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Abstract

A conjecture of W. J. Gilbert’s on canonical number systems which are defined by cubic
polynomials is partially proved, and it is shown that the conjecture is not complete. Appli-
cations to power integral bases of simplest and pure cubic number fields are given thereby
extending results of S. Körmendi.

1 Introduction

Let P ∈ Z[X] be a monic polynomial with |P (0)| > 1 and N = {0, 1, . . ., |P (0)| − 1}. The pair

(P,N ) is called a canonical number system (CNS) if every non-zero element of R := Z[X]/PZ[X]

can uniquely be written in the form

(1) a0 + a1x + · · ·+ alx
l

with a0, ..., al ∈ N , al 6= 0; here x denotes the image of X under the canonical epimorphism from

Z[X] to R. In other words this means that every coset Q + PZ[X] (Q ∈ Z[X], deg Q < deg P )

includes a polynomial with coefficients belonging to N .
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The concept of canonical number systems in the general form described above was introduced

by the third author [16]; canonical number systems with more restrictions on the defining poly-

nomials have been studied by several authors (see e.g. the introduction of [1] or [2] and the

references given there). Remark that W.J. Gilbert [9] used the terminology radix representation

instead of canonical number system.

The first and third authors [1] suggested that the characterization problem of canonical number

systems is only related to the coefficients of the defining polynomial. Therefore the term CNS

polynomial (see the definition below) seems to be reasonable (cf. [2]). CNS polynomials can be

applied to cryptography [16] and fractal tilings of the Euclidean space [3].

The problem of characterizing CNS polynomials is still open. It is very easy to show that linear

CNS polynomials are given by X+p0 with p0 ≥ 2. Quadratic CNS polynomials were classified by

I. Kátai and B. Kovács [10, 11] and independently by W. J. Gilbert [9] (see also S. Akiyama and

H. Rao [2] or [5] for the general setting). Under additional hypotheses cubic and quartic CNS

polynomials were characterized by K. Scheicher and J. M. Thuswaldner ([17], Theorem 7.1 and

Theorem 7.2) and S. Akiyama and H. Rao ([2], Theorem 5.4 and Theorem 5.5); S. Akiyama and

H. Rao also dealt with quintic polynomials ([2], Theorem 5.7). CNS trinomials were classified

by the second author [5].

The present note aims at a partial proof of a conjecture of W. J. Gilbert [9] on the character-

ization of cubic CNS polynomials. We also show that his conjecture is not complete. Further

applications to some classes of cubic number fields are described.

The second author would like to express his heartfelt gratitude for the hospitality of the Uni-

versity of Debrecen on the occasion of discussing the outline of this paper.

2 Notation and basic results on CNS polynomials

As usual we denote by Z the ring of integers and by N the set of nonnegative integers. Let

P =
∑d

i=0 piX
i ∈ Z[X] with d > 0, pd = 1 and |p0| > 1.

Definition 2.1 P is a CNS polynomial if the pair (P,N ) forms a canonical number system.

The set of CNS polynomials will be denoted by C.

For the convenience of the reader we formally list some well known results which will be used

in the sequel.

Lemma 2.2 (W. J. Gilbert [9], A. Pethő [16]) If P ∈ C then all real zeroes of P are less than

−1 and the absolute values of all complex roots of P exceed 1. In particular p0 > 1.

3



In view of Lemma 2.2 we shall suppose p0 > 1 from now on.

Theorem 2.3 (B. Kovács [12]) If p0 ≥ p1 ≥ . . . ≥ pd−1 ≥ 1 and none of the roots of P is a

root of unity then P ∈ C.

Remark 2.4 B. Kovács proved this theorem under the hypothesis that P be irreducible; in this

case the assumption on the roots of P is trivially satisfied. The extension to not necessarily

irreducible polynomials is due to the third author [16].

The algorithm to express any element of R in the form (1) can clearly be described by the

map1 T : R −→ R,
∑d−1

j=0 zjx
j 7→ ∑d−1

j=0(zj+1 − pj+1

⌊
z0
p0

⌋
)xj with zd := 0 (cf. [1]). Using

the Z-basis wj =
∑d

i=j pix
i−j (j = 1, . . . , d) of R and the group isomorphism ι : Zd −→ R,

(z1, . . . , zd) 7→
∑d

j=1 zjwj , one easily verifies the relation

(2) ι ◦ τ = T ◦ ι

with

τ : Zd −→ Zd, (z1, . . . , zd) 7→ (−
⌊
p1z1 + · · ·+ pdzd

p0

⌋
, z1, . . . , zd−1)

(cf. [4]).

Lemma 2.5 (i) P ∈ C if and only if for every z ∈ Zd we can find some l ∈ N such that

τ l(z) = 0.

(ii) If there exists 0 6= z ∈ Zd and 0 6= k ∈ N with τk(z) = z (i.e. z is a non-zero periodic

element) then P /∈ C.

Proof. The first part is a consequence of (2) and ([1], Lemma 4) and obviously implies the

second part. 2

Lemma 2.6 Let E ⊆ Zd have the following properties:

(i) (1, 0, . . . , 0) ∈ E

(ii) −E ⊆ E

(iii) τ(E) ⊆ E

(iv) For every e ∈ E there exists some k ∈ N with τk(e) = 0.

Then P ∈ C.

Proof. Observing that we have

τ(z1, . . . , zd + a) ∈ {τ(z),−τ(−z)}

for every z = (z1, . . . , zd) ∈ Zd and a ∈ N the proof of ([4], Lemma 2) can be adapted. 2

1 b. . .c denotes the integer part function.
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3 Cubic CNS polynomials

From now on we shall concentrate on cubic polynomials. Therefore we let P = X3 + p2X
2 +

p1X + p0 ∈ Z[X] be a monic cubic polynomial throughout this section.

Under the additional hypothesis that P be irreducible W.J. Gilbert [9] stated the following

Conjecture. P ∈ C if and only if

(i) p0 ≥ 2,

(ii) p2 ≥ 0,

(iii) p1 + p2 ≥ −1,

(iv) p1 − p2 ≤ p0 − 2,

(v) p2 ≤





p0 − 2, if p1 ≤ 0,
p0 − 1, if 1 ≤ p1 ≤ p0 − 1,
p0, if p1 ≥ p0. 2

The next theorem shows that W.J. Gilbert’s conditions are in fact necessary. It was proved by

him [9] for irreducible polynomials.

Theorem 3.1 Let P ∈ C. Then

(i) p0 ≥ 2,

(ii) 1 + p1 + p2 ≥ 0,

(iii) p1 − p2 ≤ p0 − 2,

(iv) p1 ≤ 0 implies 0 ≤ p2 ≤ min{p0 − 2, (p2
0 + p1 − 2)/p0},

(v) 1 ≤ p1 ≤ p0 − 1 implies 0 ≤ p2 ≤ p0 − 1,

(vi) p1 ≥ p0 implies 2 ≤ p2 ≤ p0.

Proof. In view of ([1], Proposition 1) we are left to show that the following values of p2 are

excluded: p2 = p0 − 1 in case (iv), p2 = p0 in case (v) and p2 = p0 + 1 in case (vi). In all these

cases we easily check that the element (1, 0,−1) ∈ Z3 is periodic and so the assertion follows

from Lemma 2.5. 2

The following four counterexamples show that W. J. Gilbert’s conditions are not sufficient. We

continue to assume p0 ≥ 2 throughout. We thank Tibor Borbély, whose program made it possible

to find counterexamples (ii) and (iii).

Counterexamples. (i) p1 ≤ 0. Let 2 ≤ p1 + p2 ≤ −p1 and p0 ≤ min{p2 −
p1, p1 + 2p2 + 1} then the element (1,−1,−1) is periodic and the period is always

(1,−1,−1), (2, 1,−1), (1, 2, 1), (−1, 1, 2), (−1,−1, 1). Taking p2 = 2m, p1 = −m or −m− 1, p0 =

3m (m > 2) we obtain a parametrized family of non CNS polynomials.
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(ii) 1 ≤ p1 ≤ p0 − 1. Let 7p0−5p2

6 + 1 ≤ p1 ≤ −p0 + 3
2p2. Then the element (1,−3, 1) is periodic

with period (1,−3, 1), (3, 1,−3), (−2, 3, 1), (−2,−2, 3), (3,−2,−2), (1, 3,−2), (−3, 1, 3) provided

p0 ≥ 28.

(iii) p1 > p0. Let p0 + 1
2p2 +1 ≤ p1 < p0 + 2

3p2− 1
3 . Then the element (3,−2, 1) is periodic with

period (3,−2, 1), (−2, 3,−2), (1,−2, 3), (1, 1,−2), (−2, 1, 1). The same element is periodic, but

with period (3,−2, 1), (−3, 3,−2), (3,−3, 3), (−2, 3,−3), (1,−2, 3), (1, 1,−2), (−2, 1, 1) provided

p0 + 2
3p2− 1

3 ≤ p1 ≤ 2p2− 4. One can easily find parametrized families of non CNS polynomials

satisfying these conditions. 2

In the following proofs we often use Lemma 2.6. In these cases we restrict ourselves to explicitly

specifying an appropriate (finite) set E ⊂ Z3 such that E+ ∪ (0, 0, 0) ∪ (−E+) satisfies the

prerequisites of this lemma where we put E+ = E∪{(0, 0, 1), (1, 0, 0)}. The verification that this

set does in fact have the required properties can easily be performed by looking at the respective

graphs (see [2] or [4]) and is left to the reader (an example of this graph is drawn in the proof

of Proposition 3.2).

In an effort to prove sufficiency of the conditions of the conjecture W.J. Gilbert’s result suggests

the treatment of four different types of polynomials according to the size of the linear coefficient

of the polynomial.

Therefore we first deal with negative coefficients p1.

Proposition 3.2 Let p1 ≤ −1, p2 ≤ p0 − 2 and −1 ≤ p1 + p2 ≤ 0. Then P ∈ C.

Proof. Let E0 = {(0, 1, 0), (0, 1, 1), (1, 0,−1), (1, 1, 0)} and choose E = E0 ∪ {(1, 1, 1)} in case

p1 + p2 = −1 and E = E0 otherwise. To illustrate our method the graph of this case is shown

in Figure 1. 2

Proposition 3.3 Let p1 ≤ −1, 0 ≤ p2 < min{p0 − 1, 2p0/3} and 1 + p1 + p2 ≥ 0. Then P ∈ C.

Proof. Using Proposition 3.2 we may suppose p1 + p2 ≥ 1. In view of ([17], The-

orem 7.1) or ([2], Theorem 5.4) we may assume p1 − p2 ≤ −p0 + 1. Let E0 =

{(0, 1, 0), (0, 1, 1), (0, 2, 1), (1,−1,−1), (1, 0,−2), (1, 0,−1), (1, 1,−1), (1, 1, 0), (1, 2, 1),

(2, 0,−2), (2, 1,−1)}. We distinguish two cases.

Case I. p1 + 2p2 ≤ p0 − 1

Let E1 = E0 ∪ {(0, 1, 2), (1,−1,−2)}. If 2p1 ≤ −p0 + 1 let

E11 = E1 ∪ {(0, 2, 2), (1,−2,−2), (1, 1,−2), (1, 2, 0), (2, 1,−2), (2, 2, 0)}
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−1,−1, 0 −1, 0, 0

? ?

0,−1,−1 0,−1, 0 0, 0,−1
HHHHj
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1, 0,−1 1, 0, 0
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0, 1, 0 0, 1, 1
HHHHj

©©©©¼
0, 0, 1

?
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Figure 1: −p0 + 2 ≤ p1 ≤ −1, p2 = −p1

and put E = E11 ∪ {(1, 1, 1)} if p1 + p2 = 1 and E = E11 otherwise. If 2p1 ≥ −p0 + 2 put

E = E1 ∪ {(0, 2, 0), (1, 2, 0)}.
Case II. p1 + 2p2 = p0

Let E = E0 ∪ {(0, 1, 2), (0, 2, 0), 0, 2, 2), (1,−2,−2), (1,−1,−2), (1, 1,−2), (1, 2,−1),

(1, 2, 0), (2,−1,−2), (2, 1,−2), (2, 2,−1)}. 2

Proposition 3.4 If 1 + p1 + p2 ≥ 0, −p0 + p2 + 1 ≤ p1 ≤ −1 then P ∈ C.

Proof. In case p1+p2 ≤ 0 the assertion is a consequence of Proposition 3.3, otherwise we assume

p1+p2 > 0 and define E = {(0, 1,−1), (0, 1, 0), (0, 1, 1), (1,−1,−1), (1, 0,−1), (1, 1,−1), (1, 1, 0)}.
2

The following statement which is an immediate consequence of Proposition 3.4 shows that W.J.

Gilbert’s conjecture holds in case p1 = −1.

Corollary 3.5 If p1 = −1 and 0 ≤ p2 ≤ p0 − 2 then P ∈ C.

In contrast to Proposition 3.3 we add some results valid for p2 = p0 − 2.

Proposition 3.6 Let −p0 + 1 ≤ p1 ≤ −1 and p2 = p0 − 2.
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(i) If p0 ≤ 5 or if p0 ≥ 6 and p1 = −p0 + 1 or p1 = −p0 + 2 then P ∈ C.
(ii) If p0 ≥ 6 and −p0 + 4 ≤ p1 ≤ 1− p0/2 then P 6∈ C.
(iii) If p0 ≥ 6 and p1 = −p0 + 3 then for every element of the form e = (e1, e2, e3) ∈ Z3 such

that ei = −1, 0, 1, i = 1, 2, 3 we can find some l ∈ lN such that τ l(e) = 0.

Proof. (i) The case p0 ≤ 5 can easily be derived from Corollary 3.5, Proposition 3.2 and

Proposition 3.3. While the cases for p0 ≥ 6 follow immediately from Proposition 3.2.

(ii) The element (1,−1,−1) is periodic.

(iii) This can easily be checked. 2

Remark 3.7 (i) This result shows in particular that W.J. Gilbert’s conjecture does not hold

for p1 = −2. The polynomial X3 + 4X2 − 2X + 6, for example, is irreducible, satisfies Gilbert’s

conjecture, but is not a CNS polynomial.

(ii) If Conjecture 2 of [1] holds true then X3 + (p0 − 2)X2 − (p0 − 3)X + p0 ∈ C for any p0 ≥ 6

(see also the remarks on this conjecture in [17]). We checked by a computer that X3 + (p0 −
2)X2 − (p0 − 3)X + p0 ∈ C for any 6 ≤ p0 ≤ 20. The program showed that the set of witnesses,

i.e. the sets E = E(p0), is growing with p0. So far we were unable to understand the structure

of E(p0).

In case of vanishing linear coefficient we immediately derive a necessary and sufficient condition

from the result on trinomials quoted above (see ([5], Theorem 3) thereby showing the truth of

W.J. Gilbert’s conjecture in this case.

Theorem 3.8 X3 + p2X
2 + p0 ∈ Z[X] is a CNS polynomial if and only if 0 ≤ p2 ≤ p0 − 2.

Thirdly, we deal with small positive coefficients p1.

Theorem 3.9 If

(1) 1 ≤ p2 ≤ p1 ≤ p0 − 1

or

(2) p1 = p0 and 2 ≤ p2 ≤ p0

then P ∈ C.

Proof. As P does not vanish at any root of unity this is clear by Theorem 2.3. 2

For not necessarily monotonously increasing coefficients we can prove the following results.
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Proposition 3.10 If 1 ≤ p1 ≤ p0 − 1 and 0 ≤ p2 ≤ (2p0 − 1)/3 then P ∈ C.

Proof. In view of Theorem 3.9 we assume p2 > p1. Notice that p2 = p0−1 ≤ (2p0−1)/3 implies

p0 ≤ 2. Hence p0 = 2, p2 = 1 and p1 = 0, which is excluded. Thus p2 ≤ p0 − 2.

Let E0 = {(0, 1,−1), (0, 1, 0), (1,−1, 0),

(1, 0,−1), (1, 1,−1)}. We distinguish two cases.

Case I. p1 + p2 ≤ p0

Put E = E0 ∪ {(0, 1, 1), (1,−1,−1)}.
Case II. p1 + p2 > p0

Let E2 = E0 ∪ {(0, 1,−2), (0, 2,−1), (1,−2, 0), (1,−2, 1), (1,−1,−1), (1, 0,−2), (1, 1,−2),

(2,−1,−1), (2, 0,−2)}. If p1 + p2 = p0 + 1 put E = E2 ∪ {(0, 1, 1), (0, 2, 0)}. Finally suppose

p1 + p2 > p0 + 1. Then 2p1 > p2 + 2. If 2p1 ≤ p0 + 1 take E = E2 ∪ {(0, 2, 0)} otherwise put

E = E2 ∪ {(0, 2,−2), (1,−1,−2), (1, 2,−2), (2,−2, 0), (2,−1,−2)}. 2

As we are particularly interested in relatively small p1 we state the following result.

Proposition 3.11 Let 1 ≤ t ≤ p0. Then X3 + (p0 − t)X2 + X + p0 ∈ C if and only if (p0, t) 6=
(2, 2).

Proof. Let E0 = {(0, 1,−1), (0, 1, 0), (1,−1, 0), (1, 0,−1)}. We distinguish three cases.

Case I. t = 1

Put E = E0 if p0 = 2 and E = E0 ∪ {(0, 1, 1), (1,−1,−1), (1, 1,−1)} otherwise.

Case II. t = 2

If p0 = 2 then the assertion follows from Theorem 3.1 (iii). If p0 = 3 choose E = E0. Finally if

p0 > 3 put E = E0 ∪ {(0, 1, 1), (1,−1,−1), (1, 1,−1)}.
Case III. t > 2

The assertion follows from ([17], Theorem 7.1) or ([2], Theorem 5.4). 2

Finally, we deal with large positive coefficients p1. The case p1 = p0 was completely described

in Theorem 3.9. Therefore we assume p1 > p0 in the next proposition.

Proposition 3.12 If p0 < p1 then P ∈ C if one of the following conditions holds:

(1) p1 = p0 + 1 and 3 ≤ p2 ≤ p0,

(2) p1 = p0 + 2 and p2 = (p0 + 4)/2,

(3) p0 < p1, p1 − p2 < p0 − 1, 3p2 < 2p0, 4p1 − 3p2 < 4p0 − 2,
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(4) p2 ≤ p0, p1 − p2 < p0 − 2, 0 ≤ p1 − 2p2, 2p1 − p2 ≤ 2p0,

(5) p1 − p2 < p0 − 1,−2 ≤ p1 − 2p2, 2p1 − p2 < 2p0,

(6) 3 ≤ p2 ≤ p0, p1−p2 < p0−1, p1−2p2 ≤ −2, 2p1−p2 ≤ 2p0, p0−1 ≤ 2p1−2p2, p1+p2 ≤ 2p0+2.

Proof. Let E0 = {(0, 1,−1), (1,−1, 0), (1,−1, 1), (1, 0,−1), (2,−1, 0)}.
(1) Take E01 = {(0, 1,−2), (1,−2, 2), (2,−2, 1)} and E02 = {(1,−1,−1), (1, 1,−2), (2,−1,−1)}.
Case I. p2 < p0/2 + 2

Put E1 = E0 ∪E01 ∪ {(1,−2, 1), (1,−1, 2), (2,−2, 2)} and choose E = E1 ∪E02 if p1− 2p2 = −2

and E = E1 otherwise.

Case II. p2 ≥ p0/2 + 2

Let E = E0 ∪ E01 ∪ E02 ∪ {(0, 2,−2), (1, 0,−2), (2,−2, 0), (2, 0,−2)}.
(2) Take E = E0 ∪ {(0, 1,−2), (1,−2, 2), (1,−2, 1), (1, 1,−2), (2,−2, 1), (2,−2, 2), (2,−1,−1)}.
(3) Using (1) we may assume p1 > p0 + 1.

Case I. 2p1 − p2 ≤ 2p0 − 1

Define E1 = E0 ∪ {(0, 1,−2), (1,−2, 1), (2,−2, 1)}.
Case I.1 p1 − 2p2 ≤ −2

Let E11 = E1 ∪ {(1,−1,−1), (1, 1,−2), (2,−1,−1)}.
Case I.1.1 2p1 − 2p2 ≤ p0 − 2

Put E111 = E11 ∪ {(0, 1,−3), (0, 2,−3), (0, 2,−2), (1,−2, 2), (1,−2, 3), (1, 0,−2), (1, 1,−3),

(2,−3, 2), (2,−2, 0), (2,−2, 1), (2, 0,−2), (3,−2, 0)} and choose E = E111 ∪ {(1,−3, 2)} if 3p1 −
2p2 ≤ 2p0 − 1 and E = E111 ∪ {(1,−3, 3), (2,−3, 3), (3,−3, 2))} otherwise.

Case I.1.2 2p1 − 2p2 > p0 − 2

Let E = E11 ∪ {(2,−2, 2)}.
Case I.2 p1 − 2p2 > −2

Choose E = E1 ∪ {(1,−2, 2), (1,−1, 2), (2,−2, 2)}.
Case II. 2p1 − p2 > 2p0 − 1

Define E2 = E0 ∪ {(0, 1,−2), (1,−2, 2), (1,−1, 2), (2,−2, 1), (2,−2, 2), (3,−2, 1)}.
Case II.1 3p1 − 2p2 ≤ 3p0 − 2

Let E21 = E2 ∪ {((1,−2, 3), 2,−3, 2), (2,−3, 3), (3,−3, 2), (3,−3, 3)} and choose E = E21 ∪
{(0, 2,−3), (1, 0,−2), (2,−2, 0), (2, 0,−2), (3,−2, 0)} if 2p1 − 3p2 ≤ p0 − 3 and E = E21 ∪
{(2,−2, 3)} otherwise.
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Case II.2 3p1 − 2p2 > 3p0 − 2

Let E22 = E2 ∪ {(2,−3, 3), (3,−3, 2), (3,−3, 3), (4,−3, 2)}.
Case II.2.1 2p1 − 3p2 ≤ p0 − 4

Put E221 = E22 ∪ {(0, 1,−3), (0, 2,−3), (1,−3, 4), (1,−2, 3), ((1,−1,−1), 1, 0,−2), (1, 1,−3),

(2,−3, 4), (2,−1,−1), (2, 0,−2), (3,−4, 3), (3,−4, 4), (3,−2, 0), (4,−4, 3), (4,−4, 4)} and choose

E = E221 if p1 + p2 ≤ 2p0 + 2 and E = E221 ∪ {(3,−3, 1), (3,−1,−1), (4,−3, 1)} otherwise.

Case II.2.2 2p1 − 3p2 > p0 − 4

Take E222 = E22 ∪ {(1,−2, 3), (2,−2, 3), (3,−4, 3), (3,−4, 4), (4,−4, 3), (4,−4, 4)}.
Case II.2.2.1 3p1 − 4p2 ≤ 2p0 − 4

Define E2221 = E222 ∪ {(1,−3, 4), (2,−3, 4)}.
Case II.2.2.1.1 p1 − 3p2 ≤ −5

Let E22211 = E2221 ∪ {(0, 1,−3), (1, 1,−3), (2,−1,−1)} and choose E = E22211 ∪ {(1,−1,−1)} if

p1 + p2 ≤ 2p0 + 2 and E = E22211 ∪ {(3,−3, 1), (3,−3, 3), (3,−1,−1), (4,−3, 1)} otherwise.

Case II.2.2.1.2 p1 − 3p2 > −5

Let E = E2221 ∪ {(0, 1,−3), (1, 1,−3)}.
Case II.2.2.2 3p1 − 4p2 > 2p0 − 4

Define E = E222 ∪ {(2,−3, 4), (3,−3, 3), (3,−3, 4)}.
(4) Choose E = E0 ∪ {(0, 1,−2), (1,−2, 1), (1,−2, 2), (1,−1, 2), (2,−2, 1), (2,−2, 2)}.
(5) Using (1) we may assume p1 > p0 + 1 and using (4) we may further assume p1 − 2p2 ≤ −1.

Define E1 = E0 ∪ {(0, 1,−2), (1,−2, 1), (1,−2, 2), (2,−2, 1), (2,−2, 2)} and choose E = E1 ∪
{(1,−1, 2)} if p1 − 2p2 = −1 and E = E1 ∪ {(1,−1,−1), (1, 1,−2), (2,−1,−1)} otherwise.

(6) Choose E = E0 ∪ {(0, 1,−2), (1,−2, 1), (1,−2, 2), (1,−1,−1), (1, 1,−2), (2,−2, 1),

(2,−2, 2), (2,−1,−1)}. 2

Example. Using the same method as in the proof of the last Proposition it can easily be checked

that X3 + p0X
2 + (p0 + 2)X + p0 ∈ C for p0 = 4, 5, 6. By Theorem 3.1 (iii) it is clearly not a

CNS polynomial for p0 = 2, 3.

4 Applications

In this section we apply the known results on cubic CNS polynomials to two classes of algebraic

number fields which have extensively been studied in the literature. For convenience we make

use of the following definition.
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Definition 4.1 Let α be an algebraic integer. We call α a basis of a canonical number system

if the minimal polynomial of α is a CNS polynomial.

4.1 Canonical number systems in simplest cubic fields

Let f = X3 − tX2 − (t + 3)X − 1, where t denotes a positive integer parameter. Let ϑ = ϑ1

denote the root of f with t + 1 < ϑ < t + 1 + 1/t. It is easy to see that the other roots of f are

ϑ2 = −ϑ+1
ϑ and ϑ3 = − 1

ϑ+1 . E. Thomas and M. Mignotte proved the following theorem.

Theorem 4.2 (E. Thomas [18], M. Mignotte [14]) Let t ≥ 3. Then the only integer solutions

of the Thue equation

X3 − tX2Y − (t + 3)XY 2 − Y 3 = 1

are (x, y) = (1, 0), (0,−1), (−1, 1).

From this result it is easy to derive the following theorem (see also I. Gaál [8], Theorem 5.2.1)

Theorem 4.3 Up to translation by an integer the only β ∈ Z[ϑ] with Z[β] = Z[ϑ] are β =

ϑ,−tϑ + ϑ2 and (t + 1)ϑ − ϑ2. In particular, if Z[ϑ] coincides with the maximal order ZK of

the algebraic number field K = Q(ϑ) then up to translation by a rational integer the only power

integral bases are generated by are β = ϑ,−tϑ + ϑ2 and (t + 1)ϑ− ϑ2.

Using this theorem we will establish all bases of CNS in Z[ϑ].

Theorem 4.4 The element γ ∈ Z[ϑ] is the basis of a CNS in Z[ϑ] if and only if

γ = ϑ + n, n ≤ −t− 3,

γ = −ϑ + n, n ≤ −3,

γ = ϑ2 − tϑ + n, n ≤ −t− 5,

γ = −ϑ2 + tϑ + n, n ≤ −1,

γ = ϑ2 − (t + 1)ϑ + n, n ≤ −t− 5,

γ = −ϑ2 + (t + 1)ϑ + n, n ≤ −1.

Proof. For every β listed in Theorem 4.3 we have to find all integers n such that β + n and

−β + n respectively are bases of CNS in Z[ϑ]. First we establish the largest (if β > 0 ) or least

(if β < 0 ) n0 such that all conjugates of β + n0 and −β + n0 respectively are less than −1 (cf.

Lemma 2.2). To simplify the text assume that β > 0. Then for all n ≤ n0 all conjugates of β +n

are less than −1. In the second step we compute the minimal polynomial of β + n0 and check

whether it belongs to C. If not then test the minimal polynomials of β + n0 − 1, β + n0 − 2, . . .
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until one of them, for the first time, belongs to C. For simplicity denote this integer again by n0.

Hence n0 is the largest integer such that β + n0 generates a CNS.

It follows from the proof of the Theorem of Kovács [12] that there exists n1 such that the minimal

polynomial of β + n satisfies for all n ≤ n1 the conditions of Theorem 2.3. One has obviously

n1 ≤ n0. Finally one has to test the elements of the finite set {β + n : n1 ≤ n ≤ n0} to

determine which ones generate a CNS. Notice that in the actual proof we always have n1 = n0,

which considerably simplifies the proof.

After describing the general strategy, we turn to the concrete cases.

Case I+, β = ϑ. We have t + 1 < β1 < t + 1 + 1/t,−1 − 1/t < β2 < −1,−1/t < β3 < 0. The

largest integer n0 such that βi + n0 < −1, i = 1, 2, 3 is n0 = −t − 3. The minimal polynomial

of β − t − 3 is X3 + (2t + 9)X2 + (t211t + 24)X + 2t2 + 12t + 17. It is easy to check that the

conditions of Theorem 2.3 are satisfied for this polynomial. If n = −t − 3 − k, k ≥ 0 then the

difference of the minimal polynomial of β + n and of β − t− 3 is

3X2k + (18k + 3k2 + 4tk)X + 9k2 + 24k + 11tk + t2k + 2tk2 + k3,

thus the conditions of Theorem 2.3 remain true for the minimal polynomial of β + n, too. This

solves the first case.

Case I-, β = −ϑ. As −(t+1+1/t) < −β1 < −(t+1), 1 < −β2 < 1+1/t, 0 < −β3 < 1/t we may

take n0 = −3. The minimal polynomial of −β − 3 is X3 + (t + 9)X2 + (24 + 5t)X + 6t + 19 and

we can conclude that −β + n is a basis of a CNS if and only if n ≤ −3.

Case II+, β = −tϑ+ϑ2. The minimal polynomial of β is X3−(2t+6)X2+(t2+7t+9)X−t2−3t−1.

Using the same order of conjugates as above we have t + 3 < β1 < t + 3 + 1/t, t + 2 < β2 <

t + 2 + 1/t, 1− 2/t < β3 < 1 hence we have to take n0 = −(t + 5). The minimal polynomial of

β − t− 5 is X3 + (t + 9)X2 + (5t + 24)X + 6t + 19. Hence β + n is a basis of a CNS if and only

if n ≤ −t− 5.

Case II-, β = tϑ− ϑ2. As −(t + 3 + 1/t) < β1 < −(t + 3),−(t + 2 + 1/t) < β2 < −(t + 2),−1 <

β3 < −1 + 2/t we may take n0 = −1. The minimal polynomial of β − 1 is X3 + (2t + 9)X2 +

(t2 + 11t + 24)X + 2t2 + 12t + 17. Hence β + n is a basis of a CNS if and only if n ≤ −1.

Case III+, β = −(t + 1)ϑ + ϑ2. It is easy to see that ϑ2 = − 1
ϑ+1 = ϑ2− (t + 1)ϑ− 2, i.e. β = ϑ2.

In Case I+ we proved that ϑ + n is a CNS basis if and only if n ≤ −(t + 3). This implies that

ϑ2 + n is a CNS basis if and only if n ≤ −(t + 3). As β + n = ϑ2 + n + 2 the element β + n is a

CNS basis if and only if n + 2 ≤ −t− 3, i.e. n ≤ −t− 5.

Case III-, β = (t+1)ϑ−ϑ2. Arguing analogously as in Case III+ we obtain that β +n is a CNS

basis if and only if n ≤ −1. The theorem is completely proved. 2
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4.2 Canonical number systems in pure cubic fields

B. N. Delaunay [6]and T. Nagell [15] proved that if d ∈ lN is cube free then the diophantine

equation

(3) X3 − dY 3 = 1

has at most one solution (x, y) ∈ Z2 with xy 6= 0. Moreover, if d is square free then an integral

basis of the algebraic number field K = Q(ϑ), ϑ = 3
√

d is given by 1, ϑ, ϑ2 if d 6≡ ±1 (mod 9)

and 1, ϑ, (ϑ2 ± ϑ + 1)/3 otherwise.

In the first case the index form equation of K is the diophantine equation (3), i.e. for β =

n + xϑ + yϑ2 ∈ Z[ϑ] we have: Z[β] = Z[ϑ] if and only if (x, y) ∈ Z2 is a solution of (3).

Generally, it is hard to decide when (3) has a non-trivial solution, i.e. one with xy 6= 0. But

in the special case d = m3 + 1 this is a simple task because (x, y) = (−m,−1). Therefore if d

is square free and m 6≡ 0 (mod 3) then ±ϑ + n and ±(ϑ2 + mϑ) + n (n ∈ Z) are the only

generators of power integral bases of K.

Choosing m = 3k ± 1, m is certainly not divisible by 3. Then d = 27k3 + 27k2 + 9k + 2. By a

result of P. Erdős [7] there exist infinitely many values of k for which d is square-free. In these

cases ϑ = 3
√

d generates the maximal order ZK of the algebraic number field K = Q(ϑ).

Using these results our aim is to extend the results which S. Körmendi [13] achieved for the

particular cubic number field Q( 3
√

2). We can prove the following

Theorem 4.5 Let m be a positive integer not divisible by 3 such that d = m3 +1 is square-free.

Put ϑ = 3
√

d. Then γ ∈ Z[ϑ] is the basis of a CNS in Z[ϑ] if and only if

γ = ϑ + n, n ≤ −m− 2,

γ = −ϑ + n, n ≤ 0,

γ = ϑ2 + mϑ + n, n ≤ −2m2 − 2,

γ = −(ϑ2 + mϑ) + n, n ≤ −m2 − 2.

Proof. As the case m = 1 has been treated by S. Körmendi ([13], see also [4]) we may assume

m > 1.

Case I+, γ = ϑ + n. The minimal polynomial of γ is X3 − 3nX2 + 3n2X − m3 − n3 − 1. By

Theorem 3.1 (iii) the inequality 3n2 +3n ≤ −m3−n3−3 must hold, which implies n ≤ −m−2.

If n ≤ −m− 2 then −3n < 3n2 < −m3 − n3 − 1, hence the converse follows from Theorem 2.3.

Case I-, γ = −ϑ + n. The minimal polynomial of γ is X3 − 3nX2 + 3n2X + m3 − n3 + 1. Hence

clearly n ≤ 0 by Theorem 3.1 (i) if γ is a CNS basis. On the other hand if n = 0 then γ is a
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CNS basis by Theorem 3.8 (or by direct checking). Finally if n ≤ −1 the assertion follows from

Theorem 2.3.

Case II+, γ = ϑ2 +mϑ+n. The minimal polynomial of β is X3−3nX2 +(3n2−3m4−3m)X +

3m4n − 2m6 − 3m3 − 1 + 3mn − n3. Let γ be a CNS basis and define β = −n − 2m2. Using

ϑ > m we find β > 1 by Lemma 2.2. Thus n has the desired shape. The converse can easily be

derived from Theorem 2.3.

Case II-, γ = −(ϑ2 + mϑ) + n. The minimal polynomial of γ is X3 − 3nX2 + (3n2 − 3m4 −
3m)X + 3m4n + 2m6 + 3m3 + 1 + 3mn−n3. Let γ be a CNS basis. By Theorem 3.1 (ii) we find

n ≤ −m2 and we exclude equality by Theorem 3.1 (i). The assumption n = −m2−1 contradicts

the fact p2 ≤ p0.

Conversely, firstly assume n ≤ −m2 − 3. Then our assertion follows from Theorem 2.3. Finally,

if n = −m2 − 2 then we can easily apply Proposition 3.12 (5) to complete the proof. 2

5 Concluding Remarks

Summing up the results of K. Scheicher and J.M. Thuswaldner [17] and of ours we conclude

that Gilbert’s conjecture holds at least in the following cases:

(1) p1 = −1, 0, 1, p0, p0 + 1,

(2) 1 ≤ p2 ≤ p1 ≤ p0 − 1,

(3) 1 + |p1|+ p2 < p0,

(4) 1 ≤ p1 ≤ p0 − 1 and 0 ≤ p2 ≤ (2p0 − 1)/3.

The problem of characterizing CNS polynomials seems to be a hard one — it may even not be

solved algebraically. Trivially, in case of non linear polynomials the conditions on the roots of the

polynomial stated in Lemma 2.2 do not imply that the given polynomial is a CNS polynomial

(e.g. the roots of the non CNS polynomial X2 − 2X + 2 are 1 ± √−1). The class of CNS

polynomials is not closed under addition (of polynomials of different degrees) or multiplication:

By ([1], Theorem 3) the square of the CNS polynomial X2 −X + p0 is not a CNS polynomial

in case p0 ≥ 5; the sum X3 + 5X2 − 3X + 8 of the CNS polynomials X3 + 4X2 − 5X + 6 (see

Proposition 3.2) and X2+2X+2 (see [9], Theorem 1) is not a CNS polynomial since the element

(1,−1,−1) is periodic.
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[1] S. Akiyama and A. Pethő, On canonical number systems, Theoret. Comp. Sci. 270, 921

– 933 (2002).

15



[2] S. Akiyama and H. Rao, New criteria for canonical number systems, preprint

[3] S. Akiyama and J. M. Thuswaldner, Topological properties of two-dimensional number

systems, Journal de Theorie de Nombres de Bordeaux 12, 69–79 (2000).

[4] H. Brunotte, On trinomial bases of radix representations of algebraic integers, Acta Sci.

Math. (Szeged) 67, 521 – 527 (2001).

[5] H. Brunotte, Characterization of CNS trinomials, Acta Sci. Math. (Szeged), to appear
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[7] P. Erdős, Arithmetical properties of polynomials, J. London Math. Soc. 28, 416-425

(1953).

[8] I. Gaál, Diophantine equations and power integral bases - New computational methods,
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[12] B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Hung. 37,

405 – 407 (1981).
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