then there are no
x which admit three different expressions and we have a good characterization
of such exceptional x’s having two p/g-representations:

THEOREM 1.1 ( Akiyama-Frougny-Sakarovitch [1]). Let p > 2q — 1. Then a
positive real number x has two p/q-representations if and only if there exists ng

so that
" ke ko+1
GOV u Bl
q \q 0<c<q—1 p p

holds for all n > ng. The number k. € A is defined by qk. = ¢ (mod p).

Proof. We only review an easy part, the necessity of the condition (1) for the
purpose of this note. It is shown in [1] that the digit-wise difference of eventually
maximal word and eventually minimal word is formally: 0*(—¢)(p — ¢)*° by the
special feature of our representation. Therefore xz has double representations if
and only if x has a suffix in {0, ...,¢—1}", since p—1—(p—¢q) = g—1. Thus there
exists ng that for n > ng we can expand (p/q)"x = cpepr—1---Co-C—1C—3 . ..
with M = M(n) and c_; € {0,...,¢— 1} for j =1,2,.... We have an estimate
C_1C_9 - < g <1
pP—q

Since p/g-integer parts have integer values, this inequality means that the p/g-
fractional part (resp. p/g-integer part) of x coincides with the usual fractional
part (resp. integer part) of xz. Let us consider a function f(z) = ¢(|ap/q] —
(p/q)|x]). By the above claim, if  admits double expressions, then we have

fp/q)"x) = qlerprers—1 - coc—1. — cprepr—1 ... c90.) = ¢ X c_1. = c—1
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Thus for large n, f((p/q)™x) takes values only in {0,1,...,¢ — 1}. Note that f
is a periodic function of period ¢ and the value of f((p/q)"x) is determined by
x (mod q) € R/qZ. Now using p > 2q — 1, it is easy to show

_ qke qlke +1
1o, g -1y = {,( )[
0<c<Lg—1 p p
which shows the necessity. O
The same idea allows us to show

THEOREM 1.2. For an integer k with p — 1 < k(p — q), if a real number x has
k different p/q-representations then there exists ng so that

GGy s e

Ja—(k—2)p—1

holds for all n > ny.

Proof. We proceed in a similar manner as the above proof of Theorem 1.1.
Only thing to note is that = has k different representations if and only if z
has a suffix in {0,...,(k—1)g—(k—2)p—1}*,sincep—1—(k—1)(p—¢q) =
(k—1)g—(k—2)p—1and (p/q)"x = cpcri—1 - .. co.C_1¢—2 . .. for large n satisfies
(k=Vg—(k=2)p—1 _

pP—q B

C_1C_9- - < 1.

O

COROLLARY 1.3. A real number has at most 1+ {%J different p/q-representa-

tions.
Proof. Aninequality 1 < (k—1)g—(k—2)p—1 is necessary to have an aperiodic

expansion of z > 0. O

As far as we computed, there seems no triple points for any p/g-representations.
Perhaps it is reasonable to pose a

CONJECTURE 1.4. There are no positive real x so that

" ke ket 1
¢y 5
q 0<c<L2g—p—1 p p

holds for all n,
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which implies that there are no x with triple expressions when p — 1 < 3(p — q).
For e.g., if p = 4 and ¢ = 3 then the conjecture asserts that there are no positive

x such that §
<x (g) >e 0,1/4) U [3/4,1)

holds for all n > 0. This is also equivalent to the statement that there are no
real z such that ||z(4/3)"|| < 1/4 for all n, where ||y|| is the distance of y from
the nearest integer. Here the left endpoint of [3/4,1) can be neglected. In fact,
(x(4/3)™) = 3/4 occurs only when z is rational and at most once for such a x
by seeing the denominator of x. However we may substitute z by z(4/3)"*! in
such a case. The end points usually do no harm by this trick.

2. A generalization of Mahler’s Z-number

One can show stronger results than the ones in the previous section. Before
stating the result, we begin with some terminologies. Let F' be a finite union
of half open subintervals [a, b) of [0,1) and p(F) be the 1-dimensional Lebesgue
measure of F. We study two sets Z;/[I(F) ={0<zeR|{(z(p/q)") € F} and
Zy1g(F) ={x € R | (x(p/q)") € F}. In fact, our framework is much suitable for

the study of Z;r/q(F) but occasionally we can deduce results on Z,/,(F) as well.

The notorious problem in this context is due to Mahler [4] whether Z;/q([O, 1/2))
is empty or not. Our question is to find a small u(F') such that Z;/q(F) # (). For
developments on the distribution of limit points of (x(p/q)"), the reader should
consult series of papers by Dubickas for e.g. [2, 3]. He also derived a large u(F')
with Zp/q(F) = 0.

Theorem 1.1 implies that if p > 2¢ — 1 then there exists some F with u(F) =
q/p that Z;/q(F) is countably infinite. For e.g., using Theorem 1.1 with p = 3
and ¢ = 2, we see Z;r/z([O, 1/3) U [2/3,1)) is countably infinite. Thus there
exists a real a’s such that ||z(3/2)™|| < 1/3 for all n. As a refinement of Theorem
1.1, we have

THEOREM 2.1. Let p > q > 1 with p > 2q — 1. Then a positive real number x
has two p/q-representations if and only if there exists ng so that

" ke ke -1
GE e 5 @
q \q 0<c<q—1 p p p\p—q
holds for all n > ng. The number k. € A is defined by gk. = ¢ (mod p).
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This Theorem implies that for p > 2¢ — 1, two conditions (1) and (3) are
equivalent, in fact. Further, this implies that there exists a finite union of

intervals F' with u(F) = ggﬁ:;; such that Z;r/q(F) is countably infinite.

Proof. As the right hand side of (3) is narrower than (1), the sufficiency of
the condition (3) is obvious. We only prove the necessity. Firstly we shall show
a weaker statement. The open intervals of (3) are substituted by closed ones.
Here the idea is to generalize the function f(x) to

m

fnl@) = g™ HWJ —pmlz)

with a large integer m(> 2) in the proof of Theorem 1.1. Using the same idea,
this function f,, has period ¢™ and if x is a double point then

fm((p/@)"x) = q¢™(emepr—1...€0C-1...Com. — CrCA—1 - .. C00™.)

m
- gm — m—3j Jj—1. .
= gq xc_l...c_m.fg p" ¢ e
Jj=1

holds for a large n. Our task is to construct concretely the inverse image of f,,.
Take k* = k*(c_1,¢c—2,...,c—m) € {0,1,...,p™ — 1} which satisfies

m

me_jqj_lc,j =q¢™k* (mod p™). (4)

j=1
By using the same proof of Theorem 1.1, we have

z (p™\" E* k41
wE) e U 5

(Cfl7“'70—771)6{01-“7(1_1}7“

for mn > ng where ng is the same as in the proof of Theorem 1.1. Multiplying

g™ 1, we have
x pm)” - {q’”‘lk* "Lk 4 1) {
— = mod ¢" ") € ) . b
q (qm ( ) U pm pm ©)
(c—1yeesCom)
From (4), one see
P ke, + mequjfzc_J =¢" 'k* (mod p™). (6)
j=2
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Without loss of generality, we may assume that c_o...c_,, # (¢ — 1)™"1
Therefore we have an estimate

m o 1 m—1

N pm g e < pr2 Y (1 - (q) ) <pmt—gm Tl
° p

Jj=2

1—q/p

Thus the left hand side of (6) belongs to [0, p”™ —1]NZ. Taking modulo 1 of (5),
we have

G )

Ju-U “+Zcﬁ —, i qj S BT
c_1C_2 C—m j=2 p
Note that

2 m—l
q]

b & g
U | et B S
p

C—m

is contained in the interval

[ m

. —1J2

**+Zq )q L4
P

m—1

pm

Thus we have

m\ " ke ke ~1 m=ly ]
G ) UG S 5ol
a\q “Llp p pp—9 P p—y

This implies that there exists n; so that for any positive €,

G DUl 5 ma]

holds for n > nq. This shows the weaker statement for closed intervals. Consider
end points of the intervals of (3). As we may assume that c_5...c_,, # 0™ ! or
(g —1)™~!, we easily see that such end points can not be attained in the above
proof. O

REMARK 2.2. In the above proof, if g2 > p > 2¢ — 1, then

U-U[5rxes

C—m

m

7% q
+Zc,j~ ot

Jj=2

m—1

D pm
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is exactly equal to

ke ke ~— R
E By,
p’p = p"
To see this, we note
k _
m k—1 i q—l Z q—l qm 1
m k+ pm jit+2 m j+2 pm :

j=2
The left inequality follows from ¢? > p and the right from p > 2¢ — 1.
Following the same proof, we have

THEOREM 2.3. For an integer k with p — 1 < k(p — q), if a real number x has
k different p/q-representations then there exists ng so that

GG e Y, s =l v

k—1)q

holds for all n > ny.
It is remarkable that if p > ¢?, the result becomes better.

THEOREM 2.4. Let p > q > 1 with p > ¢>. Then for any positive €, there exists
a finite union of intervals F with u(F) < € and a positive real number x has two
p/q-representations if and only if there exists ng so that

GO

Thus for p > ¢ there exists a finite union of intervals F of an arbitrary small
size pu(F') such that Z;'/q(F) is countably infinite. In the following, we shall
prove a stronger result.

A set X = X(p/q) is given as a non empty compact set in R satisfying an
iterated function system:

holds for all n > ny.

It is approximated by a decreasing sequence of sets defined by X, =
0,(¢ —1)/(p — ¢)] and Xg+1 = U?;é(qu +j)/p for k = 0,1,.... We see
X = MpX and all end points of X are in X. As p > ¢%, u(X) = 0 follows
from the definition. The pieces (¢X + j)/p do not overlap, this system gives a
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Cantor set in [0, (¢—1)/(p—¢q)] of Hausdorff dimension log ¢/ log(p/q) < 1 which
is positive but tends to zero as p — oo and g is fixed.

THEOREM 2.5. Let p > q > 1 with p > ¢*>. Then a positive x has two p/q-
representations if and only if there exists ng that

HORBE

c=0
forn > ng.

As Xy (k=0,1,...) are finite unions of intervals, Theorem 2.4 follows im-
mediately from Theorem 2.5.

Proof. Since X(p/q) C [0,(q — 1)/(p — q)], the sufficiency of (10) follows from
Theorem 2.1. We show the necessity. It is easily seen that

X(p/q) = { > cﬂ-pf;

=0

c_; € [07(]—1]02}.

We proceed in the same manner as the proof of Theorem 2.1. If x admits two
p/q-representations, then there exists ng such that (7) holds for mn > ng. Each
element u of

m—1

ke N~ @7 ke -~ @77 4
Y ey ) eyt
A S - S O
has distance at most ¢™~1/p™ from the compact set (X (p/q) + k¢)/p. As we
can choose m large, the distance of the point (z/q(p/q)™) and the compact set

Ug;é (X(p/q) + kc)/p is zero, which proves the theorem. O

Denominators of end points of X}, are divisors of (p(p — ¢))**! which are
coprime to g. Thus, as n increases, (x/q(p/q)™) can visit the end points at most
once only when x is rational.

Note that if  is a double point, then there exists ng such that (z(p/q)") =
.Cc_1C_g... with c_; € [0,¢q — 1] NZ for n > ng. This already implies that
(x(p/q@)™) € X(p/q). We observe that (10) is stronger than this inclusion. In-

deed, (10) implies
p\" aX | qke
x| = mod ¢q) € < + >
<Q> ( ) U p p

(&

and taking modulo 1, we get (z(p/q)"™) € X(p/q) again.
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At any rate, it is unexpected that when p > ¢? there exists x > 0 that the
closure of (x(p/q)™) (n = 0,1,...) is contained in the Cantor set X(p/q), a
compact set of measure zero. We do not know whether the closure of K =
{{z(p/q)™)| n = 0,1,...} could be of Hausdorff dimension 0. In the other
direction, Vijayaraghavan [5] showed that the number of accumulation points of
K is infinite but it is not known whether the closure of K could be countable.
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