On a certain sum of traces of Hecke operators
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§ o. Introduction
Let ' be a finitely generated fuchsian group of the first kind

containing (_é _?), H ve the complex upper half plane and m be a non

negative integer. Take a unitary representation x of I' of degree Vv
which satisfies x(('(l) _(1)]]=<—1v)'“. Denote by zi(r\m,m) the space of

measurable functions from H to C¥ satisfying
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Then Am acts on Z;(F\H,m), and the spectral decomposition of this space
is given by
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where'ﬂi(F\H,m,k) is the space of Maass wave forms of weight m, and &
is the orthogonal complement. The eigenvalues are counted with

multiplicities in the following way
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We define A = =1/4 - r" ,p = 1/2 + /-1 r. Then the Weyl-Selberg

asymptotic formula is given by

T .
NF(T) - Zlﬁ f tr( 7 (1/2+/-1r) dc1/2-/-1r) ) dr
’ =T

= 2—%2%££>Hl 72 + 0CT log T),

where NF(T) = > 1 , and ®(s) is the scattering matrix of the
lpl<T,Im p>0

Maass~Eisenstein series defined at the cusps of I' (see [2] for the

precise notation ). When I is a congruence subgroup, we can see that



the contribution of the scattering matrix is O(T log T). But in
general, this might be falgse (see [71,[8]). The purpose of this note
is to develop an analogue of this formula, using the Selberg trace
formula for modular correspondences which was written down in [2].
Then we can get the asymptotic formula for a certain sum of traces of

Hecke operators.

§ 1. The results

Take & from SL(Z,R)—(il) 80 that a_lra is commensurable with I'.
Assume that x is a unitary representation of degree v of the group
generated by I’ and «, which satisfies x((_é _?)J=(—1v)m. Define the

Hecke operator acting on 2i(F\H,m)'by

_ -1 Icz+d|)m
T(Faly£(z) = 2 x(x 2, z)( oavd ) °
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where T'ol" = U . ' (disjoint) and o
u M 23

the restriction of T(Iafl') on Zi(F\H,m.Ai),

1_( % %
-( c d ). Denote by T(Far,ki)

(T) = > trC T(Cal,2,) ). Suppose that TI' has
{ol<T,Im p>0

only one I-inequivalent cusp « and the stabilizer of » ig generated by

+ [ é i ). We also asgsume that x(( é i ))=1v and ol = Fa_lr. Then

we have

T
N o (T) - — f tr( W(l/2+/~Te)e” (1/72+/~1r)@(1/2-/~Tr) ) dr
Fol 4T _q

= 0(T log T),
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where W(s) = > Lféfagl- x Lo, Here we denote
d

* %
t—( 0 d ), t € T _Nral'/T_

by T, the stabilizer group of the cusp =.



Remark 1. The assumptions on the cusps of I' are not egssential. - But

the assumption Tall = Fa_1F seems to be necessary for our proof.

Remark 2. The summation in the definition of W(s) is finite. S0 we

see that W(s) is entire and bounded in any vertical strip.

Remark é. Comparing NF(T) with NFaF(T)’ we notice that the right hand
side of Nr(T) is asymptotically larger than that of NFaF(T)' For

_ 1 (1o ] . .
'=81(2,2) and o = 7;—( 0op )’ we see that the Eisenstein part on the
left hand side is OC T log T ) in both cases. Hence we have

(T) » 0,
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when T = o, This fact suggests jhere is much cancellation in the

terms tr( T(Far,li) ).

§ 2. Analytic continuation of the Selberg trace formula
To prove the theorem, we use the Selberg trace formula for modular

correspondences for the kernel function

h(r) = h(r,s) = 52— - Ll
ro+(s-1/2) ro+ 8 _
with a sufficiently large positive constant 8. The trace formula for
the general kernel function was developed in [2]. So we employ the

results of [2]1 freely.

Now we get the analytic continuation of the trace formula with
respect to the valuable s. We can rewrite the trace formula in a
product form

2(s) = BE_,,(s) B (s) B (s) B _(8) B. (s),
ell hyp(l) hyp(z) par Eis

for Re(s)> max{(l/2,m/2) (cf. Fischer [31). Here each term :*(s) of
the right hand side corresponds to the elliptic, hyperbolic,l),

(
hyperbolic(z), parabolic conjugacy classes of ol with respect to [.

In other words,

-

zell(s)/zell'(s)



is the contribution of the elliptic conjugacy classes of the Selberg
trace formula for T(I'al’) and so on. EEis(S) corresponds to the
contribution of the Eisenstein term of the Selberg trace formula. We

denote by "hyperbolic(l)" the hyperbolic conjugacy classes of I’ which

fix hyperbolic fixed points of I' and by "hyperbolic(z)" the hyperbolic

[

conjugacy classes which ‘fix cusps. The singularity of B (s)/E(s) is

given by
(2 s~1) tr(T(FuF,Ai))

A r?+(s-1/2)2

i

So we may write formally

B(s) = T ( - a,+s(s-1) y tr¢ Tral, 2,3 )

T(Tal)

det( -Am,+ s(s-1) )
Considering the case o=1, which was excluded at the start, we see that

E(s) is the functional determinant which is discussed recently by

physicists (see [{91,[111).

In the following lemmas 1~3, we omit the f-term of the kernel

function h(r) because :hyp(éi)/shyp(éf). :ell(s)/cell(s),

=par(s)/=par(s) are absolutely convergent without subtracting the

g-term.

Lemma 1. We have

=M (s)
hyP o)
g (s)
hyp 5y
m
. s 2(sgn trP)" tr x(P) log IC(P)IN<p>‘(S‘1/2)
(P : 1732 -172
hyp 5, N{P} =~ N{P}
(- had -k _y Mtk
+ 2 N(py €8 1/2)( 22_1 +3 N{PL+ = 511)

k=1



_[m§2] 2 (m-2k+1) )

kel (28-1)2 - (m-2k+1)2

where the first summation is finite and the infinite sum over k is

absolutely convergent for Re(s)>>0. Here N(P} and c(P) are defined as

£ 0
0%

l£1>1 and P fizes v =, v, ( ¥ € T ). Then we denote by N(P} the

follows. Suppose that P is conjugate to ( —1) in SL(2,R) with

square of ¢t and by c(P) the (2,1)-element of YIIYQ- We put

5 = { 1 ( if m i8 even )
- 0 ( if m ig odd )

Lemma 2. We have

-1 o/ - 10m oV 10m L(R, )
- 25+284+m 2s+24-m
Be1®= T I Tz o
{RY £=0
J/-10(2¢8+1)
L(R, &)= V=1 e - tr X(R),
2r°sin 0
where I'(s) is the gamma function. Here the first product W extends

over a system of repregentatives R of the elliptic oonjugaey'cLasses of

relf with respect to TI. Suppose R i8 conjugate to the matrix

(cos 0 -sin_ @

sin 8 cos 9) in SL(2,R). Then we define by r the order of the

centralizer group of R in I.

Lemma 3. Suppose that the set of parabolic elements in ol bhich fiz

infinity is written in the form VL au r, (disjoint) and x(( é } ))=1v.
u

Then we have

=4 (s) v
“RPar__ .S S exp(2n/-18. ) IFC g.,v(t ) )
= (8) o oi=1 Ju J u
par
1*ce,v) = —%— W(s-m/2)+¥ (s+m/2)-2¥ (s)-2y-log 4 + E‘%TT - 2W(s+1/2)

Y (1-v)-9(1+vd+ 1/v + Jo1 cot(nv)(W(s-m/2)F¢(s+m/2))],



where Bju (resp.gj) are the eigenvalues of x(au) (resp. x((é i))) when

they are sinultaneously diagonalized and a” is equal to i( é V(Tu)).

Here we denote by ¥ (s) the logarithmic derivative of the gamma fFfuncition.

Starting from the results of (2], the proofs of these lemmas can

be done by straight forward calculations.

Next we try to do the analytic continuation of E(s), EEis(S)'
For E(s), we must say few words. The left hand side of the Selberg
trace formula for T(I'al') in our case has the form

=5 =3 @2s-D tr(T(F&F,Ai))( et 5 - L ).
= Ay ri+(s-1/2) ry + 8

We can easily show that the terms tr(T(FqF,Ai)).are uniformly bounded
and the summation is absolutely convergent in the whole s-plane except
for poles. S0 we can define Z(s) up to some constant factor as a
holomorphic function in Re(s)>1/2. We nofe that E(s) is not
meromorphic in whole s-plane because the numbers tr(T(FaF,Ai)) are not

necessarily integers.

For inS(s), we have
B2, (s) '
Eis " o 1 2 s-1
By, (50 - T s tr W(I/2)0(1/2) + S5 X
15
f [ - 1 5 - 21 ; ) tr¢ W(l/2+/<Tr)0 " (1/2+/~Ir)®(1/2-/~Tr)) dr.
—e\r“+(s-1/2) ro+g

Put ?(s)=‘tr(W(s)¢"(s)¢(1—§)). Then we have

F(s) = F(1-s)
by the general property W(s)®(s)=0(s)W(1l~-s). By the functional
equation of ®(s), we know that all poles of F(s) are the poles of
tr(d” (s)P(1-8)). Recall that W(s) is entire and bounded in any
vertical strip. Thus eath residue of the poles of F(s) is bounded.

Let n be a pole of #(s8) and An be its residue. Then we have



Ag =4y

by Fal=F'a . We can express F(s) by

Re A Re A
w(s) + 3 [ A . n_
Im n20 s - n I- 8 =-n
VS TN (P R W .
s - n n s -n n
where w(s) is an entire function which satisfies w(s)=0(l-s). Here,
we must replace An by An/2 in the sum when Im n = 0. The right hand
side of this sum is absolutely convergent except n's. Using the

Phragmen -Lindelof principle, we have
w(s) = 0C 1)
in any vertical strip. Using the above expression of ¥(s), we can

[« 2
=
=

rewrite the right hand side of (S)/EEi§S) in the form of a partial

Eis
fraction
0O
- g tr W(L/2)0(1/2) 243;1 ”;1/2+“’1r; dr +
- r +(s-1/2)
5 [ Re An . Re An—
n 1- s - n 1- s - n
T (e Lo L 1),
1- s - n n 1- s =-n n

where the last summation is taken over the poles n of #(s) which
satisfy Re(n)>1/2 and Im(n)=20. This summation is also absolutely
convergent except for poles.

Finally for 2 (s), we have

hyP (1)
Shyp,, {8 (sgn trP)™ tr x(P) log N{P.)
1) = 0 N{P)-(s—l/Z)
Ehyp (s) (Pl 1/2 -1/2 ’
(1) hyp(l) N{P} - N{P}
where PO is a generator of the centralizer of P in I'/{x1). The
summation is absolutely convergent in Re(s)>l. But now we found the

1 t 2 . . E - E N K s
analytic continuation of hyp({f)/ hyp(if) by the analytic continuation

of other terms of the Selberg trace formula.



§ 3. Proof of the theorem
Let B = 2 + sup( Re(n) ), C1 be the anticlockwise rectangular path
n
which join 1-B-/=1T, B-/-1T, B+/~1T, 1-B+/~1T and C, be the

anticlockwise path which consists of three segments; from 1/2-/-1T to

B-/~1T, from B-/-1IT to B+/-IT and from B+/-1T to 1/2+/-1T. Without

loss of generality, we assume there are no poles on Cl‘ Then we have
1 -
2 N (T) = ————— f B (s)/E(s) ds
Far an/~1 ‘¢
_ 1 = o
= B (s)/E(s) ds
/-1 C2

by the functional equation B (s)/E(s) + B (1-s)/E(1-s)=0. By the

arguments in § 2, we notice that each E*(s) is a single valued

mercmorphic function in Re(s)>1/2. So we can define the value on the
line Re(s)=1/2 by continuity. Thus

1 o o = 1/2+/-1T
2 Npo o (T) = ———[arg E_ . (s)E (s)E (s)E (s)]

Fer n eIl Thyp (g, " TThYP oy T TRAr Ty /ST
T
1 J— - - -
+ x I—T _Eis(1/2+J lr)/uEis(1/2+J 1r)dr + 0O(1),

because poles in Re(s)>1/2 are only on the real axis. We note that

:Eis(t)/ins(t) + inS(l-t)/dEis(l—t) = F(t),

where t is sufficiently near the line Re(s)=1/2. Using this fact,

lemma 1~3 and the Stirling formula, we get

T
Ne o o (T) - =2 f tr( W(/2+/~Tr)0" (1/2+/~Tr)®(1/2-/=1r) ) dr
ol 4 -T

= —%—[arg Bhyp . ¢ ]1/2+“'1T + OCT log T,
Pay Jis2-/2T
because
arg 5811(1/2+J—1T)= O(log T),
arg Ehyp (1/2+/-1T)= O(log T),
2)
arg :par(1/2+¢—1T)= O(T log T>.
Our final task is to estimate arg E (1/2+/-1T). Using same

hyp(l)



type of argument as in Chapter 10, Theorem 2.24 of Hejhal [5], we have

[=1e

+ 0(T),

A S TO S n
=] (s)/8 (s) = —~ + —
hyP 1y TRYP(yy lscpl<1 8P [s-n+1l<1 5T0%1

where T = tr(T(lol,x)). Noting that |log B (s)] is sufficiently

small when Re(s) is large, we see

2 v- = 0(1).
arg hyp(§?+ 1T) (@D

Recalling that Tp and An are uniformly bounded and Nr(T)=O(T2), we
finally have

arg =hyp(§§/2+¢-1T) = 0(T).

This concludes>the proof.
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