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AT NON-POSITIVE INTEGERS

SHIGEKI AKIYAMA, SHIGEKI EGAMI AND YOSHIO TANIGAWA

Abstract. Analytic continuation of the multiple zeta-function is es-
tablished by a simple application of the Euler-Maclaurin summation for-
mula. Multiple zeta values at non-positive integers are defined and their
properties are investigated.

1. Introduction

The multiple zeta values due to D. Zagier are defined by

ζk(s1, s2, . . . , sk) =
∑

0<n1<n2<...<nk

1

ns1
1 ns2

2 . . . nsk
k

with positive integers si (i = 1, 2, . . . , k) and sk ≥ 2. These values have a
certain connection with topology and physics, and algebraic relations among
them are extensively studied (see [18], [19], [6], [7] and [14]). Recently,
Y. Ohno developed a unified algebraic relation in [16]. It is also interesting
to consider it for complex variables si.

In this paper, we treat analytic continuation of ζk(s1, s2, . . . , sk). An-
alytic continuation of ζ2(s1, s2) was proved by F.V. Atkinson [5] with ap-
plications to the study of the asymptotic behavior of the ‘mean values’ of
zeta-functions. See also Y. Motohashi [15] and M. Katsurada & K. Mat-
sumoto [13]. In [4], T. Arakawa & M. Kaneko used analytic continuation of
ζk(s1, s2, . . . , sk) as a function of one variable sk when s1, s2, . . . , sk−1 are
positive integers, and discussed the relation among generalized Bernoulli
numbers. On the other hand, S. Egami discussed the relationship among
various multiple zeta-functions introduced by E.W. Barnes, T. Shintani and
D. Zagier. (See [9] and [10].)

However, for a general k, we cannot find the proof of analytic continuation
of ζk(s1, s2, . . . , sk) as a function of k variables in literature (but see the
comment of Zagier [18, p. 509, lines 14–19]). We shall show that the multiple
zeta-function can be continued analytically to Ck and discuss interesting
properties of multiple zeta values at non-positive integers.
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The authors wish to express their gratitude to the referee for valuable
comments on the earlier version of the present paper. The third author also
thanks Professor Aleksandar Ivić for giving him useful comments.
Remark 1. After submitting the first version of our paper, we found a
recent work of J. Zhao [20] treating analytic continuation of multiple zeta-
function. This fact was also pointed out by the referee. With the help of the
theory of generalized function in the sense of I.M. Gel’fand and G.E. Shilov,
he gave their possible singularities as well as the residues. However our
method is apparently simple and reveals the exact location of singularities,
which seems to be an advantage.

2. Analytic continuation

Let l and m be positive integers. Define an entire function:

φl(m, s) =
m∑

n=1

1

ns
−

{
m1−s − 1

1− s
+

1

2ms
−

l∑
q=1

(s)qaq

ms+q
+ ζ(s)− 1

s− 1

}
(1)

with (s)n = s(s + 1) · · · (s + n − 1) and aq = Bq+1/(q + 1)!. Here Bq are
Bernoulli numbers defined by z/(ez−1) =

∑∞
q=0 Bqz

q/q! and ζ(s) is the Rie-
mann zeta-function. By using the Euler-Maclaurin summation formula, we
have φl(m, s) = O(|(s)l+1|m−<(s)−l−1) when s is a complex number. Consid-
ering s as a complex variable and m →∞, we get an analytic continuation
of ζ(s) in <(s + l + 1) > 0. Note that (1) is also valid when s → 1, if we
replace (m1−s − 1)/(1− s) by its limit log m.

This is one of the oldest way of the analytic continuation of the Riemann
zeta-function, which provides us with a method of numerical calculations
in the critical strip 0 < <s < 1. (c.f. [8], [12]). It does not give us the
celebrated functional equation of ζ(s) directly, but it is possible to derive it
by more precise observations (see Chapter 2 of [17]). Hereafter we will use
(1) in the form:

∞∑
n=m+1

1

ns
= −φl(m, s) +

m1−s

s− 1
− 1

2ms
+

l∑
q=1

(s)qaq

ms+q
,(2)

for <(s) > 1. Consider the multiple zeta-function in two variables:

ζ2(s1, s2) =
∑

0<n1<n2

1

ns1
1 ns2

2
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with <si > 1 (i = 1, 2). By (2),

ζ2(s1, s2) =
∞∑

n1=1

1

ns1
1

∞∑
n2=n1+1

1

ns2
2

=
∞∑

n1=1

1

ns1
1

{
−φl(n1, s2) +

n1−s2
1

s2 − 1
− 1

2ns2
1

+
l∑

q=1

(s2)qaq

ns2+q
1

}

=
ζ(s1 + s2 − 1)

s2 − 1
− ζ(s1 + s2)

2

+
l∑

q=1

(s2)qaqζ(s1 + s2 + q)−
∞∑

n1=1

φl(n1, s2)

ns1
1

(3)

holds for <(si) > 1 (i = 1, 2). The terms on the right hand side have
meromorphic continuations except the last one. The last sum is absolutely
convergent, and hence holomorphic, in <(s1+s2+ l) > 0. Thus we now have
a meromorphic continuation of ζ2(s1, s2) to <(s1 + s2 + l) > 0. Since we can
choose arbitrary large l, we get a meromorphic continuation of ζ2(s1, s2) to
C2, which is holomorphic in

{
(s1, s2) ∈ C2 | s2 6= 1, s1 + s2 6∈ {2, 1, 0,−2,−4,−6, . . . }} .

One can see easily that this trick can be applied to a multiple zeta-function
with k variables. In fact,

ζk(s1, s2, . . . , sk) =
∞∑

n1=1

1

ns1
1

∞∑
n2=n1+1

1

ns2
2

. . .

∞∑
nk−1=nk−2+1

1

n
sk−1

k−1

∞∑
nk=nk−1+1

1

nsk
k

=
∞∑

n1=1

1

ns1
1

∞∑
n2=n1+1

1

ns2
2

. . .

∞∑
nk−1=nk−2+1

1

n
sk−1

k−1

×

×
{
−φl(nk−1, sk) +

n1−sk
k−1

sk − 1
− 1

2nsk
k−1

+
l∑

q=1

(sk)qaq

nsk+q
k−1

}

=
ζk−1(s1, s2, . . . , sk−2, sk−1 + sk − 1)

sk − 1
− ζk−1(s1, s2, . . . , sk−2, sk−1 + sk)

2

+
l∑

q=1

(sk)qaqζk−1(s1, s2, . . . , sk−2, sk−1 + sk + q)

−
∑

0<n1<n2<...<nk−1

φl(nk−1, sk)

ns1
1 ns2

2 . . . n
sk−1

k−1

(4)
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for <(si) > 1 (i = 1, 2, . . . , k). Since

∑
0<n1<n2<...<nk−1

φl(nk−1, sk)

ns1
1 ns2

2 . . . n
sk−1

k−1

¿
∑
nk−1

n
−l−<(sk)+k−3
k−1

nL
k−1

with L = <(sk−1) +
∑

1≤j≤k−2,
<(si)≤0

<(si), the last summation is convergent abso-

lutely in

l − k + 2 + <(sk) + <(sk−1) +
∑

1≤i≤k−2,
<(si)≤0

<(si) > 0.(5)

Since l can be taken arbitrarily large, we get an analytic continuation of
ζk(s1, s2, . . . , sk) to Ck. Now we consider the set of singularities. For sim-
plicity, we put (s)0 = 1. Then the ‘singular part’ of ζ2(s1, s2) is given by

ζ(s1 + s2 − 1)

s2 − 1
+

∑
q1≥0

aq1(s2)q1

s1 + s2 + q1 − 1
.

Note that this sum is formal and only indicates local singularities. From
this expression, we see

s2 = 1, s1 + s2 ∈ {2, 1, 0,−2,−4,−6, . . . }
forms the set of whole singularities. For the case ζ3(s1, s2, s3), by using the
singular part of ζ2, we see that singularities lie on

s3 = 1, s2 + s3 ∈ {2, 1, 0,−2,−4,−6, . . . }
and

s1 + s2 + s3 ∈ {3, 2, 1, 0,−1,−2,−3, . . . }.
We want to show that these are the whole singularities. It suffices to show
that no singularities defined by one of above equations will identically vanish.
This can be shown by replacing variables:

u1 = s1, u2 = s2 + s3, u3 = s3.

In fact, we see that the singular part of ζ3(u1, u2 − u3, u3) is given by

1

u3 − 1
ζ2(u1, u2 − 1) +

∑
q2≥0

(u3)q2aq2ζ2(u1, u2 + q2).

By this expression we see that the singularities of ζ2(u1, u2 + q) are summed
with functions of u3 of different degree. Thus these singularities, as a
weighted sum by another variable u3, will not vanish identically. Similarly,
we see
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Theorem 1. The multiple zeta-function ζk(s1, s2, . . . , sk) is meromorphi-
cally continued to Ck and has singularities on

sk = 1, sk−1 + sk = 2, 1, 0,−2,−4, . . . ,

and
j∑

i=1

sk−i+1 ∈ Z≤j (j = 3, 4, . . . , k),

where Z≤j is the set of integers less than or equal to j.

3. Zeta values at non-positive integers

In this section, we use the notation (s)0 = 1 and (s)−1 = 1/(s − 1) for
the sake of simplicity. We also put aq = Bq+1/(q + 1)! for q = 0 and −1
as in §2. A point of Cn (n ≥ 2) is said to be a point of indeterminacy of a
meromorphic function if both the local denominator and the local numerator
vanish there. See p.164 of [11] for the precise definition. For instance, let
f(s1, s2) = s1/(s1 + s2). Then s1 = s2 = 0 is a point of indeterminacy of
f . So the value of f at (0, 0) depends on a limiting process, for example
lims2→0 lims1→0 f(s1, s2) = 0 while lims1→0 lims2→0 f(s1, s2) = 1.

Let ri (i = 1, 2, . . . , k) be non-negative integers. Recall from Theorem 1
that each point (−r1,−r2, . . . ,−rk) except when k = 2 and r1 + r2 is odd,
lies on the set of singularities. Moreover, such a point is a point of inde-
terminacy. To prove this, it suffices to show that ζk has a finite value at
(−r1,−r2, . . . ,−rk) by a specific limiting process. Now we give the defini-
tion which we will employ in this paper.
Definition . We define the multiple zeta values at non-positive integers by

ζk(−r1,−r2, . . . ,−rk) = lim
s1→−r1

lim
s2→−r2

· · · lim
sk→−rk

ζk(s1, s1, . . . , sk).

From (4) and the above definition, we have

ζk(−r1,−r2, . . . ,−rk)

=

rk∑
q=−1

(−rk)qaqζk−1(−r1,−r2, . . . ,−rk−2,−rk−1 − rk + q).(6)

Here we used the fact that φr(m, l) = 0 for l ≥ r. This formula shows that
the value ζk(−r1,−r2, . . . ,−rk) is determined recursively as a finite num-
ber, hence each point (−r1,−r2, . . . ,−rk) is a point of indeterminacy. The
formula (6) also gives us a simple way of calculation of multiple zeta values
ζk(−r1,−r2, . . . ,−rk). For example, we have ζ2(0, 0) = 1/3, ζ3(0, 0, 0) =
−1/4, ζ4(0, 0, 0, 0) = 1/5, ζ2(−1,−1) = 1/360, ζ3(−1,−1,−1) = 83/30240.
One may expect that ζk(0, 0, . . . , 0) = (−1)k/(1 + k). This assertion will be
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proved in the forthcoming paper [2]. Here we shall show some other inter-
esting properties.

Theorem 2. Let ri (i = 1, 2, . . . , k) be non-negative integers. Then the
value ζk(−r1,−r2, . . . ,−rk) is a rational number whose denominator has

prime factors less than or equal to 1 + k +
∑k

i=1 ri.

Proof. It is well known that ζ(0) = −1/2, ζ(−2r) = 0 and ζ(1 − 2r) =
−B2r/2r for positive integers r. By using the theorem of von Staudt &
Clausen, the assertion for k = 1 is obvious. From (6), the proof is completed
by the induction on k.

Theorem 3. Let ri (i = 1, 2, . . . , k) be positive integers and ni (i = 1, 2, . . . , k)

be non-negative integers. If
∑k

i=1(ri + ni + 1) is odd then
∑

σ∈Sk

sgn(σ)ζk(−rσ(1) − n1,−rσ(2) − n2, . . . ,−rσ(k) − nk) = 0,(7)

where Sk is the symmetric group of degree k and sgn(σ) is the signature of
σ ∈ Sk

The statement is trivial when ri are not distinct. We will show some
examples when n1 = n2 = n3 = 0 before proving the theorem:

ζ2(−1,−2)− ζ2(−2,−1) = − 1

240
+

1

240
= 0,

ζ3(−1,−2,−3) + ζ3(−2,−3,−1) + ζ3(−3,−1,−2)

− ζ3(−1,−3,−2)− ζ3(−2,−1,−3)− ζ3(−3,−2,−1)

= − 101

100800
+

149

302400
+

107

302400
+

19

30240
+

17

43200
− 131

151200
= 0.

Proof. In the following, we shall only prove the case n1 = n2 = . . . = nk = 0.
The generalization is quite easy and is left to the reader. Let

Ik =
{

(−r1, . . . ,−rk)
∣∣∣ri are positive integers and

∑k
i=1(ri + 1) is odd.

}
.

For 1 ≤ a < b ≤ k, we define a vector space Fk(a, b) consisting of C-valued
functions f(ξ1, ξ2, . . . , ξk) such that

∑

σ∈Sa:b

sgn(σ)f(−rσ(1),−rσ(2), . . . ,−rσ(k)) = 0

for any (−r1, . . . ,−rk) ∈ Ik, where Sa:b is a subgroup of Sk whose ele-
ments stabilize {1, 2, . . . , k} \ {a, a + 1, . . . , b}. Our task is to show that
the function ζk(ξ1, ξ2, . . . , ξk) is contained in Fk(1, k). Considering the coset
decomposition Sk/Sa:b, we see Fk(a, b) is a subspace of Fk(1, k). Thus it
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is enough to show that the multiple zeta-function is contained in a sum of
subspaces Fk(a, b).

First we prove the case k ≤ 3. The assertion (7) is valid when k = 1, since
ζ(−2r) = 0 for any positive integers r. When k = 2 and (−r1,−r2) ∈ I2,
we have

ζ2(−r1,−r2) =

r2∑
q=−1

(−r2)qaqζ(−r1 − r2 + q)

= −1

2
ζ(−r1 − r2),(8)

which shows the assertion for k = 2. When k = 3 and (−r1,−r2,−r3) ∈ I3,
we have from (8) that

ζ3(−r1,−r2,−r3) =

r3∑
q=−1

(−r3)qaqζ2(−r1,−r2 − r3 + q)

= −1

2
ζ2(−r1,−r2 − r3)− 1

2

r3∑
q=−1

q : odd

(−r3)qaqζ(−r1 − r2 − r3 + q).(9)

Hence ζ3(ξ1, ξ2, ξ3) ∈ F3(2, 3) + F3(1, 2).
Let k ≥ 3 and (−r1, . . . ,−rk) ∈ Ik. Then by induction on k, we can

easily see that

ζk(ξ1, ξ2, . . . , ξk) +
1

2
ζk−1(ξ1, ξ2, . . . , ξk−2, ξk−1 + ξk)

∈ Fk(1, 2) + Fk(2, 3) + . . . + Fk(k − 2, k − 1).(10)

The assertion of the theorem follows immediately from (10).
Suppose that k = 3, ri are non-negative integers, r1 > 0 and r1 + r2 + r3

is even. Then from (8) and (9), we have

ζ3(−r1,−r2,−r3) = −1

2

{
ζ2(−r1 − r2,−r3) + ζ2(−r1,−r2 − r3)

}
.(11)

One may expect that symmetric expressions like (8) and (11) would give us
a deeper understanding of Theorem 3. Further calculation suggests us the
following conjecture. To state it, we shall prepare some notation. Let S
be the ordered index set {1, 2, · · · , k} of k elements and let Dk

l be the set
of all ways of dividing S into l parts. Clearly the set Dk

l consists of
(

k−1
l−1

)

elements. The element J in Dk
l can be expressed as

J = (1, · · · , i1
∣∣ i1 + 1, · · · , i2

∣∣ i2 + 1, · · · , il−1

∣∣ il−1 + 1, · · · , k).
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Let A = (−r1,−r2, · · · ,−rk) be a sequence of k non-positive integers. For
J ∈ Dk

l as above, we set

AJ = (−r1 − r2 − · · · − ri1 , −ri1+1 − · · · − ri2 , · · · ,−ril−1+1 − · · · − rk)

and

ζl(A
J) = ζl

(−r1− r2− · · · − ri1 , −ri1+1− · · · − ri2 , · · · ,−ril−1+1− · · · − rk

)
.

Now we can state our

Conjecture . Let ri be non-negative integers, r1 > 0 and
∑k

i=1(ri + 1) is
odd. Let A = (−r1,−r2, · · · ,−rk). Then we have

ζk(A) = −2
k−1∑
j=1

(2j+1 − 1)
Bj+1

j + 1

( ∑

J∈Dk
k−j

ζk−j(A
J)

)
.(12)

Further discussion 1 will be found in [2]. We would like to note that we
could find the conjectural form of (12) by the home page ‘Sloane’s On-Line
Encyclopedia of Integer Sequences’.

Theorem 4. For a positive integer r, we have

ζ(−4r − 1)

ζ2(−2r,−2r)
= (2r + 1)

(
4r + 2

2r + 1

)
.

Proof. From (6) and the definition of aq, we have

ζ2(−2r,−2r) =
B4r+2

2(2r + 1)2
+

1

2r + 1

r∑
j=1

(
2r + 1

2j

)
B2jB4r+2−2j

4r + 2− 2j
.

We note the following identity of Bernoulli numbers:

2(2r + 1)
r∑

j=0

(
2r + 1

2j

)
B2jB4r+2−2j

4r + 2− 2j
+

((2r + 1)!)2

(4r + 2)!
B4r+2 = 0,

obtained by putting m = n = 2r +1 and x = 0 in Apostol [3, p.276, 19 (b)].
Hence,we have

ζ2(−2r,−2r) = − 1

2(2r + 1)2

((2r + 1)!)2

(4r + 2)!
B4r+2.

On the other hand, ζ(−4r − 1) = −B4r+2/(4r + 2), and this gives the
assertion of Theorem 4.

Finally we want to add several remarks.

1Addendum for the revised version: Finally we have succeeded in proving the validity
of this Conjecture. See [2] for details.
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Remark 2. There are many other possibilities for the definition of multiple
zeta values at non-positive integers. For instance, define the value ζ∗k by

ζ∗k(−r1,−r2, . . . ,−rk) = lim
ε→0

ζk(−r1 + ε,−r2 + ε, . . . ,−rk + ε).

When k = 2, this is equivalent to define by

ζ∗2 (−r1,−r2) =

r1∑
q=−1

(−r2)qaqζ(−r1 − r2 + q) +
(−1)r1r1! r2! ar1+r2+1

2
(13)

for non-negative integers ri (i = 1, 2). This definition seems to be better
than our former definition at least when k = 2, 3. In fact, when r1 + r2 is
odd we have ζ2(−r1,−r2) = ζ∗2 (−r1,−r2) and

ζ∗2 (−2u1,−2u2) + ζ∗2 (−2u2,−2u1) = 0

for positive integers ui (i = 1, 2). Especially we have ζ∗2 (−2u,−2u) = 0
with a positive integer u. We can also find a recursive formula for k = 3
and show that

ζ∗3 (−2u,−2v,−2w) + ζ∗3 (−2w,−2v,−2u) = 0

for positive integers u, v, w. However in the general case, it seems difficult to
construct a recursive formula like (13), since there exist a lot of singularities
to take into account. One may hope that

ζ∗k(−2u,−2u, . . . ,−2u) = 0

for a positive integer u.

Remark 3. The set of points of indeterminacy forms a k − 2 dimensional
holomorphic subvariety of Ck, by p.166 of [11]. We have shown that each
non-positive points (−r1, . . . ,−rk) are actually on this subvariety, but there
are another type of integer points on this set. For instance, it will be shown
in [2] that (−r1, . . . ,−rk−1, 1) is a point of indeterminacy whose multiple
zeta value in our sense is rational, when ri ∈ Z≥0 and not all ri is zero. Also
we have

ζ3(4,−3,−2) = − 461

2520
− π2

144
+

π4

45360
+

ζ(3)

420
.

We could not determined yet the whole set of such integer points.

Remark 4. We can easily apply the Euler-Maclaurin summation formula
to more general zeta-functions. For instance, let αi > −1 (i = 1, 2, . . . , k)
be real numbers and χi (i = 1, 2, . . . , k) the Dirichlet characters. Define
a function ξ(s1, s2, . . . , sk) for <(si) > 1 (i = 1, 2, . . . , k), by a convergent
sum: ∑

0<n1<n2<...<nk

χ1(n1)χ2(n2) · · ·χk(nk)

(n1 + α1)s1(n2 + α2)s2 . . . (nk + αk)sk
.
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Then ξ is meromorphically continued to Ck. In fact, using binomial series
expansion of (n + β)−s = n−s(1 + β/n)−s for each variable, we see that ξ
can be expressed in terms of absolutely convergent sums of multiple zeta
functions. See [1] for further study of this kind of function.
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