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§0. Introduction

Denote J;(z) the absolute invariant of the Hecke group G43. Then Jy has the
following Fourier expansion at ie°:

Jd(z)= VIE—] a'l r" q",

miz )
cos(n/d) ~
The value r is algebraic if and only if d = 3, 4,6 and oo ([3], [6]). These results
can be extended to the case of fuchsian triangle groups and the expansion ‘at an elliptic
fixed point ([7], [8]). In this paper we consider the ratio of the value r’s when there
is an inclusion relation of groups. In §2 we prove using purely algebraic method that
the ratio is algebraic and etc. In the remaining section we put into concrete this result
in the case of triangle groups. Especially in this case, some power of the ratio belongs
to the imaginary quadratic field.

where 4, €Q, r €R and g =exp (

§1. Notation and results

Let g be an indeterminant, and K be some subfield of the complex number
field C. The quasi K-rational power series of style r is the formal power series of
the form

T a,r*q"” (a, €K, reC*=C- |0}, €2).
n>%

The quasi K-rational vector space of style r is the vector space over C spaned by
these series. The style » of a power series is determined up to an equivalence relation:

(ri/ra)’ €K eeeeeeeees 1)

for some s €Z.
Let F be a subfield of C containing K, and c¢,, ¢y, - - -, ¢; be the complex
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numbers. We say that {c;,¢q,- -, ¢ | is F-independent over K if the property (P)
is satisfied for all ;€ K (i=1,---,1).

t
P) Y dic; €EF then d;=0 for i=1,----,t.
i=1

We can now state the main theorem.

THEOREM 1. Let V be the quasi K-rational vector space of style r,, and f be
an element of V. Suppose that f is the quasi K-rational infinite power series of style
ry. Then the ratio of the styles Y = ryfry is algebraic over K, and f is a linear
combination of the basis of quasi K-rational power series of style ry over K(7).

Moreover there are distinct non negative integers Iy (= 0), 1, - -- - - ydm (0L
dim V), and infinite numbers of n such that {y"~ %o y"~h ..... , Y Im} s not
K-independent.

We can take the value m not larger than the maximum number of power series in
the quasi K-rational basis whose leading coefficients g is 0. In §4 we will consider
automorphic forms which has real axis as the natural boundary. In inis case, the
condition of infinite series is naturally satisfied. The conclusion of this theorem is
rather complicated, but if the following conjecture holds, we can rewrite the theorem
in a better style.

CONJECTURE. Assume that ¥ € C has the last properties of Theorem 1 then 7’
is an algebraic number of degree m + 1 over K for some natural number t. Exchang-

ing indices, we can write I; =1-i(i=0, ..., m).
The style r for a quasi K-rational power series is determined by the equivalence
relation (1). The style of the quasi K-rational vector space is determined by the

following theorem.

THEOREM 2. Let V be the quasi K-rational vector space whose style is taken in
two ways as ry, r,. If V has at least one infinite power series, then there exists
some natural number s such that

(r 1 / ra ) feK.
Choose basis of V of the form

Zaniriq" (k=1,2,---,5: s=dim V).

If the vector (@, 1, @p 2, """ - ,dn ) is non zero for all n, then the number s
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can be taken not larger than dim V.

§2. The proof of Theorem 1

Let
b et k=1,2,----,s=dim V
b g OnkT1 4 ( s = dim V)

be the basis of V, where a,x €K, ry €C* and ¢ € Z. By the assumption, we
have

fF =3 ¢, rq"
nZanq

s
= 2d tTq") e v.
= k (nEZQan'k rq)

So

enrf = Edeany (20, e @
Put y=ry/r;, D=(dy,dy,----++--- , dg) and

a, = t(an’l, @p gy rrerees s lng)-
Then (2) is written in the form

e =7Y'D-a,. e 3

So

¢, =Y (D-P)-(P'-a,)

for P € GL(K). We can change basis of V by this method in order to get the
assertion. At first we say that d; (i=1,---,s) can be taken in K(7). Assume
dy € K(). If dy,d,, - ,d; are K(7v)independent and d,,d,,------- » Ay
are not K(7)-independent, then we replace d;,; with

t
diw + 2 hidy (i €K).
-

Thus we are able to think that d,,; belongsto K(7¥) from the start. Repeating this
argument we get

diy,dy, oo , d; are K(7)-independent:
dpggs <coreeee , dg belong to K(7), where > 1.
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From (2) we have

C S t
"~ % dyanx = Zdianx € K(Y).
Y k=t+1 k=1
Thus a,, =0 for k=1,----- ,t. This is a contradiction. So we get d € K(7)

for k=1, 2,---,s. Using similar arguments we can assume

Yoy, Yody, e , v%d, are K-independent ;
dt+l=dt+2= ....... =ds=1/'yQ

Without losing generality, we can assume ¢t <s. Define |

t
Tn = %(g11g2’ """ ’gt’g*)eKt+l Ig*‘yn—2+k§|7ndkgk EK}

and
Sne = {(gl,gz, o B er) EKTET | (81,82, - 8, 8X)E T, }

We define n,, n,, - - - by induction. By the definition we know

Se =10t 1
Let n, be the smallest number of n such that S, ; # {0}. We may assume g;# 0 ‘
so that we can replace d, by ?

-1
-~ -1 -
dt+gtlkz=:1dkgk+gt g* 7Y,

and multiply some number in K* : we can put d, = 1yy™. If ny,nq,----,n, are
defined and d, = 1/Y™,d,_y, =1/7"2,---,d;_ s = 1/7™W, then we may assume
Spow= {0} for n=02+1,---- ,ny—1, and Sp w4 = 10}. Since we have

choosed the basis of V, there is a number n such that S, .+ # {0} if w+1<1z.
Let n,,; be the smallest number of these. Then we may put d,_,, =1 [ytw
according to the same argument. Thus we may consider that d; = 1/ ™, d, =
Yyth=r, oo , d, = 1/7™. There are infinite numbers of n such that n>n,,
and a, # 0, because f is an infinite power series. This concludes the proof.

§3. The proof of Theorem 2
Let

)) q", Z b g (k=1,2,----,s=dim V
nZQan,krlq » n>2 n,kr'zq ( 1, ’ N m )
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be two quasi K-rational basis of V whose styles r,,r, respectively. Put
n>Q

5
z bn,x r;qn = kzzldj,k nEZQan’k r?qn,

Y = rnlry, D = (dj),

8y = "(an,y, p,zs- e »n,s),

by = t(bn,l’bn,b .......... abn,s)~
Then

b, =""D-a,. ... 4)
So

Pb, = Y"(P-D-Q)-(Q'a,) P, QEGL(K).

In this way we will change basis. Next lemma is well known (see [4] page 81).

LEMMA. Let EQ Enkq” (k=1,----,5) be linearly independent formal
n
power series over C. Put =, = '(E,,,,, Epoycc oo » £n.5), then the.vector space
spaned by all =, (n=1,2,-.... ) hasrank s.
Take n,, n,,---.,ng (n; > 2) such that Upys8py, v v » @y are linearly

independent over C. Then from (4) we get

D.(anl,anz’ ..... ’a"s) = (7—n1bn1’ Yy "2 bn2’ ...... ,’y""sbns)_
Put
P! = (Bnys brys -+ vbn), Q= (8n,,8ny -+ s 8n)
Then
My _
Yy "
P.D.Q = ’
L |

Since there are at least one infinite power series, there exists n such that n > n, and

1"~ "™ € K forsome k (k=1,---,s). This assures the first assertion of Theorem 2.
Put
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U=|{zec*|D-Z€k"},

where = = (%, &, - - -, £5). U is the vector space over K. We define the linear
map ¢ by -
) U—K°*
W w

As ¢ is injective, we get dimg U <'s. Each 7" a,, belongs to U. So 7% ay,
Y ag g, - , Y¥*Saq,, are linearly dependent over K. There exist (ko, k1,
----- k) EKSH — {0} such that

s
i
"ij 'YQ ’ag+,~ = 0.

7

We can find j (j =0, ---,s) suchthat k; #0, then choose i (i=1,---,s) such
that ag,j; # 0. Then

S .
E kj v! ag+j;i = 0
j=0

gives the non trivial algebraic relation whose degree is not larger than s. This proves
the second statement of Theorem 2.

§4. The ratio of styles in the case of fuchsian triangle groups

In this section we treat the special case of fuchsian triangle groups. For the
precise notation, we refer to [8]. Let A = A(p, q, 7) be the triangle group whose
signature is (p, g, 7). If 1/p+1/q+1/r <1 then this group is realized and acts on
the complex upper half plane H discontinuously. The fundamental domain of A
is ABCD where ABC is the hyperbolic triangle, and ADC is the reflexion with respect
to the geodesic AC. Denote A Z{"’ the space of holomorphic automorphic forms of
A and of weight k, multiplier v. Take f €A K"’ then f is expanded at the elliptic
point A of order p:

- _ I\ k z—A
f(z) =(z-4) n§o""(z_z

Ignoring (z— A )%, we know that A K"’ is the quasi rational vector space. The

style of A4 f"' depend only on the vertice 4 and A. Choosing good fundamental
domain as Th 2 in [8], we write down this style value.

"
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r(p;q,r) =
1 p1 1,1 1 1 1,1,1
F(l+-;)F(7{1—?+?—7})F(7{1——5+7+7}) s
1., 1 1.1 1 1 1,1, 1 ’
I‘(1—7)F(7{1+;+;_7})1‘(7{1+7+7+.r_})

oos(e—%)cos(e-——g—)

where 52 = , €= (—+—+
. r
cos(e)cos(e—7)

We can easily check that
r(piq,r) = r(p;r,q).

Assume A, = Ay(p1, q1, 1) C &, = &3(P2, 92, 72) and ABCyD, be the
fundamental domain of A,; which is suitably located in the sense of Th 2 of [8].
That is to say, A, =+/—1 and By =t+/—1 (£>1). We can’t always assume that
A3B,C,D, is suitably located. Let ¢ be the natural covering map from A,\H to
A \H, and assume ¢(A4,) =A,. Of course p, | 2- Denote 6 (0< 6 <) the angle
of ByA;B;. Allinclusion relations of triangle groups are classified in [5]. So we can
calculate the value 6 in a straight forward way. After tedious calculations we know
that

cos(2p,0) €Q

for all inclusion relations. For example, in the case of A, (5,4,4) C A,(5,2,4), we

T
10 °
cos (4 6) = % The rotation at A, and of angle # causes small change of the

style. Using the relation of [8] page 4, we see that the style is multiplied by eV

get 8 = When we regard this relation as A,(4,4,5) C A,(4,5,2), we get

Y

In all cases, the value V10 is algebraic. From Theorem 1, we see that the ratio
r{py; q1; 1)/ r(P2; qq, ra) is algebraic, because A’X;’ DA’X; and A’Z';' contains
elements other than constant functions for sufficiently large k. If the conjecture of
§1 is true, then some power of the ratio r(p1;4q1, r1)/r(pa; qa2, ry) is of degree at
most 7, because

dimA%Y < dimARY +3 < 6,
for some k.
Thus we are interested in calculating these ratio of the styles.

ProposITION. Let A, A, be fuchsian triangle groupsand A, C A,. Then the
o r1(p,;q,,n)/r(p2;q2,r2) isgiven by the following table.
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(I) Normal case

rpip,p) _ 3 %
r(p; 3,3)
rp59.9) _ 5%
r(2p;2,q)

(II) Non normal case

rGLT) T
r(7;2, 3)

r(7;2,3)

1(7:3,3) _ 7
r(7;2,3)

r®:8.4) _ -7, %
r(8;2, 3)

r®:83) _, w37
r(8;2,3)

1999 _,"F 5%
r(9;2, 3)

r(5;44) _ 57!
r(5;2,4)

r(4p;4p.p) _ 735 37

r(4p; 2,3)

r@pi2p.p) _ 5%
r(p; 2,4)

rGpidp) _ - F
r(3p;2,3)

rG;3p,p) _ 57!
r(3;2,3p)

rp;2,p) _ 5- 3
r(2p;2,3)

r2,p) _ 5%
r(2;2p, 3)

r(p ;p,p) _ 2% 3“%

"4:9. p) _ ,” %

r(27,7 -+ .-%
r(3;3,7)
r(4;8, 8) -3

r(3;8, 8) -3 '
r(9;9,9) -1 _- %
(42,5
rp;4p.4p) _ 2% 3 %
rp2p,2)  _

r®:3.30) _ "y

r(p;2,2p)  _ %3—237

r(2p;2,3)

r(q;2,2p)

r(2;3,7)

r(3;2,7

r(8;2,3)

r(3;2, 8)

r(3;2,9)

r(4;4,5)

r(4p; 2, 3)

r(2p;2, 4)

r(3p;2,3)

r(2p;2,3)
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COROLLARY. Let A, A, be fuchsian trigngle groups and Ay C A,. We have

(r(p1;q1,11) [ 1(P2392,72))?P* €0.

Prime factors which appear in the numerator and the denominator are the prime
Jactorsof q.ryqar,.

REMARK. Consider the case A(5,4,4) C A(5,2,4). As the elliptic point of
order 4 of A(5,4,4) and the elliptic point of order 2 of A(S5,2,4) are not identified by
the covering map ¢, it seems that we can’t get the assertion of the corollary when we
calculate r(44,5)/r(2:4,5).

-3
2

1 1 9 .
(The value becomes 7 2 (—4—) T( 0 Y ( 20 ) up to algebraic factor.)

So we can get informations not only of the inclusion relation but also of the covering
surface from this corollary.
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