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Salem numbers and uniform distribution modulo 1

By SHIGEKI AKIYAMA (Niigata) and YOSHIO TANIGAWA (Nagoya)

Abstract. For a Salem number « of degree d, the distridution of fractional
parts of o (n =1,2,...) is studied. By giving explicit inequalities, it is shown to
be ‘exponentially’ close to uniform distribution when d is large.

1. Introduction

Uniform distribution of sequences of exponential order growth is an
attractive and mysterious subject. Koksma’s Theorem assures that the
sequence (a™) (n =0,1,...) is uniformly distributed modulo 1 for almost
all @ > 1. See [6]. To find an example of such a has been an open problem
for a long time. In [7], M. B. LEVIN constructed an « > 1 with more strong
distribution properties. His method gives us a way to approximate such «
step by step. (See also [4, pp. 118-130].) However, no ‘concrete’ examples
of such a are known to date. For instance, it is still an open problem
whether (e™) and ((3/2)") are dense or not in R/Z (c.f. BEUKERS [2]).

On the other hand, one can easily construct o > 1 that (™) is not
uniformly distributed modulo 1. A Pisot number gives us such an example.
We recall the definition of Pisot and Salem numbers. A Pisot number is
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a real algebraic integer greater than 1 whose conjugates other than itself
have modulus less than 1. A Salem number is a real algebraic integer
greater than 1 whose conjugates other than itself have modulus less than
or equal to 1 and at least one conjugate has modulus equal to 1. It is shown
that (") tends to 0 in R/Z when « is a Pisot number. If « is a Salem
number, (a™) is dense in R/Z but not uniformly distributed modulo 1. (See
[1, pp. 87-89].) Moreover, Salem numbers are the only known ‘concrete’
numbers whose powers are dense in R/Z.
In this short note, we will consider a quantitative problem:

How far is the sequence (™) from the uniform
distribution for a Salem number a?

Let (an), n =0,1,... be a real sequence and I be an interval in [0, 1].
Define a counting function Ay ((a,),I) by the cardinality of n € ZN[1, N]
such that {a,}, the fractional part of a,, lie in I. We shall show

Theorem 1. Let o be a Salem number of degree greater than or equal
to 8. Then limy_.c +An((a™),]) exists and satisfies

lim - Ay((a >,I>|I|\ <2 (dgo“?) (2m)= 5% 1),

N—oo N 4

where ((s) is the Riemann zeta function, deg « is the degree of a over Q
and |I| is the length of I.

Theorem 2. Let @ be a Salem number of degree 4 or 6. Then
limpy oo 7 An((@™), I) exists and satisfies

1
‘ lim —Anx((a"),I) — ]I|’ < 47r_%\/]1| for dega =4,
N—oo N

and

1
‘J\}Enoo NAN((a ), I \I|‘ <53 (log K +1+ |I|> for dega = 6.

These theorems show that the sequence (o) is quite ‘near’ to uni-
formly distributed sequences when the degree of a Salem number « is
large.
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2. Proof of Theorem 1

Let a be a Salem number of degree s. From the definition of Salem
numbers, s is an even integer not less than 4, whose conjugates are

a,a el al?)
with complex o) of modulus 1 [1, p. 85]. Assume that al+r) = o) for
j=1,...,r with r = 552, Put
al¥) = exp(2mif;) (0<6;<1) (1)

for1 <j<r.

Lemma 1. Let §; be the numbers defined by (1). Then 1,04,...,6,
are linearly independent over Q).

PROOF. See for example [1, pp. 88-89]. O

From this lemma, {(m#;, mbs,...,mb,)}>>_; is uniformly distributed

mod Z". Hence for any Riemannian integrable function f(x) on (R/Z)",
the limit

N
. 1
]\;EHOON Z_lf(mgla"'>m97“)

exists and is equal to

/ f(xla-'-,l'r>d1‘1...xr_
(R/Z)"

Let I = [a,b] be an interval in [0, 1] and x, the characteristic function
of I. We extend x; as a periodic function on R by a period 1. Since

An((@™), 1) = Y0_; x,(a™) and

T
am+aTm 42 Z cos(2mméb;) € Z,
j=1
we study the limit of

N T
Sn(a,I) := % Z X; (—a_m -2 Zcos(%rmﬁj)) (2)

m=1 j=1

as N — oo.
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For that purpose, we recall the Selberg polynomial which approximates
the characteristic function of an interval. Let Ag(x) be the Fejér’s kernel
defined by

k .
Ag(z)=1+ Y (1 - ’K|> e?mike,

|k|<K
k0

and Vi () be the Vaaler’s polynomial:

1 ko
Vi (x) = 11 ;f<K+1> sin(2mkx)

where f(u) = —(1—u) cot(mu) — 2. It is clear that for any n (0 < n < 1/2),

1 1
.7r77 — + — for0<u<n
sinmny Tu W

VOTER S 3)
————+ = forp<u<l.
sinm(l—mn) =«
Furthermore let Bg (z) denote the Beurling polynomial:
Bie(w) = Vielw) + 52— A (0) @
z)=Vg(z)+ ———= ).
K K 2K+ 1)K+

Take an interval J = [a,b] in [0, 1]. Then Selberg polynomials for the
interval J are

St(z) =b—a+ Bg(z —b) + Bx(a — z) (5)
and
Si(x)=b—a— Bg(b—x)— Bg(r —a). (6)

These functions Sli((m) are trigonometric polynomials of degree at most K
and satisfy

Si(x) < x, (1) < Si(a). (7)

See [8] for further properties of Selberg polynomials.
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Lemma 2. Let k be a positive integer. Then we have

|Jo(27k)| <

1
T (8)

PROOF. Let H,Ej)(z) (j = 1,2) be the Hankel functions. Asymptotic
expansions of H, ,EJ )(z) are given by

Y (2) = <2> : oiz=5 %) {pl M + R,(,l)(z)}

Tz — (2iz)™
and
2\ i V[ wm) |
g = (2 i1 ;
v (2) (ﬂz) e 2 1 {mZ:O(QZ_Z)m+Rp (Z)}v

where (v,m) = WENEAZS-U2-Gm=1)?) (), 0) — 1 and RY(2) (j =

1,2) are remainder terms ([9, pp. 197-198]). Taking v =0, p = 2, we get

J(z) = % (Hgl)(%k:) + Hf)(%k))

(2 3 ( 77)+1 ( 7r>+1
= s COS | 2 4 8ZSlI’lZ 4 B

It is easily seen that for j = 1,2

(Re)+ A )}

IRY) ()] < for z > 0

9
12822

(see the integral representation of Rl(yj)(z) in [9, p. 197]). Hence

1 1 1
Joark) = " (@ T Tovank R)

with
R <1 (]R(l)(27rk)| + \R(Q)(zwk)y) <9
— 2 \"72 2 = 51272k2
1
< - -
~ 16V21k’

we get the assertion of the lemma. O
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Lemma 3. Take a and b in [0,1] with a < b and let J = (a,b), [a, b],
(a,b] or [a,b). Let r be an integer not less than 3. Then we have

/(M)r XJ<_2iCOS(27r$j))dx1--~dmr 11| < 2(5)em) 71 )

Jj=1

PROOF. Hereafter we write z = 2377, cos(2mz;) and W = (R/Z)"
for simplicity. By (7), we evaluate the integrals:

/ [Bi((z b)) + Bie((z + ) by - da. (10)
w
Substituting (4), the definition of By (z), and using the integral formula
1 T
/ ei27m'k(z+a)dxl cooda, = ei27rika (/ e47rik cos Zﬂxdx)
w 0

— e:t?TrikaJO (47_‘_]{,)7“’

(see [5, p. 81]), we have

Agi1(z +a)
B codx, = SK+H\eT4) - dz,
/W k(z+a)dzry---dx /W {VK(z+a) + 2K +1) dxy---dx

1 ko L "
= %1 Z f (K—}—l) sin(2rka)Jo(4mk)

+ 2(1(1+1) 1+ ) <1 - K+1> 2™k J (4mk)" b . (11)

From (8) the absolute value of the last term on the right hand side of (11)
is estimated as
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Hence the integral of B (z + a) is given by

/ Bi(z+a)dxy - - - dzx,
w

K
- i (Kk+1> sin(2rka) Jo (47k)" + G1 (a)
k=1

with the bound |G1(a)| < 7. The integral of By (—z — b) is given in the
same way,

/ Br(—z —b)dzy - - - dx,
w

K
_ _K::—1 Z f (Kﬁ—l) sin(27kd) Jo(4mk)" + Ga(b)
k=1

with the same upper bound |G2(b)| < 7. Adding the above expressions
we have

’/W{BK(_Z —b)+ Br(z + a)}dxl e dz,

K

1 k

< - i _a r

< ‘ E f(K n 1) (sin2mka — sin 27wkb) Jo(47k)" | +

. K

Now we estimate the sum in the above equation. Let € be a small
positive number, and take n < % to be a small positive number which
satisfies si;r:]m < 1+ e¢. Dividing the sum into two parts at [n(K +1)] and
using (3), we have

K [n(K+1)]
1 k _r 1 m K+1 1 _r
" VElz < ) k!
K+1;‘f(l{—l—1)‘ TSEKT1 ; <sin7m mk +7T> )
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1 1—1n 1 K
- k=5
+K—|—1 <Sin7r(1—r])+7r) Z i

k=[n(K+1)}+1

< %(1—1—6)( (g) +0 <\/1[?> ,

where the implied constant in the last equation does not depend on K.

Therefore

’/W{BK(—Z —b) + Br(z + a)}dml . ds,

<2027) " (b - a)(1 + E)((%) +0 <\/1E) .

In the same manner we have

’/W{BK(Z 4 b) + Br(—2 — a)}dxl e di,

<22m) (b — a)(1 + )¢ (g) +0 <\/17{) .

Thus from (5), (6) and (7) we get the upper bound of the left hand
side of (9):

'/ X, 2Zcos2ﬂx]))dx1 T—|J|‘

2(1 + €)¢ (g) @2m)~"|J|+ O <\/17() .

Now we let K — 00, as ¢ is arbitrary, we get the assertion of the lemma. [

PROOF OF THEOREM 1. Now we study limy_,oc Snv(a, I) of (2). Let
() and (y,) be real sequences with y, — 0. Then it is easily seen from [6],
Chapter 1, Theorem 7.3 that if (x,) has a continuous asymptotic density
function, then (x,, +yy,) also does and their density functions are the same.
Thus it is able to ignore the term o~ in (2).

Our task is to consider the integral:

/W X; (—2 ; Cos(27rxj)) dzy - --dz,

Applying (9) to the interval I, we get the assertion of Theorem 1. O
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3. Proof of Theorem 2

Let us follow the proof of Theorem 1 with » = 1,2. In this case, we
have

Y = ‘/W{BK(—Z —b)+ Br(z+ a)}dxl oodxy

202w
K +1

i‘f(Kﬁ_l)‘ |sinwk(a — bk +O(K?). (12)
k=1

Let € be a small positive number and take a small positive n such that
7/ (sinn)<l+e and a large integer K such that 1/(b—a) <n(K+1) < K.
We also introduce another parameter 0 < v < 1 which is chosen later.
Divide the summation in (12) into three parts

iy Y v Y besiises

k<ztz  pra<k<n(K+1) n(K+1)<k<K

If b—a <w, using |sin7wk(b—a)| < wk(b—a) and (3), we get
(b—a) v 1
1 — =1
2 b—a +0 K e

(I+¢€)(b—a) v 1
il -9
52 logb_a+1 +0 i%e T )

while if b — a > v, 51 is trivially zero. If b — a < v, the trivial bound
|sin7k(b — a)| < 1 implies, for r = 1,2,

S (052) (25 o

(1+¢

~—

3

~—

[Vl

while if b —a > v,

S, < 4(1+¢)

< WC (1 + g) +O(K12).

Finally we have S3 = O(K~'/2) for r = 1,2. The implied constants do not
depend on K. Now we let K — oc.
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In the case r = 1 we get

(I+e)vb—a

s

1+e¢ 3
= ¢<2)

Taking v = 1/, it follows that

Y <dr2(1+e)Vb—a.

For r = 2, we have

(I+e)(b—a)
Y < 2

—11+¢
L)

Now taking v = 1/4/7, we get

v < (I+¢€)(b—a)

The same estimates are valid for

(i) e

1 1
<log +1+ — +logv+
b—a U

b—a

|

X%

1
log —— — .
52 <0gb_a+1+(b a))

/W{BK(Z +b)+ Bg(—2z — a)}d,xl edzy

b—a <w,
b—a>v
b—a <w,
b—a>w.

with » = 1,2. Since ¢ is chosen arbitrarily, we obtain Theorem 2.
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4. Examples

To illustrate the result, we give examples of distributions for Salem
numbers of degree 4, 6 and 8. The interval [0, 1] is divided into 100 pieces.
We computed the fractional part of a™ for 1 < n < 200000, and counted
the number of n so that the fractional part of o' falls into each subintervals.
The vertical axis indicates the number of such n.
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Figure 1. Salem number for 2% — 23 — 22 —2+1=0
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Figure 2. Salem number for 26 — 2% — 2% + 23 —22 —2+1=0
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Figure 3. Salem number for 28 — 227 + 2% — 24 + 22 — 22 +1=0
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