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1. Introduction

Analytic continuation of Euler-Zagier’s multiple zeta function of two variables
was first established by F.V.Atkinson [3] with an application to the mean value
problem of the Riemann zeta function. We can find recent developments in [8],[7]
and [5]. From an analytic point of view, these results suggest broad applications
of multiple zeta functions. In [9] and [10], D.Zagier pointed out an interesting
interplay between positive integer values and other areas of mathematics, which in-
clude knot theory and mathematical physics. Many works had been done according
to his motivation but here we restrict our attention to the analytic continuation.
T.Arakawa and M.Kaneko [2] showed an analytic continuation with respect to the
last variable. To speak about the analytic continuation with respect to all variables,
we have to refer to J. Zhao [11] and S.Akiyama, S.Egami and Y.Tanigawa [1]. In
[11], an analytic continuation and the residue calculation were done by using the
theory of generalized functions in the sense of I.M. Gel’fand and G.E. Shilov. In [1],
they gave an analytic continuation by means of a simple application of the Euler-
Maclaurin formula. The advantage of this method is that it gives the complete
location of singularities. This work also includes some study on the values at non
positive integers.

In this paper we consider a more general situation, which seems important for
number theory, in light of the method of [1]. We shall give an analytic continua-
tion of multiple Hurwitz zeta functions (Theorem 1) and also multiple L functions
(Theorem 2) defined below. In special cases, we can completely describe the whole
set of singularities, by using a property of zeros of Bernoulli polynomials (Lemma
4) and a non vanishing result on a certain character sum (Lemma 2).

We explain notations used in this paper. The rational integers is denoted by Z,
the rational numbers by Q, the complex numbers by C and the positive integers
by N. We write Z≤` for the integers not greater than `. Let χi (i = 1, 2, . . . , k)
be Dirichlet characters of the same conductor q ≥ 2 and βi (i = 1, 2, · · · , q) be
real numbers in the half open interval [0, 1). The principal character is denoted
by χ0. Then multiple Hurwitz zeta function and multiple L function are defined
respectively by:

ζk(s1, . . . , sk | β1, . . . , βk) =
∑

0<n1<···<nk

1
(n1 + β1)s1(n2 + β2)s2 . . . (nk + βk)sk

(1)

and

Lk(s1, . . . , sk | χ1, . . . , χk) =
∑

0<n1<···<nk

χ1(n1)
ns1

1

χ2(n2)
ns2

2

. . .
χk(nk)

nsk

k

,(2)

where ni ∈ N (i = 1, . . . , k). If <(si) ≥ 1 (i = 1, 2, . . . , k − 1) and <(sk) > 1,
then these series are absolutely convergent and define holomorphic functions of k
complex variables in this region. In the sequel we write them by ζk(s | β) and
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Lk(s | χ), for abbreviation. The Hurwitz zeta function ζ(s, α) in the usual sense
for α ∈ (0, 1) is written as

ζ(s, α) =
∞∑

n=0

1
(n + α)s

=
1
αs

+ ζ1(s | α),

by the above notation.
We shall state the first result. Note that βj − βj+1 = 1/2 for some j implies

βj−1 − βj 6= 1/2, since βj ∈ [0, 1).

Theorem 1. The multiple Hurwitz zeta function ζk(s | β) is meromorphically con-
tinued to Ck and has possible singularities on:

sk = 1,

j∑

i=1

sk−i+1 ∈ Z≤j (j = 2, 3, . . . , k).

Let us assume furthermore that all βi (i = 1, . . . , k) are rational. If βk−1 − βk is
not 0 nor 1/2, then the above set coincides with the set of whole singularities. If
βk−1 − βk = 1/2 then

sk = 1
sk−1 + sk = 2, 0,−2,−4,−6, . . .
j∑

i=1

sk−i+1 ∈ Z≤j for j = 3, 4, . . . , k

forms the set of whole singularities. If βk−1 − βk = 0 then

sk = 1
sk−1 + sk = 2, 1, 0,−2,−4,−6, . . .
j∑

i=1

sk−i+1 ∈ Z≤j for j = 3, 4, . . . , k

forms the set of whole singularities.

For the simplicity, we only concerned with special cases and determined the
whole set of singularities in Theorem 1. The reader can easily handle the case
when all βi − βi+1 (i = 1, . . . , k − 1) are not necessary rational and fixed. So we
have enough information on the location of singularities of multiple Hurwitz zeta
functions. For the case of multiple L functions, our knowledge is rather restricted.

Theorem 2. The multiple L-function Lk(s |χ) is meromorphically continued to Ck

and has possible singularities on:

sk = 1,

j∑

i=1

sk−i+1 ∈ Z≤j (j = 2, 3, . . . , k).

Especially for the case k = 2, we can state the location of singularities in detail
as follows:

Corollary 1. We have a meromorphic continuation of L2(s | χ) to C2. L2(s | χ)
is holomorphic in





{(s1, s2) ∈ C2 | s1 + s2 6∈ Z≤2, s2 6= 1} if χ1 = χ0, χ2 = χ0

{(s1, s2) ∈ C2 | s1 + s2 6∈ Z≤1, s2 6= 1} if χ1 6= χ0, χ2 = χ0

{(s1, s2) ∈ C2 | s1 + s2 6∈ Z≤1 } if χ2 6= χ0,

(3)
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where the excluded sets are possible singularities. Suppose that χ1 and χ2 are prim-
itive characters with χ1χ2 6= χ0. Then L2(s | χ) is a holomorphic function in{

{(s1, s2) ∈ C2 | s1 + s2 6= 0,−2,−4,−6,−8, . . . } if χ1χ2(−1) = 1,
{(s1, s2) ∈ C2 | s1 + s2 6= 1,−1,−3,−5,−7, . . . } if χ1χ2(−1) = −1,

(4)

where the excluded set forms the whole set of singularities.

Unfortunately the authors could not get the complete description of singularities
of multiple L function for k ≥ 3.

2. Preliminaries

Let N1, N2 ∈ N and η be a real number. Suppose that a function f(x) is l + 1
times continuously differentiable. By using Stieltjes integral expression, we see

∑

N1+η<n≤N2

f(n) =
∫ N2

N1+η

f(x)d[x]

=
∫ N2

N1+η

f(x)dx− [f(x)B̃1(x)]N2
N1+η +

∫ N2

N1+η

f
′
(x)B̃1(x)dx

where B̃j(x) = Bj(x − [x]) is the j-th periodic Bernoulli polynomial. Here j-th
Bernoulli polynomial Bj(x) is defined by

text

et − 1
=

∞∑

j=0

Bj(x)
j!

tj

and [x] is the largest integer not exceeding x. Define the Bernoulli number Br by
the value Br = Br(0). Repeating integration by parts,

∑

N1+η<n≤N2

f(n) =
∫ N2

N1+η

f(x)dx +
1
2
f(N2) + f(N1 + η)B̃1(η)

+
l∑

r=1

(−1)r+1

(r + 1)!

(
Br+1f

(r)(N2)− f (r)(N1 + η)B̃r+1(η)
)

(5)

− (−1)l+1

(l + 1)!

∫ N2

N1+η

f (l+1)(x)B̃l+1(x)dx.

When η = 0, the formula (5) is nothing but the standard Euler-Maclaurin summa-
tion formula. This slightly modified summation formula by a parameter η works
quite fine in studying our series (1) and (2).

Lemma 1. Letting

Φl(s |N1 + η, α) =
(s)l+1

(l + 1)!

∫ ∞

N1+η

B̃l+1(x)
(x + α)s+l+1

dx

and

(s)r =





s(s + 1)(s + 2) . . . (s + r − 1) if r ≥ 1
1 if r = 0
(s− 1)−1 if r = −1

,

it follows that

∑

N1+η<n

1
(n + α)s

=
l∑

r=−1

B̃r+1(η)
(r + 1)!

(s)r

(N1 + α + η)s+r
− Φl(s | N1 + η, α)
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with

Φl(s | N1 + η, α) ¿ N
−(<s+l+1)
1 .

Proof. Put f(x) = (x + α)−s. Then we have f (r)(x) = (−1)r(s)r(x + α)−s−r. So
from (5),

N2∑

N1+η<n

1
(n + α)s

=
[

1
1− s

1
(x + α)s−1

]N2

N1+η

+
1
2

1
(N2 + α)s

+
B̃1(η)

(N1 + η + α)s

−
l∑

r=1

(s)r

(r + 1)!

(
Br+1

(N2 + α)s+r
− B̃r+1(η)

(N1 + η + α)s+r

)

− 1
(l + 1)!

∫ N2

N1+η

B̃l+1(x)
(s)l+1

(x + α)s+l+1
dx.

When <s > 1, we have

∑

N1+η<n

1
(n + α)s

=
1

s− 1
1

(N1 + α + η)s−1
+

B̃1(η)
(N1 + η + α)s

+
l∑

r=1

B̃r+1(η)
(r + 1)!

(s)r

(N1 + α + η)s+r
− Φl(s | N1 + η, α)

as N2 → ∞. When <s ≤ 1, if we take a sufficiently large l, the integral in the
last term Φl(s | N1 + η, α) is absolutely convergent. Thus this formula gives an
analytic continuation of the series of the left hand side. Performing integration
by parts once more and comparing two expressions, it can be easily seen that
Φl(s | N1 + η, α) ¿ N

−(<s+l+1)
1 .

Let Aχ1,χ2(j) be a sum

q−1∑
a1=1

q−1∑
a2=1

χ1(a1)χ2(a2)B̃j(
a1 − a2

q
).

Lemma 2. Suppose χ1 and χ2 are primitive characters modulo q with χ1χ2 6= χ0.
Then we have: for 1 ≤ j

Aχ1,χ2(j) =

{
−2 j!

(2πi)j τ(χ1)τ(χ2)L(j, χ1χ2) if (−1)jχ1χ2(−1) = 1,

0 if (−1)jχ1χ2(−1) = −1,

where τ(χ) is the Gauss sum defined by τ(χ) =
∑q−1

u=0 χ(u)e2πiu/q.

Proof. Recall the Fourier expansion of Bernoulli polynomial:

B̃j(y) = −j! lim
M→∞

M∑

n=−M
n6=0

e2πiny

(2πin)j
(6)

for 1 ≤ j, 0 ≤ y < 1 except (j, y) = (1, 0). First suppose j ≥ 2, then the right hand
side of (6) is absolutely convergent. Thus it follows from (6) that

Aχ1,χ2(j) =
q−1∑
a1=1

q−1∑
a2=1

χ1(a1)χ2(a2)


−j!

∞∑
n=−∞

n 6=0

exp[2πina1−a2
q ]

(2πin)j


 .
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Since
q−1∑
u=0

χ(u)e2πinu/q = χ̄(n)τ(χ)

for a primitive character χ, we have

Aχ1,χ2(j) = −j!
∞∑

n6=0
n=−∞

χ̄1(n)χ̄2(−n)τ(χ1)τ(χ2)
(2πin)j

,

from which the assertion follows immediately by the relation τ(χ) = χ(−1)τ(χ).
Next assume that j = 1. Dividing Aχ1,χ2(1) into

Aχ1,χ2(1) =
∑′

χ1(a1)χ2(a2)B̃1

(
a1 − a2

q

)
+

q−1∑
a1=1

χ1χ2(a1)B1(7)

where
∑′ taken over all the terms 1 ≤ a1, a2 ≤ q − 1 with a1 6= a2. The second

sum in (7) is equal to 0 by the assumption. By using (6), the first sum is

∑′
χ1(a1)χ2(a2)B̃1

(
a1 − a2

q

)

=
∑′

χ1(a1)χ2(a2) lim
M→∞


−

M∑

n=−M
n6=0

exp[2πin(a1 − a2)/q]
2πin




= − lim
M→∞

M∑

n=−M
n 6=0

∑q−1
a1=1

∑q−1
a2=1 χ1(a1)χ2(a2) exp[2πina1−a2

q ]−∑q−1
a1=1 χ1χ2(a1)

2πin

Using
∑q−1

a1=1 χ1χ2(a1) = 0 again, we have

∑′
χ1(a1)χ2(a2)B̃1

(
a1 − a2

q

)
= − 1

2πi
lim

M→∞

M∑

n=−M
n6=0

χ̄1(n)χ̄2(−n)τ(χ1)τ(χ2)
n

.

Hence we get the result.

We recall the classical theorem of von Staudt & Clausen.

Lemma 3.

B2n +
∑

p−1 | 2n

1
p

is an integer.

Here the summation is taken over all prime p such that p− 1 divides 2n.

Extending the former results of D.H.Lehmer and K.Inkeri, the distribution of
zeros of Bernoulli polynomials is extensively studied in [4], where one can find a lot
of references. On rational zeros, we quote here the result of [6].

Lemma 4. Rational zeros of Bernoulli polynomial Bn(x) must be 0, 1/2 or 1.
These zeros occur when and only when in the following cases:

{
Bn(0) = Bn(1) = 0 n is odd n ≥ 3
Bn(1/2) = 0 n is odd n ≥ 1.

(8)

We shall give its proof, for the convenience of the reader.
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Proof. First we shall show that if Bn(γ) = 0 with γ ∈ Q then 2γ ∈ Z. The Bernoulli
polynomial is explicitly written as

Bn(x) =
n∑

k=0

(
n

k

)
Bkxn−k.

Let γ = P/Q with P, Q ∈ Z and P, Q are coprime. Then we have

−Pn

Q
= nB1P

n−1 +
n∑

k=2

(
n

k

)
BkPn−kQk−1.

Assume that there exist a prime factor q ≥ 3 of Q. Then the right hand side is q-
integral. Indeed, we see that B1 = −1/2 and qBk is q-integral since the denominator
of Bk is always square free, which is an easy consequence of Lemma 3. But the left
hand side is not q-integral, we get a contradiction. This shows that Q must be a
power of 2. Let Q = 2m with a non negative integer m. Then we have

− Pn

2m−1
= −nPn−1 +

n∑

k=2

(
n

k

)
BkPn−k2m(k−1)+1.

If m ≥ 2 then we get a similar contradiction. Thus Q must divide 2, we see 2γ ∈ Z.
Now our task is to study that values of Bernoulli polynomials at half integers. Since
B0(x) = 1 and B1(x) = x − 1/2, the assertion is obvious if n < 2. Assume that
n ≥ 2 and even. Then by Lemma 3, the denominator of Bn is divisible by 3.
Recalling the relation

Bn(x + 1)−Bn(x) = nxn−1,(9)

we have for any integer m

Bn(m) ≡ Bn (mod Z).

This shows Bn(m) 6= 0. The relation

Bn(1/2) = (21−n − 1)Bn(10)

implies that

Bn(1/2) 6= 0(11)

for n ≥ 2 and even. We see that Bn(1/2) is not 3 integral from Lemma 3 and the
relation (10). Combining (9), (11), we have for any integer m and any even integer
n ≥ 2

Bn(1/2 + m) 6= 0.

It is easy to show the assertion for the remaining case when n ≥ 2 is odd, by
using (9) and (10).

3. Analytic continuation of multiple Hurwitz zeta functions

This section is devoted to the proof of Theorem 1. First we treat the double
Hurwitz zeta function. By Lemma 1, we see

∑

n1+(β1−β2)<n2

1
(n2 + β2)s2

=

l∑
r=−1

B̃r+1(β1 − β2)
(r + 1)!

(s2)r

(n1 + β1)s2+r
− Φl(s2 | n1 + β1 − β2, β2)..(12)
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Suppose first that β1 ≥ β2. Then the sum
∑

n1+β1−β2<n2
means

∑
n1<n2

, so it
follows from (12) that

ζ2(s | β) =
∞∑

n1=1

1
(n1 + β1)s1

∑
n1<n2

1
(n2 + β2)s2

=
∞∑

n1=1

1
(n1 + β1)s1

∑

n1+(β1−β2)<n2

1
(n2 + β2)s2

=
∞∑

n1=1

1
(n1 + β1)s1

×
{

l∑
r=−1

B̃r+1(β1 − β2)
(r + 1)!

(s2)r

(n1 + β1)s2+r
− Φl(s2 | n1 + β1 − β2, β2)

}
.

Suppose that β1 < β2. We consider

ζ2(s | β) =
∞∑

n1=1

1
(n1 + β1)s1





−1
(n1 + β2)s2

+
∑

n1≤n2



 .(13)

Noting that the sum
∑

n1+β1−β2<n2
means

∑
n1≤n2

, we apply (12) to the second
term in the braces. For the first term in the braces, we use the binomial expansion:

1
(n1 + β2)s2

=
1

(n1 + β1)s2

(
v∑

m=0

(−1)m(s2)m

m!

(
β2 − β1

n1 + β1

)m

+ Rv+1

)
(14)

with Rv+1 ¿ nv+1
1 . By applying (12) and (14) to (13), we have

ζ2(s | β) =
∞∑

n1=1

1
(n1 + β1)s1

{
1

s2 − 1
1

(n1 + β1)s2−1

+
l∑

r=0

(
B̃r+1(β1 − β2)

(r + 1)!
− (β1 − β2)r

r!

)
(s2)r

(n1 + β1)s2+r

−Φl(s2 | n1 + β1 − β2, β2)− Rl+1

(n1 + β1)s2

}
.

Recalling the relation (9) and combining the cases β1 ≤ β2 and β1 > β2, we have

ζ2(s | β) =
1

s2 − 1
ζ1(s1 + s2 − 1 | β1)

+
l∑

r=0

Br+1(β1 − β2)
(r + 1)!

(s2)rζ1(s1 + s2 + r | β1)(15)

−
∞∑

n1=1

Φ∗l (s2|n1 + β1 − β2, β2)
(n1 + β1)s1

where

Φ∗l (s2|n1 + β1 − β2, β2) =

{
Φl(s2|n1 + β1 − β2, β2) if β1 ≥ β2

Φl(s2|n1 + β1 − β2, β2) + Rl+1
(n1+β1)s2 if β1 < β2

The right hand side in (15) has meromorphic continuation except the last term. The
last summation is absolutely convergent, and hence holomorphic, in <(s1+s2+l) >
0. Thus we now have a meromorphic continuation to <(s1 + s2 + l) > 0. Since we
can choose arbitrary large l, we get a meromorphic continuation of ζ2(s | β) to C2,
holomorphic in
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{
(s1, s2) ∈ C2 | s2 6= 1, s1 + s2 6= 2, 1, 0,−1,−2,−3, . . .

}
.

The exceptions in this set are the possible singularities occurring in (s2− 1)−1 and

Br+1(β1 − β2)
(r + 1)!

(s2)rζ1(s1 + s2 + r | β1).(16)

Whether they are ‘real singularity’ or not depends on the choice of parameters
βi (i = 1, 2). For the case of multiple Hurwitz zeta functions with k variables,

ζk(s1, . . . , sk | β1, . . . , βk) =
∞∑

n1=1

1
(n1 + β1)s1

∑
n1<n2

1
(n2 + β2)s2

. . .

· · ·
∑

nk−2<nk−1

1
(nk−1 + βk−1)sk−1

{
1

sk − 1
1

(nk−1 + βk−1)sk−1

+
l∑

r=0

Br+1(βk−1 − βk)
(r + 1)!

(sk)r

(nk−1 + βk−1)sk+r
− Φ∗l (sk | nk−1 + βk−1 − βk, βk)

}

=
1

sk − 1
ζk−1(s1, . . . , sk−2, sk−1 + sk − 1 | β1, . . . , βk−1)

+
l∑

r=0

Br+1(βk−1 − βk)
(r + 1)!

(sk)rζk−1(s1, . . . , sk−2, sk−1 + sk + r | β1, . . . , βk−1)

−
∞∑

0<n1<n2<···<nk−1

Φ∗l (sk | nk−1 + βk−1 − βk, βk)
(n1 + β1)s1 . . . (nk−1 + βk−1)sk−1

.

Since

∑
0<n1<···<nk−1

Φ∗l (sk | nk−1 + βk−1 − βk, βk)
(n1 + β1)s1(n2 + β2)s2 . . . (nk−1 + βk−1)sk−1

¿
∑
nk−1

n
−l−<(sk)+k−3
k−1

nL
k−1

with L = <(sk−1) +
∑

1≤j≤k−2,<(si)≤0 <(si), the last summation is convergent
absolutely in

l − k + 2 + <(sk−1) + <(sk) +
∑

1≤j≤k−2
<(si)≤0

<(si) > 0.

Since l can be taken arbitrarily large, we get an analytic continuation of ζk(s | β)
to Ck. Now we study the set of singularities more precisely. The ‘singular part’ of
ζ2(s | β) is

ζ1(s1 + s2 − 1 | β1)
s2 − 1

+
∞∑

r=0

(s2)r

s1 + s2 + r − 1
Br+1(β1 − β2)

(r + 1)!
..

Note that this sum is by no means convergent and just indicates local singularities.
From this expression we see

s2 = 1, s1 + s2 ∈ {2, 1, 0,−1,−2,−3,−4, . . . }
are possible singularities and the second assertion of the Theorem 1 for k = 2 is now
clear with the help of Lemma 4. We wish to determine the whole singularities when
all βi (i = 1, . . . , k) are rational numbers by an induction on k. Let us consider the

8



case of k variables,

ζk(s | β) =
l∑

r=−1

Br+1(βk−1 − βk)
(r + 1)!

(sk)rζk−1(s1, . . . , sk−2, sk−1 + sk + r | β1, . . . βk−1)

−
∑

0<n1<···<nk−1

Φ∗l (sk | nk−1 + βk−1 − βk, βk)
(n1 + β1)s1 . . . (nk−1 + βk−1)sk−1

.

We shall only prove the case when βk−1 − βk = 0. Other cases are left to the
reader. By the induction hypothesis and Lemma 4 the singularities lie on, at least,
for r = −1, 0, 1, 3, 5, 7, . . . ,

sk = 1, sk−1 + sk + r = 1,

sk−2 + sk−1 + sk + r = 2, 0,−2,−4,−6, . . .

and

sk−j + sk−j+1 + · · ·+ sk + r ∈ Z≤j , for j ≥ 3,

for any three cases; βk−2 − βk−1 = 0, 1/2, and otherwise.
Thus

sk = 1, sk−1 + sk = 2, 1, 0,−2,−4,−6, . . .

and

sk−j+1 + sk−j+2 + · · ·+ sk ∈ Z≤j , for j ≥ 3

are the possible singularities, as desired. Note that the singularities of the form

sk−2 + sk−1 + sk + r = 1,−1,−3,−5, . . .

may appear. However, these singularities don’t affect our description. Next we will
show that they are the ’real’ singularities. For example, the singularities of the form
sk−2 + sk−1 + sk = η occurs in several ways for a fixed η. So our task is to show
that no singularities defined by one of above equations will identically vanish in the
summation process. This can be shown by a small trick of replacing variables:

s1 = u1, . . . , sk−2 = uk−2, sk−1 + sk = uk−1, sk = uk

In fact, we see that the singularities of ζk(u1, . . . , uk−2, uk−1 − uk, uk | β1, . . . , βk)
appears in

l∑
r=−1

Br(βk−1 − βk)
(r + 1)!

(uk)rζk−1(u1, . . . , uk−2, uk−1 + r | β1, . . . βk−1).

By this expression we see that the singularities of ζk−1(u1, . . . , uk−1+r |β1, . . . βk−1)
are summed with functions of uk of different degree. Thus these singularities, as
weighted sum by another variable uk, will not vanish identically. This argument
seems to be an advantage of [1], which clarify the exact location of singularities.
The Theorem is proved by the induction.

4. Analytic continuation of multiple L-functions

Proof of Theorem 2. When <si > 1 for i = 1, 2, . . . , k, the series is absolutely
convergent. Rearranging the terms,
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∑
n1<···<nk

χ1(n1)
ns1

1

. . .
χk(nk)

nsk

k

=

1
qs1+···+sk

q−1∑
a1=1

q−1∑
a2=1

· · ·
q−1∑

ak=1

χ1(a1)χ2(a2) . . . χk(ak)

×




∞∑
m1=0

1
(m1 + a1

q )s1

∑

m1+
a1−a2

q <m2

1
(m2 + a2

q )s2
. . .

· · ·
∑

mk−2+
ak−2−ak−1

q <mk−1

1
(mk−1 + ak−1

q )sk−1

∑

mk−1+
ak−1−ak

q <mk

1
(mk + ak

q )sk


 .

By this expression, it suffices to show that the series in the last brace has the
desirable property. When ai− ai+1 ≥ 0 holds for i = 1, . . . , k− 1, this is clear form
Theorem 1, since this series is just a multiple Hurwitz zeta function. Proceeding
along the same line with the proof of Theorem 1, other cases are also easily deduced
by recursive applications of Lemma 1. Since there are no need to use binomial
expansions, this case is easier than before.

Proof of Corollary 1. Considering the case k = 2 in Theorem 2, we see

L2(s | χ) =
1
q

∑q−1
a2=1 χ2(a2)
s2 − 1

L(s1 + s2 − 1, χ1) +
1

qs1+s2

q−1∑
a1=1

q−1∑
a2=1

χ1(a1)χ2(a2)

×
{

l∑
r=0

B̃r+1(a1−a2
q )

(r + 1)!
(s2)rζ(s1 + s2 + r,

a1

q
) −

∞∑
m1=0

Φl(s2 |m1 + a1−a2
q , a2

q )

(m1 + a1
q )s1

}
.

We have a meromorphic continuation of L2(s | χ) to C2, which is holomorphic in
the domain (3). Note that the singularities occur in

∑q−1
a2=1 χ2(a2)
s2 − 1

L(s1 + s2 − 1, χ1)

and
q∑

a1=1

q∑
a2=1

χ1(a1)χ2(a2)
B̃r+1(a1−a2

q )

(r + 1)!
(s2)rζ(s1 + s2 + r,

a1

q
).

If χ2 is not principal then the first term vanishes and we see the ‘singular part’ is
∞∑

r=0

Aχ1,χ2(r + 1)
(r + 1)!

(s2)r

s1 + s2 + r − 1
.

Thus we get the result by using Lemma 2 and the fact:

L(n, χ) 6= 0

for n ≥ 1 and a non principal character χ.

As we stated in the introduction, we do not have a satisfactory answer to the
problem of describing whole sigularities of multiple L functions in the case k ≥ 3,
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at present. For example when k = 3, what we have to show is the non vanishing of
the sum:

q−1∑
a1=1

q−1∑
a2=1

q−1∑
a3=1

χ1(a1)χ2(a2)χ3(a3)B̃r1+1

(
a1 − a2

q

)
B̃r2+1

(
a2 − a3

q

)
,

apart from trivial cases.
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