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Abstract. In this paper we describe all isometries on the special
orthogonal group. As an application we give a form of spectrally
multiplicative map on the special orthogonal group.

1. Introduction

There is vast literature on these so called linear isometries on matrix
spaces. Here we will be interested in isometries on groups of matrices,
not linear spaces. The third author and L. Molnár studied surjective
isometries (with respect to the metric induced by the operator norm)
on unitary groups on Hilbert spaces in [6] (cf. [7]). By their results
isometries (with respect to the metric induced by the operator norm) on
U(n) into itself are only automorphisms or anti-automorphisms up to
unitary multiplications. In this paper we give a complete description of
isometries on SO(n). As a consequence of the result we will show that
these are automorphisms, anti-automorphisms up to multiplications,
and exceptional ones for n = 4 .

In the following of the paper let n be a positive interger greater than
1 and Mn(R) the real algebra of all n× n matrices of real entries with
the identity matrix En. Denote by SO(n) and O(n) the groups of
all special orthogonal matrices and all orthogonal matrices in Mn(R)
respectively. Let Rn

+↓ denote the set of all nonzero vectors (x1, . . . , xn)
in Rn of the Euclidean n-space satisfying x1 ≥ · · · ≥ xn ≥ 0. For
any c = (c1, . . . , cn) ∈ Rn

+↓ we define the so called c-spectral norm on
A ∈Mn(R) by

∥A∥c =
n∑

i=1

ciσi(A),
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where σ1(A) ≥ · · · ≥ σn(A) are the singular values of A. In the fol-
lowing of the paper we assume that c1 = 1 for c = (c1, . . . , cn) ∈ Rn

+↓.
This assumption does not lose generality in the paper. Note that the
operator norm coincides with the c-spectral norm for c = (1, 0, . . . , 0).

In this paper we give a complete description of all isometries on
SO(n) with respect to the metric induced by the c-spectral norm.
Isometries on SO(n) are of the expected forms in one hand; automor-
phism or anti-automorphism followed by the multiplication, and of an
exceptional form for n = 4 in another hand. Let Kn(R) be the space of
all skew-symmetric matrices. For A ∈ K4(R) the matrix Ã is obtained
from A by interchanging its (1, 4) and (2, 3) entries, and interchanging
the (4, 1) and (3, 2) entries respectively. Then as we will show later in

this paper that T (exp(A)) = exp(Ã) for A ∈ K4(R) defines a surjective
isometries from SO(4) onto itself, which is neither an automorphism
nor an anti-automorphism. Nevertheless we note that any isometry T
on SO(n) preserves the structure of the so-called twisted subgroups,
that is, T (XY −1X) = T (X)(T (Y ))−1T (X) for all X, Y ∈ SO(n) for
any isometry T from SO(n) into itself.

2. The main result

The main result of the paper is the following.

Theorem 1. Let T be a map from SO(n) into itself and c ∈ Rn
+↓.

Then the following (i) and (ii) are equivalent to each other.
(i) T is an isometry with respect to the metric induced by ∥ · ∥c;

∥T (X)− T (Y )∥c = ∥X − Y ∥c for every pair X, Y ∈ SO(n).
(ii) There exists O ∈ O(n) such that T is of one of the following

form:

(a): T (X) = T (En)OXO
−1 for every X ∈ SO(n),

(b): T (X) = T (En)OX
−1O−1 for every X ∈ SO(n),

(c): n = 4 and T (X) = T (E4)O(exp(Ã))O
−1 for every X ∈

SO(n), where A ∈ K4(R) with exp(A) = X,

(d): n = 4 and T (X) = T (E4)O(exp(−Ã))O−1 for every X ∈
SO(n), where A ∈ K4(R) with exp(A) = X.

In this case T is surjective. Further if T (En) = En, then T is an
automorphism on SO(n) for (a); T is an anti-automorphism on SO(n)
for (b); T is neither multiplicative nor anti-multiplicative on SO(4) for
(c) and (d). On the other hand in any case T preserves the inverted
Jordan product; T (XY −1X) = T (X)(T (Y ))−1T (X) for all X, Y ∈
SO(n).
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Note that exp(A) = exp(B) if and only if exp(Ã) = exp(B̃). We will
show a proof of Theorem 1 in the later section.

3. Necessary conditions for isometries

Nobuya Watanabe [11] has notified us the following lemma which is
appeared in [2, Excercise 2.4.1].

Lemma 2. Suppose that T is an isometry from a compact metric space
into itself. Then T is surjective.

A proof is elementary and is omitted.

Lemma 3. Suppose that T : SO(n) → SO(n) is an isometry with
respect to the metric d induced by the norm ∥ · ∥c. Then

(1) T (Y X−1Y ) = T (Y )(T (X))−1T (Y )

for every pair X, Y ∈ SO(n). In particular, if T further satisfies that
T (En) = En, then

(2) T (Y XY ) = T (Y )T (X)T (Y )

for every pair X, Y ∈ SO(n).

Proof. We first note that T is surjective by Lemma 2 as SO(n) is
compact. We can prove the equation (1) for X, Y ∈ SO(n) with
d(X,Y ) < 1

2
by a proof similar to that of Theorem 6 in [6] as fol-

lows. The conditions C1(T (Y ), T (Y X−1Y )) and (B1) of B(X,Y) are
apparently satisfied. (See [6, Definitions 1, 2 and 3] or [4] for the defi-
nitions of these conditions C1(·, ·), B(·, ·), (B·) and others.) It remains
to check the condition (B2). Let X, Y ∈ SO(n) such that d(X,Y ) < 1

2
.

We assert that with K = 2− 2d(X,Y ) > 1, the inequality

d(YW−1Y,W ) ≥ Kd(W,Y )

holds for every W ∈ LX,Y , where

LX,Y = {W ∈ SO(n) : d(X,W ) = d(Y X−1Y,W ) = d(X,Y )}.

To see this, let W ∈ LX,Y . Then we see that

d(W,Y ) ≤ d(W,X) + d(X, Y ) = 2d(X, Y )

and thus

2− d(W,Y ) ≥ 2− 2d(X, Y ) = K.

We compute

d(W,Y ) = ∥W − Y ∥c = ∥YW−1 − En∥c,
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d(YW−1Y,W ) = ∥YW−1Y −W∥c = ∥YW−1YW−1 − En∥c
= ∥(YW−1 + En)(YW

−1 − En)∥c,
and

2∥YW−1 − En∥c − ∥(YW−1 + En)(YW
−1 − En)∥c

≤ ∥
(
2En − (YW−1 + En)

)
(YW−1 − En)∥c ≤ ∥YW−1 − En∥2c ,

where the last inequality follows from the assumption that c1 = 1.
Thus

Kd(W,Y ) ≤
(
2− d(W,Y )

)
d(W,Y )

= 2∥YW−1 − En∥c − ∥YW−1 − En∥2c
≤ ∥(YW−1 + En)(YW

−1 − En)∥c = d(YW−1Y,W ).

This gives us that the condition (B2) holds. Applying [6, Proposion 4]
we have

T (Y X−1Y ) = T (Y )(T (X))−1T (Y )

for all X, Y ∈ SO(n) with d(X,Y ) < 1
2
.

Next we consider the general X, Y ∈ SO(n). Since X−1Y ∈ SO(n),
there exists a Z ∈ Kn(R) such that X−1Y = exp(Z). Let m be a

positive integer such that exp(∥Z∥c
2m

)− 1 < 1
2
. As c1 = 1 we have

∥ exp Z

2m
− En∥c ≤ exp

∥Z∥c
2m

− 1 <
1

2
.

Let

Ak = X exp
kZ

2m

for each k = 0, 1, 2, . . . , 2m+1. Then we have A0 = X, A2m = Y , and
A2m+1 = Y X−1Y . It is easy to check that

Ak+1(Ak)
−1Ak+1 = Ak+2

for every k = 0, 1, 2, . . . , 2m+1 − 2. We also have

∥Ak+1 − Ak∥c = ∥ exp Z

2m
− En∥c

for every k = 0, 1, 2, . . . , 2m+1 − 1. Then by the first part of the proof

T (Ak+1(Ak)
−1Ak+1) = T (Ak+1)(T (Ak))

−1T (Ak+1)

holds for every k = 0, 1, 2, . . . , 2m+1 − 2. Applying [6, Lemma 7] we
deduce that

T (Y X−1Y ) = T (A2m(A0)
−1A2m)

= T (A2m)(T (A0))
−1T (A2m) = T (Y )(T (X))−1T (Y );
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we have (1).
In particular if T (En) = En, then letting Y = En in (1), we observe

T (X−1) = (T (X))−1 for every X ∈ SO(n), whence the equation (2)
holds. □

Lemma 4. Let A ∈ Kn(R). Suppose that T0 : SO(n) → SO(n) is
an isometry with respect to ∥ · ∥c such that T0(En) = En. Let SA(t) =
T0(exp(tA)) for t ∈ R. Then SA : R → SO(n) is a one-parameter
group.

Proof. As T0 preserves the unit, for every X ∈ SO(n) and for any
integer l

T0(X
l) = T0(X)l

is satisfied by the equation (2) and T (X−1) = (T (X))−1. We prove that
SA(t+ t′) = SA(t)SA(t

′) holds for every pair t, t′ of real numbers. First
let r = l

m
and r′ = l′

m′ be rational numbers with integers m,m′, l, l′.
We compute

SA(r + r′) = T0(exp(
lm′ +ml′

mm′ A))

= T0(exp(
1

mm′A))
lm′+ml′ = T0(exp(

1

mm′A))
lm′
T0(exp(

1

mm′ ))
ml′

= SA(r)SA(r
′).

As T0 is continuous we observe that SA(t+ t′) = SA(t)SA(t
′) for every

pair t, t′ of real numbers. □

In the following we describes the necessary condition for the isome-
tries between SO(n), which is a part of Theorem 1. We remark that
the main idea of the proofs of Lemmas 3 and 4, and Proposition 5 em-
ploying one parameter groups and a non-commutative generalization
of the Mazur-Ulam theorem [4] have been motivated by recent paper
of the third author and Molnár [7] where they describe the structure of
surjective isometries between unitary groups of C∗-algebras. In partic-
ular the one-parameter-group argument had come from Sakai’s paper
[10] where he described the structure of the uniformly continuous group
isomorphisms of unitary groups in AW ∗-factors.

Proposition 5. Suppose that T : SO(n) → SO(n) is an isometry with
respect to ∥ · ∥c. Then T is surjective and there exists O ∈ O(n) such
that one of the following holds.

(a): T (X) = T (En)OXO
−1 for every X ∈ SO(n).

(b): T (X) = T (En)OX
−1O−1 for every X ∈ SO(n).
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(c): n = 4 and T (exp(A)) = T (E4)O(exp(Ã))O
−1 for every A ∈

K4(R).
(d): n = 4 and T (exp(A)) = T (E4)O(exp(−Ã))O−1 for every
A ∈ K4(R).

Proof. By Lemma 2 T is surjective. Put T0(X) = (T (En))
−1T (X) for

X ∈ SO(n). Then T0 is a surjective isometry. By Lemma 4 SA :
R → SO(n) is a one-parameter group for any A ∈ Kn(R). It is well-
known that there exists a unique element f(A) ∈ Kn(R) such that
SA(t) = exp(tf(A)) for every real number t; we constitute the map
f : Kn(R) → Kn(R).

We claim that f is surjective. As (T0)
−1 is also a surjective isometry

between SO(n), in the same way as above there is a g : Kn(R) → Kn(R)
such that T−1

0 (exp(tA)) = exp(tg(A)) for every real number t and
A ∈ Kn(R). We have exp(tA) = T0(exp(tg(A))) = exp(t(f(g(A)))) for
all t and A ∈ Kn(R). Hence f(g(A)) = A for every A; f is surjective.

We next show that f is a real-linear isometry. It is easy to check by
the definition that f(0) = 0. As T0 is an isometry,

∥A−B∥c

= lim
t→0

∥∥∥∥exp(tA)− exp(tB)

t

∥∥∥∥
c

= lim
t→0

∥∥∥∥T0(exp(tA))− T0(exp(tB)

t

∥∥∥∥
c

= lim
t→0

∥∥∥∥exp(tf(A))− exp(tf(B))

t

∥∥∥∥
c

= ∥f(A)− f(B)∥c

for every pair A and B in Kn(R). We observe that f is a surjective
isometry from Kn(R) onto itself. Then by the celebrated Mazur-Ulam
theorem f is a real-linear isometry.

Then by [8, Theorem 4.2] there exists an O ∈ O(n) such that one of
the following hold:

(aa) f(A) = OAO−1 for every A ∈ Kn(R);
(bb) f(A) = −OAO−1 for every A ∈ Kn(R);
(cc) n = 4 and f(A) = OÃO−1 for every A ∈ K4(R);
(dd) n = 4 and f(A) = −OÃO−1 for every A ∈ K4(R).

If f is of the form of (aa), then we have (a);

T0(X) = exp(f(A)) = exp(OAO−1) = O exp(A)O−1 = OXO−1

for every X ∈ SO(n), where X = exp(A) for an A ∈ Kn(R). In the
same way we have (b), (c) and (d) from (bb), (cc), and (dd) respec-
tively. □
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4. The B-C-H formula of Fujii and Suzuki

If a map T : SO(n) → SO(n) is of the form (a) or (b) in Proposition
5, then T is apparently a surjective isometry, which is an automor-
phism followed by the multiplication for (a) and an anti-automorphism
followed by the multiplication for (b). Fujii and Suzuki [3] describe a
closed form of the Baker-Cambell-Hausdorff (B-C-H for short) formula
in SO(4) (Theorem 7). It will be applied to prove that T of the form
of (c) or (d) is also a surjective isometry. We also show that it is not
an automorphism nor an anti-automorphism by Theorem 7.

Let

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
and

R =
1√
2


1 0 0 −i
0 −i −1 0
0 −i 1 0
1 0 0 i

 ,

which is called the magic matrix by Makhlin [3, p.900]. To prove The-
orem 7 Fujii and Suzuki applied B-C-H formula in SU(2), the special
unitary group of the degree 2 [3, (11)]. A special emphasis is on the
range of sin−1 ρ, which is not stated clearly in [3], that 0 ≤ sin−1 ρ ≤ π
depending not only on ρ itself but also the value

cos |x| cos |y| − sin |x| sin |y|
|x||y|

(x · y).

For the convenience of the reader we restate it here with a proof.
Let

H0(2;C) = {X = x1σ1 + x2σ2 + x3σ3 : x1, x2, x3 ∈ R}.

Then iH0(2;C) is the Lie algebra of the group SU(2). For any element

X = x1σ1 + x2σ2 + x3σ3,

of H0(2;C) we denote

x =

x1x2
x3

 .

The following is the B-C-H formula in SU(2) [3].

Theorem 6 (Fujii and Suzuki [3]). Let X,Y ∈ H0(2;C).Then

(3) exp(iX) exp(iY ) = exp(iZ0)
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for Z0 = αX + βY + i
2
γ(XY − Y X), where

α ≡ α(x,y) =
sin−1 ρ

ρ

sin |x| cos |y|
|x|

,

β ≡ β(x,y) =
sin−1 ρ

ρ

cos |x| sin |y|
|y|

,

γ ≡ γ(x,y) =
sin−1 ρ

ρ

sin |x| sin |y|
|x||y|

(4)

with

ρ ≡ ρ(x,y) =
{
sin2 |x| cos2 |y|+ sin2 |y| − sin2 |x| sin2 |y|

|x|2|y|2
(x · y)2

+
2 sin |x| cos |x| sin |y| cos |y|

|x||y|
(x · y)

} 1
2

(5)

and

0 ≤ sin−1 ρ ≤ π,

cos(sin−1 ρ) = cos |x| cos |y| − sin |x| sin |y|
|x||y|

(x · y).
(6)

Proof. As SU(2) = exp(iH0(2;C)) there exists Z ∈ H0(2;C) such that
exp(iX) exp(iY ) = exp(iZ). By (10) in [3] we have

exp(iX) exp(iY ) =
{
cos |x|E2 +

sin |x|
|x|

iX
}{

cos |y|E2 +
sin |y|
|y|

iY
}

=
{
cos |x| cos |y| − sin |x| sin |y|

|x||y|
(x · y)

}
E2

+ i
{sin |x| cos |y|

|x|
X+

cos |x| sin |y|
|y|

Y +
sin |x| sin |y|

|x||y|
i

2
(XY −Y X)

}
,

exp(iZ) = cos |z|E2 +
sin |z|
|z|

iZ.

Comparing the coefficients we obtain

cos |z| = cos |x| cos |y| − sin |x| sin |y|
|x||y|

(x · y),

sin |z|
|z|

Z =
sin |x| cos |y|

|x|
X +

cos |x| sin |y|
|y|

Y

+
sin |x| sin |y|

|x||y|
i

2
(XY − Y X).
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Hence ∣∣∣∣cos |x| cos |y| − sin |x| sin |y|
|x||y|

(x · y)
∣∣∣∣ ≤ 1

and

sin2 |z| = 1− cos2 |z|

= 1−
{
cos |x| cos |y| − sin |x| sin |y|

|x||y|
(x · y)

}2

= sin2 |x| cos2 |y|+ sin2 |y| − sin2 |x| sin2 |y|
|x||y|

(x · y)2

+
2 sin |x| cos |x| sin |y| cos |y|

|x||y|
(x · y)

= ρ2.

From this, we can choose r ∈ [0, π] such that

cos r = cos |x| cos |y| − sin |x| sin |y|
|x||y|

(x · y),

sin r = ρ.

Denote r = sin−1 ρ and put

Z0 = αX + βY + γ
i

2
(XY − Y X)

=
sin−1 ρ

ρ

{sin |x| cos |y|
|x|

X +
cos |x| sin |y|

|y|
Y

+
sin |x| sin |y|

|x||y|
i

2
(XY − Y X)

}
=

sin−1 ρ

ρ

sin |z|
|z|

Z.

Then

|z0| =
sin−1 ρ

ρ

| sin |z||
|z|

|z| = sin−1 ρ = r

because ρ = | sin |z||. Therefore
sin |z0| = sin r = ρ,

cos |z0| = cos r = cos |x| cos |y| − sin |x| sin |y|
|x||y|

(x · y)

and hence

sin |z0|
|z0|

Z0 =
sin |z|
|z|

Z.
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Consequently, exp(iZ0) = exp(iZ) = exp(iX) exp(iY ) by (10) in [3].
□

Let A = (aij) ∈ K4(R). Note that aii = 0 and aij = −aji for every
1 ≤ i ≤ 4 and 1 ≤ j ≤ 4. Define

φ1(A) =
a12 + a34

2
, φ2(A) =

a13 − a24
2

, φ3(A) =
a14 + a23

2
,

ψ1(A) =
a12 − a34

2
, ψ2(A) = −a13 + a24

2
, ψ3(A) =

a14 − a23
2

.

Define

Φ(A) = φ1(A)σ1 + φ2(A)σ2 + φ3(A)σ3,

Ψ(A) = ψ1(A)σ1 + ψ2(A)σ2 + ψ3(A)σ3,

and

−→
Φ(A) =

φ1(A)
φ2(A)
φ3(A)

 ,
−→
Ψ(A) =

ψ1(A)
ψ2(A)
ψ3(A)

 .

For A,B ∈ K4(R) we also define

α1(A,B) = α(
−→
Φ(A),

−→
Φ(B)), α2(A,B) = α(

−→
Ψ(A),

−→
Ψ(B)),

β1(A,B) = β(
−→
Φ(A),

−→
Φ(B)), β2(A,B) = β(

−→
Ψ(A),

−→
Ψ(B)),

γ1(A,B) = γ(
−→
Φ(A),

−→
Φ(B)), γ2(A,B) = γ(

−→
Ψ(A),

−→
Ψ(B)),

where α(·, ·), β(·, ·) and γ(·, ·) are defined as in Theorem 6. Put

(7) fs(A,B) =

{
α1(A,B)Φ(A) + β1(A,B)Φ(B)

+
i

2
γ1(A,B) (Φ(A)Φ(B)− Φ(B)Φ(A))

}
⊗ E2

+ E2 ⊗
{
α2(A,B)Ψ(A) + β2(A,B)Ψ(B)

+
i

2
γ2(A,B) (Ψ(A)Ψ(B)−Ψ(B)Ψ(A))

}
.

It is apparent by the definitions that

αi(A,B) = αi(Ã, B̃), βi(A,B) = βi(Ã, B̃), γi(A,B) = γi(Ã, B̃).

Define

(8) BCH(A,B) = iR∗fs(A,B)R.

The following is the B-C-H formula of Fujii and Suzuki which was
proved by applying Theorem 6 [3].
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Theorem 7 ([3]). Let A,B ∈ K4(R). Then

exp(A) exp(B) = exp(BCH(A,B)).

5. Exceptional isometries on SO(4)

Lemma 8. For every pair of A,B ∈ K4(R) the characteristic polyno-

mials for BCH(A,B) and BCH(Ã, B̃) coincides with each other.

Proof. By the definition of BCH(A,B) it is enough to show that the

characteristic polynomials of fs(A,B) and fs(Ã, B̃) coincide with each
other. To simplify a proof put

X1(A,B) =α1(A,B)φ1(A) + β1(A,B)φ1(B)

− γ1(A,B)(φ2(A)φ3(B)− φ3(A)φ2(B)),

X2(A,B) =α1(A,B)φ2(A) + β1(A,B)φ2(B)

− γ1(A,B)(φ3(A)φ1(B)− φ1(A)φ3(B)),

X3(A,B) =α1(A,B)φ3(A) + β1(A,B)φ3(B)

− γ1(A,B)(φ1(A)φ2(B)− φ2(A)φ1(B)),

Y1(A,B) =α2(A,B)ψ1(A) + β2(A,B)ψ1(B)

− γ2(A,B)(ψ2(A)ψ3(B)− ψ3(A)ψ2(B)),

Y2(A,B) =α2(A,B)ψ2(A) + β2(A,B)ψ2(B)

− γ2(A,B)(ψ3(A)ψ1(B)− ψ1(A)ψ3(B)),

Y3(A,B) =α2(A,B)ψ3(A) + β2(A,B)ψ3(B)

− γ2(A,B)(ψ1(A)ψ2(B)− ψ2(A)ψ1(B)).

Then by a computation we observe that

3∑
j=1

Xj(A,B)σj = α1(A,B)Φ(A) + β1(A,B)Φ(B)

+
i

2
γ1(A,B) (Φ(A)Φ(B)− Φ(B)Φ(A)) ,

3∑
j=1

Yj(A,B)σj = α2(A,B)Ψ(A) + β2(A,B)Ψ(B)

+
i

2
γ2(A,B) (Ψ(A)Ψ(B)−Ψ(B)Ψ(A)) .
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Thus we obtain

fs(A,B) =(
X3(A,B) + Y3(A,B) Y1(A,B) − iY2(A,B) X1(A,B) − iX2(A,B) 0
Y1(A,B) + iY2(A,B) X3(A,B) − Y3(A,B) 0 X1(A,B) − iX2(A,B)
X1(A,B) + iX2(A,B) 0 −X3(A,B) + Y3(A,B) Y1(A,B) − iY2(A,B)

0 X1(A,B) + iX2(A,B) Y1(A,B) + iY2(A,B) −X3(A,B) − Y3(A,B)

)
and

(9) Pfs(A,B)(t) = t4 − 2

{
3∑

j=1

Xj(A,B)2 +
3∑

j=1

Yj(A,B)2

}
t2

+

{
3∑

j=1

Xj(A,B)2 −
3∑

j=1

Yj(A,B)2

}2

,

where PM(t) denotes the characteristic polynomial for the matrix M .
We also have

(10) Pfs(Ã,B̃)(t) = t4 − 2

{
3∑

j=1

Xj(Ã, B̃)2 +
3∑

j=1

Yj(Ã, B̃)2

}
t2

+

{
3∑

j=1

Xj(Ã, B̃)2 −
3∑

j=1

Yj(Ã, B̃)2

}2

,

By an elementary calculation we see that

3∑
j=1

Xj(A,B)2 = α1(A,B)2
3∑

j=1

φj(A)
2 + β1(A,B)2

3∑
j=1

φj(B)2

+ γ1(A,B)2
{(
φ2(A)φ3(B)− φ3(A)φ2(B)

)2
+
(
φ3(A)φ1(B)− φ1(A)φ3(B)

)2
+
(
φ1(A)φ2(B)− φ2(A)φ1(B)

)2}
+ 2α1(A,B)β1(A,B)

(
φ1(A)φ1(B) + φ2(A)φ2(B) + φ3(A)φ3(B)

)
,

3∑
j=1

Yj(A,B)2 = α2(A,B)2
3∑

j=1

ψj(A)
2 + β2(A,B)2

3∑
j=1

ψj(B)2

+ γ2(A,B)2
{(
ψ2(A)ψ3(B)− ψ3(A)ψ2(B)

)2
+
(
ψ3(A)ψ1(B)− ψ1(A)ψ3(B)

)2
+
(
ψ1(A)ψ2(B)− ψ2(A)ψ1(B)

)2}
+ 2α2(A,B)β2(A,B)

(
ψ1(A)ψ1(B) + ψ2(A)ψ2(B) + ψ3(A)ψ3(B)

)
.
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Since
φj(C̃) = φj(C), ψi(C̃) = ψi(C), ψ3(C̃) = −ψ3(C)

and

αi(Ã, B̃) = αi(A,B), βi(Ã, B̃) = βi(A,B), γi(Ã, B̃) = γi(A,B)

for i = 1, 2, j = 1, 2, 3, and C = A,B we observe that
3∑

j=1

Xj(A,B)2 =
3∑

j=1

Xj(Ã, B̃)2,

3∑
j=1

Yj(A,B)2 =
3∑

j=1

Yj(Ã, B̃)2.

It follows that by the equations (9) and (10) that Pfs(A,B)(t) = Pfs(Ã,B̃).

As BCH(A,B) = iR∗fs(A,B)R (resp. BCH(Ã, B̃) = iR∗fs(Ã, B̃)R)
we obtain the statement. □
Theorem 9. For every pair of A,B ∈ K4(R)

∥ exp(A)− exp(B)∥c = ∥ exp(Ã)− exp(B̃)∥c.
Proof. By Lemma 8 the characteristic polynomials of BCH(A,−B)

and BCH(Ã,−B̃) coincide with each other. Applying the spectral
mapping theorem we see at once that the eigenvalues of

exp(BCH(A,−B)) − En and exp(BCH(Ã,−B̃)) − En coincides with

each other. As exp(BCH(A,−B))−En and exp(BCH(Ã,−B̃))−En

are normal matrices, the singular values of exp(BCH(A,−B)) − En

and exp(BCH(Ã,−B̃))−En are the absolute value of the eigenvalues,
whence they coincides with each other. It follows that

∥ exp(A) exp(−B)− En∥c = ∥ exp(Ã) exp(−B̃)− En∥c.
As ∥ · ∥c is unitarily invariant we observe the desired equation. □

6. Proof of the main result

In this section we complete a proof of Theorem 1. In the following
Lemmas 10 and 11 ∥ · ∥ denotes the operator norm.

Lemma 10. Let A ∈M4(R) with ∥A∥ < 1
2
. Suppose that exp(A) = E4.

Then A = 0.

Proof. Suppose that exp(A) = E4 for an A ∈ M4(R) with ∥A∥ < 1
2
.

Then
∑∞

n=1
An

n!
= 0. Hence

(11) ∥A∥ ≤
∞∑
n=2

∥A∥n

n!
≤

∞∑
n=2

∥A∥n =
∥A∥2

1− ∥A∥
.
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If A ̸= 0, then by the hypothesis ∥A∥ < 1
2
we obtain ∥A∥2

1−∥A∥ < ∥A∥,
which contradicts to (11). Therefore we have A = 0. □

Lemma 11. There exists an ε > 0 such that the following holds: for
any pair A = (aij), B = (bij) ∈ M4(R) with exp(A) = exp(B) and
|aij| < ε, |bij| < ε for 1 ≤ i, j ≤ 4, the equation A = B holds.

Proof. Let α be a positive real number such that expα < 2 and α −
log(2 − expα) < 1

2
. There exists an ε > 0 such that |aij| < ε (1 ≤

i, j ≤ 4) implies that ∥A∥ < α for A = (aij) ∈ M4(R). We show this ε
is the desired one. Suppose that A = (aij), B = (bij) ∈ M4(R) satisfy
that exp(A) = exp(B), |aij| < ε and |bij| < ε for every 1 ≤ i, j ≤ 4.
Then

∥E4 − exp(A)∥ ≤ exp ∥A∥ − 1 < 1.

Then the series

Â =
∞∑
n=1

−(E4 − exp(A))n

n
.

converges absolutely (
∑∞

n=1
∥E4−exp(A)∥n

n
< ∞), as in the scalar case,

substituting this series into the series expansion for exp(Â) yields exp(Â) =
exp(A). We see that

∥Â∥ ≤
∞∑
n=1

∥E4 − exp(A)∥n

n
≤

∞∑
n=1

(exp ∥A∥ − 1)n

n
< − log(2− expα).

As A and E4− exp(A) commute, we see that Â and A commute. Thus

exp(Â− A) = exp(Â) exp(−A) = E4.

Since ∥Â − A∥ ≤ α − log(2 − expα) < 1
2
we see that Â − A = 0 by

Lemma 10. In the same way we see that Â−B = 0. Therefore we have
A = B. □

Proof of Theorem 1. Suppose that T is an isometry; i.e., T satisfies (i).
Then by Proposition 5 T is surjective and one of the (a), (b), (c), or
(d) holds. By Lemma 3 T preserves the inverted Jordan products.

Conversely if T is of the form of (a) or (b), then it is apparent that
T is an isometry from SO(n) onto itself.

Suppose that T satisfies (c). Note that T is well-defined in the sense

that exp(Ã) = exp(Ã′) if exp(A) = exp(A′) for A,A′ ∈ K4(R) by
Theorem 9. As ∥ · ∥c is unitarily invariant

∥T (exp(A))− T (exp(B))∥c = ∥ exp(Ã)− exp(B̃)∥c.
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Therefore by Theorem 9 we observe that

∥T (exp(A))− T (exp(B))∥c = ∥ exp(A)− exp(B)∥c,

that is, T satisfies (i).
In a way similar to the above we see that T satisfies (i) if T is of the

form of (d).
Suppose further that T (En) = En. Then T is an automorphism for

(a) and T is an anti-automorphism for (b).
Suppose that T is of the form of (c). We show T is not multiplica-

tive. Suppose contrary that T is multiplicative. Let A,B ∈ K4(R) be
such that the absolute value of each of entries of A and B are suffi-

ciently small so that the absolute value of each entry of ˜BCH(A,B)

and BCH(Ã, B̃) are less than ε which appears in Lemma 11. According
to the BCH formula (8) and (7) this is possible. As we have assumed
that T is multiplicative

exp
(

˜BCH(A,B)
)
= exp(BCH(Ã, B̃)).

It follows by Lemma 11 that

˜BCH(A,B) = BCH(Ã, B̃).

By the definition of ·̃ the (1, 2)-entry of ˜BCH(A,B) and that of
BCH(A,B) coincides. Thus we have that (1, 2)-entries of bothBCH(A,B)

and BCH(Ã, B̃) coincides with each other. On the other hand by a
direct computation of BCH(A,B) = iR∗fs(A,B)R we see that (1, 2)-
entry of BCH(A,B) is

(12)
α1(A,B)φ1(A)+β1(A,B)φ1(B)−γ1(A,B)(φ2(A)φ3(B)−φ3(A)φ2(B))

+α2(A,B)ψ1(A)+β2(A,B)ψ1(B)+γ2(A,B)(ψ2(A)ψ3(B)−ψ3(A)ψ2(B)).

Hence by this formula it is easy to see that for appropriate matri-
ces A and B such that the absolute value of each element is suffi-
ciently small, the (1, 2)-entry of BCH(A,B) does not coincides with

that of BCH(Ã, B̃), which is a contradiction proving that T is not
multiplicative. Applying the equation (12) we also see that T is not
anti-multiplicative.

Suppose that T is of the form of (d). In the same way as above we
see that T is neither multiplicative nor anti-multiplicative. 2
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7. Multiplicatively spectral preserving maps on SO(n)

In this section we present an application of Theorem 1. A map T
between subsets of unital complex algebras is called spectrally multi-
plicative (or multiplicatively spectrum-preserving) if it satisfies

σ(T (a)T (b)) = σ(ab)

for all a, b, where σ(·) denotes the spectrum. Study on spectrally mul-
tiplicative maps on certain unital Banach algebras was initiated by
Molnár [9]. It has been interested by many authors partly because
such maps are closely related to isomorphisms without linearity and
multiplicativity being prerequested. One of the latest interesting pa-
per on this topics is [1]. See also a recent survey [5]. We characterize
the spectrally multiplicative maps on SO(n).

Theorem 12. Let T : SO(n) → SO(n). Then T is a spectrally multi-
plicative map if and only if the following holds. There exists O ∈ O(n)
such that T is of one of the following form:

(1) T (X) = OXO−1 for every X ∈ SO(n),
(2) T (X) = −OXO−1 for every X ∈ SO(n),
(3) T (X) = OX−1O−1 for every X ∈ SO(n),
(4) T (X) = −OX−1O−1 for every X ∈ SO(n),

(5) n = 4 and T (X) = O(exp(Ã))O−1 for every X ∈ SO(n), where
A ∈ K4(R) with exp(A) = X,

(6) n = 4 and T (X) = −O(exp(Ã))O−1 for every X ∈ SO(n), where
A ∈ K4(R) with exp(A) = X,

(7) n = 4 and T (X) = O(exp(−Ã))O−1 for every X ∈ SO(n), where
A ∈ K4(R) with exp(A) = X.

(8) n = 4 and T (X) = −O(exp(−Ã))O−1 for every X ∈ SO(n),
where A ∈ K4(R) with exp(A) = X.
In this case T is a surjective isometry with respect ∥·∥c for any c ∈ Rn

+↓.

Proof. Suppose that T satisfies (1) or (2). Then the map T is ap-
parently spectrally multiplicative. Next, we recall that the important
equality σ(ab) ∪ {0} = σ(ba) ∪ {0} holds for elements a, b in a unital
complex algebra, whence

(13) σ(XY ) = σ(Y X) = σ((Y X)t) = σ(X−1Y −1)

for X,Y ∈ SO(n). We see at once by (13) that T is spectrally
multiplicative if T is of the form (3) or (4). By Theorem 7 and
Lemma 8, and applying the spectral mapping theorem we see that

σ(exp(A) exp(B)) = σ(exp(Ã) exp(B̃)) for A,B ∈ K4(R). It follows by
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this equality and (13) that T is multiplicatively spectrum preserving if
T is of one of the form of (5) through (8).

Conversely, suppose that T is multiplicatively spectrum preserving.
As

σ(T (X)T (X−1)) = σ(En) = {1}
for X ∈ SO(n), T (X−1) = (T (X))−1 for every X ∈ SO(n). We infer
that σ(XY −1) = σ(T (X)(T (Y ))−1), hence

σ(XY −1 − En) = σ(T (X)(T (Y ))−1 − En)

for all X,Y ∈ SO(n). As UV −1 − En is a normal matrix, we observe
that

∥XY −1 − En∥ = ∥T (X)(T (Y ))−1 − En∥,
hence

∥X − Y ∥ = ∥T (X)− T (Y )∥
for every pair X and Y in SO(n), where ∥ · ∥ denote the operator
norm. By Theorem 1 there exists O ∈ O(n) that T is of the one of the
following form:

(a) T (X) = T (En)OXO
−1 for every X ∈ SO(n),

(b) T (X) = T (En)OX
−1O−1 for every X ∈ SO(n),

(c) n = 4 and T (X) = T (E4)O(exp(Ã))O
−1 for every X ∈ SO(n),

where A ∈ K4(R) with exp(A) = X,

(d) n = 4 and T (X) = T (E4)O(exp(−Ã))O−1 for every X ∈
SO(n), where A ∈ K4(R) with exp(A) = X.

The rest is to prove that T (En) = En or −En. We give a proof for
the case of (a). Proofs for the rest of the cases are similar and are
omtted. Since

σ((T (En))
2) = σ(En) = {1}

we infer (T (En))
2 = En since T (En)

2 is a special orthogonal matrix.
Then we see that the standard form of T (En) is a diagonal matrix whose
diagonal entries are 1 or −1, whence there exists U ∈ SO(n) such that
UT (En)U

−1 is a diagonal matrix whose entries are 1 or −1. Further-
more these entries are all 1 or all -1. We prove this. Suppose that there
are both 1 and −1 within the diagonal entries of UT (En)U

−1. We will
show a contradiction. Without loss of generality we may assume that
the (1, 1)-entry of UT (En)U

−1 is 1 and (2, 2)-entry of UT (En)U
−1 is

−1. Choose X ∈ SO(n) as follows: the (1, 2)-entries of UOXO−1U−1

is 1, the (2, 1)-entries of UOXO−1U−1 is −1, (k, k) entries for k ≥ 3 (if
n ≥ 3) are all 1, and all other entries are 0. Then we easily see that(

UT (En)U
−1(UOXO−1U−1)

)2
= En
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and the (1, 1) and (2, 2) entries are both −1, other diagonal entries (if
n ≥ 3) are all 1, and other entries are all 0 for (UOXO−1U−1)2. Hence

σ
((
UT (En)U

−1(UOXO−1U−1)
)2) ̸= σ

((
UOXO−1U−1

)2)
= σ(X2).

As

σ
((
UT (En)U

−1(UOXO−1U−1)
)2)

= σ
((
T (En)OXO

−1
)2)

= σ(T (X)2)

we arrive at

σ(T (X)2) ̸= σ(X2),

which is a contradiction proving that the entries of the diagonal of
UT (En)U

−1 are all 1 or all −1; T (En) = En or T (En) = −En. □

Note that the maps of the form of (c) or (d) preserve the inverted Jor-
dan triple products in the sense that T (XY −1X) = T (X)(T (Y ))−1T (X)
for all X, Y ∈ SO(n) by Lemma 3; preserve the structure of SO(n) as
the twisted subgroups.

We complete this paper with a remark. If a map T : SO(n) → SO(n)
is of the form (a), (b), (c) or (d) of (ii) of Theorem 1, then T is an
isometry on SO(n) with respect the metric induced by any c-spectral
norm, hence T is an isometry with respect to the metric induced by
any unitarily invariant norm. The authors do not know whether the
form of (a), (b), (c) or (d) are only the form of isometries with respect
to the metric induced by a given unitarily invariant norm.
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