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Pisot number system and its dual tiling

Shigeki Akiyama!
Niigata Univ. JAPAN

Abstract. Number systems in Pisot number base are discussed in relation to arith-
metic construction of quasi-crystal model. One of the most important ideas is to
introduce a ‘dual tiling’ of this system. This provides us a geometric way to under-
stand the ‘algebraic structure’ of the above model as well as dynamical understand-
ing of arithmetics algorithms.
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1. Beta expansion and Pisot number system

For this section, the reader finds a nice survey by Frougny [41]. However we give a brief
review and concise proofs of fundamental results to make this note more self-contained.
Let us fixg > 1 and.A = [0, 3) N Z. Denote byA* the set of finite words oved and

by AN the set of right infinite words oved. By concatenatiorp:

a1as ...0ay bbby ... by, = aras...apbibs ... by,

A* forms a monoid with the empty wordas an identity. An element of* is embedded
into AN by concatenating infinite0 . . . to the right.AN becomes a compact metric space
by the distance function

p(alag‘..,blbg.‘.) :27‘j

for the smallest index with a; # b;. A lexicographical order ofd" is given by

aiaz ... <jex biba... if a; < b; at the same index. The shift operator acts contin-
uously onAN by o(ajas ...) = asas ... and the paif A", o) forms a topological dy-
namical system, which is called the full shift ovédr We shall later needl” the set of bi-
infinite words overA. Each element afl” is written as(a;)icz = ...a_1a0 ® aias . . .
where the symbod is used as a usual decimal point which indicates the place where the
index1 starts. In this case the metric is given by

p(...a_1a0oalag...,...b_lbooblbg...) = 27]‘
with the smallest indey > 0 with (a;,a_;) # (b;,b—;) and the shift is defined by

o((an)) = (ans1). For both AN and A%, the closeds invariant subset is called the
subshift
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Thebeta transformatioris a piecewise linear méfs on [0, 1) defined by
Ts: 2z — fx — | Oz

which was shown to be ergodic by Rényi [45]. Parry [42] gave the invariant measure
of this system, which is absolutely continuous to the Lebesgue measure and its Radon-
Nikodym derivative was made explicit. For each reak z; € [0,1), iterating beta
transforms we have

ai az as
Tg:21 — Tg —> Tz — ....

The label over the arrow is defined@s= | 3z; |. One can expand € [0, 1) into

anda; € A. Denote byds : [0,1) > @ — ajaz--- € AY. Thend is order preserving,
thatis,z < y impliesdg(x) <iex dg(y). We confirm a commutative diagram:

0,1) —2— [0,1)

dﬁl ldﬁ @)

AN .AN

Define the realization map:
o0 @
7T:7rﬁ:a1a2-"€AN—>Zﬂ—: e R.
=1

Note thatms is continuous butig is not. Sincerng o dg(x) = z by definition, we
haver;(AY) O [0,1). HoweverAY ¢ ds ([0,1)). If ajas--- € AN is contained in
dg ([0,1)), we say thatias - - - € AN is admissibleA finite word aas . . . a,, of A* is
admissible if its right completionas . .. a,, ® 00--- € AN is admissible. For a given
positivex, there is an integen > 0 with 5~™z € [0, 1), = can be expanded like

y _ a
x:a,mﬂ’”—l—a,mﬂﬁm 1++a0+31_~_

This is thebeta expansiomvhich is a natural generalization of usual decimal or binary
expansion. By abuse of terminologywe sometimes write

dﬁ(l‘) =0-_mad—_—m+1-.-0-100 ® a10203 . ..

or even simply

1The symbol #’ is not in A
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rT=0-_mad_m41..-0_100 ® A10G203 ...

if there is no room of confusion. The expansiofiifgte if there is ar? thata,, = 0 holds
for n > ¢ and we denote by

L =0-—mA_m+41---00 ® Q140203 ...0p.
Set
dg(1—0) = limds(1 — ¢).
10

by the metric ofA". Thends(1 — 0) can not be finite.

Theorem 1([42], [39]). A right infinite wordw = wiws - -- € AN is admissible if and
only if 0" (w) <jex dg(1 — 0) holds for alln = 0,1, .. ..

Proof. Letdg(1l — 0) = cicz .. .. It suffices to show that

W(UH(W)) = an-‘riﬁ_i € [O’ 1)'

By the assumption, there exists atimissible block decomposition

Wn41Wn42 - =C1...C;—-191C1 -+ . Cky—192C1 -+ . C5—193 - - -

whereg; < ¢, andk; > 1. Itis easily seen that

1
7

(e eh—16i) <m(er...cp—1(ck, — 1)) <1—

and therefore

1 1 1 1 1
ﬂ'(wn+1w7,+2)<17%+ﬁkl 17% +W 1—% +:1

Take F C A* and define a subsetr of AN or A% by the infinite words whose
subwords are not itF. Then A is a subshift and any subshift is written in this manner.
ThusF is the set oforbidden wordsA subshift is calledf finite typef there is a finite
setF and itis expressed a$r. A subshiftAr is calledsoficif one can choos& which
is recognizable by a finite automaton. A subshift of finite type is sofic and the sofic shift
is characterized as a factor of the shift of finite type. A sofic shiftis nothing but the
set of infinite labels which is generated by infinite walks on a fixed finite directed graph
labelled by.A (c.f. [40]).

Thebeta shiftX 5 is a subshift ofAZ which is defined to be a set of bi-infinite words
whose all finite subwords are admissinlg; is sofic if and only ifdz(1—0) is eventually
periodic. Such & is designated asRarry number Furtherds(1 — 0) is purely periodic
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if and only if AN is of finite type. In this case, the numb@éiis asimple Parry number

([42], [19]). A Pisot number3 > 1 is a real algebraic integer whose other conjugates
have modulus less than one.Salem numbef > 1 is a real algebraic integer whose
other conjugates have modulus not greater than one and also one of the conjugates has
modulus exactly one. Denote By, the non negative real numbers.

Theorem 2 (Bertrand [18], Schmidt [50]) If 3 is a Pisot number then each element of
Q(B) N R has an eventually periodic beta expansion.

Proof. We denote by3\/) (j = 1,...,d) the conjugates of with 3() = 3 and use the
same symbol to express the conjugate fi4p) — Q(5Y)) which sends: — 20). As
the conjugate map does not increase the denominator of elemee (), it is enough
to show thatfg(x)(j) is bounded for allj. (The number of lattice points in the bounded
region is finite.) This is trivial forj = 1 by definition. Forj > 1, we have

with z; € A. Thus

- i) \n—j I_BJ
> (B9 <\$|+W

=1

‘Tg(x)(j)‘ < |z|+

since|sW)| < 1forj > 1. O

Hence a Pisot number is a Parry number. In [50], a partial converse is shown that if
all rational number irff0, 1) has an eventually periodic beta expansion thes a Pisot
or a Salem number. It is not yet known whether each elemef@(6f) N R, has an
eventually periodic expansion/fis a Salem number (Boyd [20], [21], [22]). See Figure
1 for a brief summary. The finiteness will be discussed in §4.
A Parry numbers is also a real algebraic number greater than one, and other conjugates
are less thamin{|3|, (1 + v/5)/2} in modulus ([42], Solomyak [53]) but the converse
does not hold. It is a difficult question to characterize Parry numbers among algebraic
integers. ([25], [15])

Hereafter we simply safisot number systeno call the method to express real
numbers by beta expansion in Pisot number base. The results like [50] and [18] suggest
that Pisot number system is very close to the usual decimal expansion.

2. Delone set ang3-integers

Let X be a subset dR“. The ball of radius' > 0 centered at is denoted byB(z,r). A
pointz of X is isolatedif there is a= > 0 that B(z,e) N X = {«}. The setX is called
discreteif each point ofX is isolated. The seX is uniformly discretdf there exists a
positiver > 0 such thatB(z, ) N X is empty or{z} for anyz € R?, andX is relatively
denseif there exists a positivé? > 0 such thatB(x, R) N X # ) for anyz € R, A
Delone sets the set irR? which is uniformly discrete and relatively dense at a time. One
can expand any positive real numheby beta expansion:
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Mumber
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Simple Parry number (SFT)
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Figure 1. The classification of Parry numbers

r=0-_mA_m41-..--009A1042 ...

The g-integer part (resps-fractional part) ofz is defined by:[z]s = w(a_y, ... ao)
(resp.(x)g = w(ajaz ...)). Areal number is aj-integerif (|x|)s = 0. Denote byZg
the set of3-integers and puL; = Zs NR,.

Proposition 1. For any 5 > 1, the set off-integersZg is relatively dense, discrete and
closed inR.

Proof. As any positive real numbaris expressed by beta expansion, one can fake1
to show thatZz,r is relatively dense iR, which is equivalent to the fact thats is
relatively dense iRR. Sincerr(a_, ...ap) > 8™ there are only finitely mang-integers
in a given ballB(0, 3™). ThusZz has no accumulation point . This proves thaZg
is closed and discrete. O

From now on, we assume thais not an integer. Thelim, o Tg(1—¢) = 86— 3] €
[0,1) and therefore we consider formafiythe orbit of 1 by the beta transforrii; by
putting7j3(1) = B— [ 8]. By using (1), itis easily seen thal (1) = 7s(0" (dg(1-0)))
unlessT% (1) = 0. As Zg is discrete and closed, we say thaty € Zg is adjacentif

B
there are na € Zg between: andy.

Proposition 2. If x,y € Zg is adjacent, then there exists some nonnegative integer
with [z —y| = TF(1).

Proof. To prove this proposition, we use Theorem 1 and transfer the problem into the
equivalent one ind" under abusive terminology introduced in the previous section. Put
dg(l — 0) = c1cq. ... Without loss of generality, assume that> y, x = a_p, ... ao

21is not in the domain of definition 6fjs.
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with a_,, # 0 andy = b_,, ... by by permittingb_,, ... b_,,.¢, = 0“1, As we are in-
terested i —y, we may assume that ,,, = 0 since otherwise one can substitutendy
by (a—m —b_m)a_me1...a0 @and0b_,, 41 ... bo. (Both of them are admissible by The-
orem 1.) Since: andy are adjacenty_,,, = 1 since otherwisé€a_,,, — 1)a_,,+1 ... ag

is admissible and lies betweanandy. Next we see that_,,,.1 = 0 since otherwise
am(a_mi1 — 1)...aq is between: andy. In the same manner, we see that 10™.

If b_sa1...b0 <lex C1C2...Cm thencies ... ¢y, lies between: andy, by the lexico-
graphical order. This is not possible. Therefore we must llagye) = 10™.00... and
dg(y) = 0cica...¢y.00.... Thus we have

z—y=pa""(7(10™) — 7(Ocica...cm))
=7(Cm+1Cmt2---)
= (0™ (dg(1 — 0))) = T™(1).
O

The real numbep > 1 is aDelone numbe? if {T7(1)},—0,12,.. does not ac-
cumulates to0. If 3 is a Delone number, the#s is uniformly discrete withr =
min,—og1,... Tg(l). With the help of Proposition 1 and 2 is a Delone set if and only if
[ is a Delone number. It is clear that a Pisot number is a Delone number since eventually
periodicity of dg(1 — 0) is equivalent to the fact thdﬂ-‘g’(l)}n:o’lg}m is a finite set.
Verger-Gaugry proposed a working-hypothesis that any Perron number is a Delone num-
ber (c.f. [19], [57], [29] ). However it is not yet known whether there exists an algebraic
Delone number which is not a Parry number. By ergodicity, when wefixé(z) is al-
most ‘normal’ with respect to the invariant measure. This means{ﬂ’@@x)}nzo’l,gw
is dense in0, 1) for almost allz. Therefore one might also make a completely oppo-
site prediction that an algebraic Delone number is a Parry number. Schmeling [49] had
shown a very subtle result that the set of Delone numbers has Hausdorff diménsion
Lebesgue measufeand dense but meager [ih, co). Which conjecture is closer to the
reality?

3. Definition of Pisot dual tiling

For a point = (&;)icz = ...&-26-1&0 ® £&1&2 ... in the subshift A, o), let us say
the left infinite word. . . £_2£_1£pe theinteger partande&;&s . .. thefractional partof
&. To make the situation clear, here we put the decimal poionh the right/left end to
express an integer/fractional part. The symbshould be neglected if we treat them as
aword inA4*. If £_; = 0 for sufficiently largei, the integer part is expressed by a finite
word and if¢; = 0 for large: then the fractional part is written by a finite word.

For an admissible finite or right infinite wotd = wiws> . . ., denote byS,, the set of
finite integer parts._,,a_,+1 . . . age such that the concatenationaf,,a_,,11 . . . age
andw is admissible, i.e.,

S, = {a_ma_m+1 ...ap e | A_MO—m41 ---09 Dwiwa. .. is admISS|b|¢ .

3Probably we may call it also a Bertrand number. See the description of Prop.4.5 in [19].
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This setS,, is thepredecessors sef w. It is shown that the number of distinct predeces-
sor sets is finite if and only the subshift is sofic.

Since the realization maps; : AN — [0, 1) is continuous, the set of fractional parts
is realized as a compact 46t 1). However the set of integer parts is not boundettin
Thurston embedded this set of integer parts into a compact set in the Euclidean space in
the case of Pisot number system ([56]). We explain this idea by the formulation of [2]
and [4]. Let3 be a Pisot number of degréeand3) (i = 1,...,r;) be real conjugates,
BD 3@ (i = ry +1,...,r1 4+ 13) be |mag|nary conjugates wheg?) = 3. Thus
d = ry + 2r,. Define a mapI> Q(B) — Ré1

O(x) = (93(2), () §er1+1’ c\xyx(nJrl)7 s §Rx(r1+r2), S:L’(TH”"Z)),

It is shown tha®(Z[3] N R,.) is dense iR~ ([2]). Sinces is a Pisot numbe®(S,,)
is bounded by the Euclidean topology. Take a closuré (@, + w) and call itZ,,. One
can also write

= { D(w) + Z a,Z@(ﬁi) OOt - - G0 D wWiws ... IS admissible} .

A Pisot unitis a Pisot number as well as a unit in the ring of algebraic intege@ it).

If beta expansions are taken over all elements Bf3] N [0, 1) (i.e. the fractional parts

of Z[3)NRy.), we trivially haveR¢~! = J_ ®(S,, +w). If 3is a Pisot unit, the compact
sets®(S,, +w) form a locally finite covering ofR?~!, we getR4~! = |J_ 7., ([4]).

This is a covering oR%~! by 7,,. If it is a covering of degree one, the predecessor set
of a sofic shift is realized geometrically and give us a tilingRéf ! by finite number of

tiles up to translations. Moreover the congruent tile must be translationally identical and
this tiling has self-similarity. Indeed we have

ﬁ*lSw - U (; + Sa@w) .

a®w : admissible

The sum on the right is taken over all€ A so thata ¢ w is admissible. The map
z — 3™z from Q(B) to itself is realized as an affine map,, on R?~! satisfying the
following commutative diagram.

The explicit form ofG,,, is
Gm($27$3, e 7xd) = (3}'2,.@3, Tt 7xd)A77L7

whereA,, isa(d — 1) x (d — 1) matrix:
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(B&)™
(8)m 0
Ay = (5(r1))m
By
B,,
with
B ( RUBUED)=m) ((prr+a))=m)
T ASS((BH) T R((BED) T
forj =1,...,r2. Gy, is contractive ifm > 0 and expansive ifn < 0 by a suitable

norm onR?%~1. Applying G_1, the tileZ,, emerges and is subdivided like

G(T) = | Tase- @
aPw

Therefore the sofic shift is geometrically realized as a self-affine tiling. In [56], under
different notation he wrote,

It does not quite follow that thé(,, determines a tiling ofS, for they could in principle
have substantial overlap. (skip) However, in many cases of this construction, the shingling are
tilings, and the tiles are disks’.

Thurston expected that they should give a tiling in many cases, i.e. the degree is one,
and 7, may be homeomorphic to @— 1 dimensional disk. The former statement is
conjectured positively for all Pisot units but the later has many counter examples.

4. Examples in low degree cases

Let us explain the Pisot dual tiling through concrete examples in degree two and three.
It is already non trivial in the quadratic case and generates naturally a special type of
sturmian sequences and substitutions./Pst(1 + /5) /2 and letd be a positive root of
x3 — 2% — 2 — 1. Then both of them are Pisot units and we dgl — 0) = (10)> and
dp(1 — 0) = (110)°°. Thus they are simple Parry numbers. Wrjte= (1 — /5)/2 and
0’ € C\ R; one of the complex conjugates @f

For understanding, let us begin with the tiling &f. by the direct embedding of
fractional parts. Start with the fundamental tile

A= { i ain”"
i=1

This is symbolically written asl = {ea;a, ... }. This is nothing but a realization of the
fractional parts ofX,, by the convergent power series and by the definition of beta ex-
pansion we havel = [0, 1]. Note that0101 ... is not admissible but the corresponding

a; € {0, 1},aiai+1 = 0} .
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beta shiftX,, does have such right infinite sequence and hence the right emgst be
included.

Multiplying n to A behaves as a shift on the symbolic space and it yields a set
equation:

nA=AU (1+ B), nB=A

by classifying the left most symbd),or 1. Here we haveB = {z € A | a; = 0}. The
reason thaB has additional restriction is that the left end symbahust be followed by
0 sincell is forbidden. This give® = [0,1/7], andA = [0, 1] and1+ B = [1,1+1/7]
are adjacent. One can omit the translation and wiitastead ofl + B. In fact this makes
clearer the situation. The tild grows to the right tod B by the effect of multiplying;
which is a concatenation of two tiles of different length. The Blerows toA by xn.
This is nothing but a Fibonacci substitutioh — AB, B — A and the half lineR
is tiled aperiodically likeABAABABAABAAB ... which forms the fixed point of
Fibonacci substitution. In general dfis a Parry number, then the corresponding subshift
is sofic and one have an aperiodic tilingef. by finite number of tiles through beta
expansion. This construction is well known which we coindirect tiling.

Now we introduce aual tiling by embedding integer parts. The fundamental dual
tile is

T:']’A = {i&?_zn”

=0

xr_; € {0, 1}, T_i_j—1 = 0}

This extends beta expansion to the opposite direction and symbolically we may write:

{. . x_gm_gx_lxoo}

However it is not convergent in the usual baseve user’ instead to have the conver-
gence. The geometric feature is sometimes troublesome but in this case it is easy to see
7T = [-1,n] aninterval. Let us makeréight shiftby dividing by’ to have

() 'T=TUT,

The set7; is symbolically{...z_sx_oz_;.1}, i.e., the set of right infinite expansion
with a fixed fractional partl. As 11 is forbidden,z_; = 0. Therefore

M) T=TUWT+9")
holds. Put/ = 7 = [-1,1/n]. Asy’~! = —n and
0T +0" = [-1=n1/n—n = [-n*-1],
the interval7 grows toU7 by the right shift. The new tilé/ is concatenated to the
left of T'. The situation is explained by an monoid anti homomorphison two letters

{T,U} (i.e. it satisfiesr (xy) = o(y)o(x)) with

o(T)=UT, oU)=T.
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Iteratingo the tile grows like

UT
UTT
UTU TT
UTU TTUTT
UTUTTUTU TTUTT
UTUTTUTU TTUTTUTUTTUTT
UTUTTUTUTTUTTUTUTTUTU TTUTTUTUTTUTT

The growing direction is alternating arfdgoes to the right and to the left each 2 times.
This bi-infinite sturmian sequence satisfies several interesting properties. One of the most
illuminating might be thecut sequencePrepare ay lattice together with all horizontal

and perpendicular lines passing through integer points. Draw gliaex/n and put

the symbol7 on the intersection of each perpendicular lines and the sybilmn that

of each horizontal lines. Let us think that at the origin the line pass through very little
above it and put/7. Then we get the cut sequence (See figure 2) which is identical to
the above mentioned bi-infinite sturmian sequence. This is one of the general property
of sturmian sequence and it is occasionally named after this property. (c.f. [23], see [55]
for higher dimensional cases).

T

u

-

UJ/[

Figure 2. Cut sequence

The essential reason of this phenomenon is that this sequence is a coding of
dimensional irrational rotatiom — n’z. Proceed in the same way in the casé.dPut

T\ = {Zx_i(ﬁ’)i

which is a compact set in the complex plane. Similarly the fundamental tile grows like

T_; € {O, 1}, T, 1=T_ ; o=1=—x_; 3= O}
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(9/)—17& =T UT;
OV T =T\UT, 1 UT o UT
(9/)73'5 =T UT1UT01 UT11UT o1 UT 101 UTo11.

See the Figure 3.

Figure 3. Rauzy Fractal

There are three tiles up to translations. As in the Fibonacci dual case, the origin is
an inner point of7, it is shown that the complex plane is aperiodically tiled by these
kind of tiles. This tiling may be regarded agadingof the irrational rotatiorr — 6'>.
Unlike Fibonacci shift, this coding is not realized by words and the geometric nature is
not simple ([9]).

Another example by the minimal Pisot number: a root:df— x — 1 is shown in
Figure 4. In this caseis(1 — 0) = (10000)°°.

5. Finiteness condition implies non overlapping

The property of number systems are intimately related to the tiling introduced in 83, 84.
Especially whether they give a tiling, a covering of degree one, or not.

Let Fin(8) be the set of finite beta expansioh$n(3) clearly consists of non nega-
tive element ofZ[1/3]. (Note thatZ[3] C Z[1/5] as is an algebraic integer.) Frougny-
Solomyak [27] asked if
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100001 b [
S|

0000001 2

S
m{

-

xf"’ﬁ

Figure 4. Minimal Pisot case
Fin(8) = Z[1/8] N R,

holds or not for a given number system. We say that it satisfies a finiteness condition (F).
A weaker conditiorZ NR,. C Fin(/3) implies thatg is a Pisot number ([3]). There-

fore the finiteness (F) holds only whehis a Pisot number. The converse is not true.

Especially if the constant term of the minimal polynomialtis positive, thens has a

positive other conjugate and hence (F) does not hold. Further there exists an algorithm to

determine whether (F) holds or not ([1]). The relationship is depicted in the Figure 1.
Several sufficient conditions for (F) are also known. Hg(1l) = cica..., if

¢; > ¢;11 holds for each theng is a Pisot number and any number which is expressed

as a polynomial of3 with non-negative integer coefficients belongskia(3). Addi-

tionally if 3 is a simple Parry number, theh satisfies (F). Let us call this type ¢f

of Frougny-Solomyak type ([27]). Let? — ag_12% ! — ag_22%2 — - — ag be the

minimal polynomial of3 and ifa; > 0 anday_1 > ag+ay +- - - +aq_o thens satisfies

(F). This is called of Hollander type ([33]). The minimal polynomial of cubic Pisot units

with the finiteness (F) are classified by the following ([3]):

1. 22 —ar? —(a+ 1z —1,a>0

2. 22 —ax? —bx—1, a>b>1 (Frougny-Solomyak type)
3. 2% —az? -1, a>1 (Hollander type)

4. 23 —axl4+x—1,a>2

If 3 is a Pisot unit with the finiteness (F), the origin®f ! is an inner point of
7, and otherT,, (w # \) does not contain the origin. An inner point of a tile is called
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exclusivdf it it does not belong to other tiles. As above, if the origin is an exclusive inner
point of 7, the tiling is generated by successive use of (2):

G—n(,];) = U 7;1,n+1a,n+2...a069w~

a4—pt10—n+t2...00DW

A general Pisot number does not always satisfy this finiteness (F). In such cases, the
origin belongs to plural tiles. Even in this case, if the next weaker finiteness is valid, then
one can construct the similar tiling:

(W) Foranye > 0andz € Z[1/8] N R, there existz,y € Fin(5) suchthat =z — y
and|y| < e.

More precisely, let us denote 15y the elements oZ[3] having purely periodig-
expansions. Then the origin is sharedfywith w € P and other tiles can not contain
0. Permitting an abuse of terminology, the origiis an exclusive inner point of a union
U, ep Zo- Using this, the condition (W) is equivalent to the fact that the farfify, :

w € [0,1)NZ[3]} forms a covering oR?~! of degree one, i.e. a tiling. Especially under
(W), the boundary of, has(d — 1)-dimensional Lebesgue measure zero ([4]):

Theorem 3([2],[4]). Let S is a Pisot unit with the property (W). Then

R = | T
w€eZ[BIN[0,1)

is a tiling.

This weak finiteness (W) is believed to be true for all Pisot numbers (Sidorov [51],
[52]), which is an important unsolved problem. In [8], (W) is shown for several families
of Pisot numbers, including cubic Pisot units.

For an example of the Pisot unit with the property (W) but not (F), lef is a
cubic Pisot unit defined by3 — 322 + 2z — 1. It gives a tiling in Figure 5. In this case
dz(1 —0) = 201> and we denote by = 1> =111....

The condition (F) was applied in many different contexts (c.f. [54], [13], [34], [17],
[28]). Characterization of Pisot numbers with the property (F) among algebraic integers
is an important difficult problem. One can transfer this problem to a problem of the
shift radix systenfSRS for short), a concrete and simple dynamical systefn. In
fact, SRS unifies two completely different number systems: Pisot number systems and
canonical number systeniBhe study of SRS is an ongoing project for us ( [5], [6], [7],
[11], I recommend [12] for the first access).

6. Natural extension and purely periodic orbits

For a given measure theoretical dynamical systemTy, u1,8:), if there exists an
invertible dynamical system(Y,T5, uo, B2) such that(X, T, u1,B1) is a factor of

(Y, T, uo, Ba) then (Y, Ty, o, Bo) is called anatural extensiorof (X, T4, u1, B1).
There is a general way to construct a natural extension due to Rohlin [46]. However
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Figure 5. 23 — 322 + 2z — 1

if you wish to answer number theoretical problems, a small gowH extension is ex-
pected, which keeps its algebraic property of the system. Pisot dual tiling gives a way to
construct such a natural extension(ftf, 1), 7;3) equipped with the Parry measure.

Assume thapi is a Pisot unit with the property (W). A8is a Parry number, the set
{T3(1) [n=0,1,2,... }is finite. Number them like

O<t1i <ta<---<tp=1

and set, = 0. Take au € [t;,t;+1). Then by Theorem 1 and the construction of Pisot
dual tiling, 7,, — ®(u) = ®(S,,) does not depend on the choicewofintroduce

-1
Xo = JT + (1) x [tis tirn)
=0

and the map acting oﬁg:
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Ty : X5 3 (,y) = (Gi(x) — &(|By)), By — |By)) € X.

and consider the restriction of theALebesgue meagyren R? and the collection3

of Lebesgue measurable sets. THEn preserves the measure singeis a unit and
(X3, T3, 1ta, B) gives an invertible dynamical system. This extended dynamical system
gives a ‘bi-infinite’ extension of[0, 1), 7) and is a factor of the beta shiffs and the
following diagram commutes:

X; —2— Xg

R —— Ry 3

where

o(...a1ap®ajas...) = ( lim —®(a_p,...ape), m3(eaias. .. )) .

m—00

andres(z,y) = y.

This extension is realized in thedimensional Euclidean space agmbdsince® is
an additive homomorphism defined through conjugate maps, which are ring homomor-
phisms. By definitionX s consists of several cylinder sets7;, + ®(t;)) X [ti, tiv1),
and this natural partition gives a Markov partition. The Parry measu(@®of), T) is
retrieved as a restriction of the Lebesgue meagyre

As an application, the purely periodic orbitsGf is completely described. Using
our formulation, we have

Theorem 4([32], [31], [38], [37]). An element: € Q(5) N [0, 1) has a purely periodic
B-expansion if and only if®(x), z) € Xp.

fﬁ is almost one to one. The main part of the proof of this Theorem is to discuss the
intersection of two cylinder sets, the boundary problem. In fact, this is always a problem
for a Markov partition. As we wish to have an exact statement, such set of measure zero
is not negligible.

In this case, we can show that there are no elem@ffy N [0, 1) on such intersec-
tion. To show this, the main idea is simple. 9?13; is compact, there are finite points in
)?5 which correspond to elements @{(5) N [0, 1) having a fixed denominator. We can
easily show tha(l“ﬁ is surjective. But surjectivity and injectivity are equivalent for a finite
set. Therefor&“@ is bijective on the set of points i ; which correspond t@(3)N[0, 1).

On the other hand, bijectivity breaks down only on the cylinder intersection.

To know more on periodic orbits, we need to give an explicit shap& aflf g is

a quadratic Pisot unit),?ﬁ is a union of two rectangles and the shape is quite easy. For
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cubic or higher degree Pisot units, the tile has a fractal boundary. We shall discuss a way
to characterize the boundary in the last section. For non unit Pisot numbers, we also have
to take into account the-adic embedding (c.f. [16]).

As the Markov partition based on humber systems are simple and concrete, when
the topological structure is not complicated, one can deduce geometric information from
algebraic consideration on number systems and conversely from the fractal nature of tiles
we deduce some number theoretical outcome. For example, in [1] it is shown that

Theorem 5. If a Pisot unitg satisfiegF), the beta expansion of sufficiently small positive
rational numbers is purely periodic.

This is just a consequence of the fact that the origin is an exclusive inner pdift of
under (F) condition. For a concrete case, we can show a strange phenomenon ([10]):

Theorem 6. For a minimal Pisot numbe#, the supremum of that all elements of
[0, c]NQis pure is precisely computed B$6666666608644067488 . . .. Moreover there
exists an increasing sequeneg < a; < az < ... lying in (0,1), that all rationals in

[a4i, aqiv1] IS NOt pure and all rational i$a4;42, as;13] IS pure.

The later statement reflects the fractal structure of the bounddPy ehd perhaps
it is not so easy to obtain this conclusion in a purely algebraic manner. This type of
tight connection between fractal geometry and number theory is one of the aim of our
research.

7. Periodic Tiling and Toral automorphism

Arnoux-Ito [14] realized Pisot type substitutions in a geometric way to higher dimen-
sional irrational rotations. It is also applied to higher dimensional continued fractions.
The idea dates back to Rauzy [44], and the fractal sets arises by this construction is
widely calledRauzy fractal(c.f. [14], [36], [24], [43], [26]). The addition ofi on the
number system is realized as a domain exchange acting on the centfg| tiethe
aperiodic tiling defined in the previous sections. Further, according to their theory, we
can tile the spac®?~! periodically (!) as well by the central til&, and its translates
under a certain condition. The multiplication Byin the number system gives rise to an
explicit construction of Markov partition of automorphisms(&f/Z)¢ associated to the
companion matrix of the Pisot unit For this construction, the existence of the periodic
tiling is essential. Therefore it is worthy to give a direct construction of periodic tiling
from the view point of3-expansion. This section is devoted to this task.

Let 3 be a Pisot unit of degreéwith the property (W). A crucial assumption in this
section is that cardinality of 75 (1) [ n = 0,1,... } \ {0} is equal tad. (By considering
the degree of the minimal polynomial 6f the cardinality is not less thah) Setds(1 —
0) = cico.... Itiseasy to see thdtl, T(1), T5(1), . .. ,Tgfl(l)} forms a base df,[ ]
as aZ-module. Put,, =1 — Tg(l) =1-—7m(cht1Cnt2...)and

-1
W(ﬁ):{ZfiTé(l) fi € Z, fo+f1+"'+fd1>0}.
i=0
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Similarly asZ[3] "R, one may identifyi¥’ (3) with lattice points inZ? lying above a
fixed hyperplane and (W (3)) is dense iR4—1.

Lemmal. P:={3F 0:0 | b; € Zy} C W(B)

Proof. Consider the regular representation of the multiplicationlwith respect to the
basis{1,7j5(1),...,T§ (1)} AsT5" (1) = BT4(1) — cj4+1, one have

1 Cll
T5(1) e 1 Tp(1)
3 T5(1) [ fes 1 T3(1)
Tg—'1(1)  * Tg‘ll(l)

where * are filled by zeros but appears at most once. The associated matrix is non
negative, we are ready. O

W(B)N(Z[B]NR.) correspond to lattice points in the cone given by the intersection
of two hyperplanes. Lemma 1 supplies a large subset in this intersection. Figure 6 shows
the regions in the case 6f= (1 + /5)/2 where(z, y) corresponds ta + 3y.

Figure 6. W (8) andZ[3]+

Proposition 3. The set of3-integers forms a complete representative systefy ¢f)
(mod MZ+roZ+ -+ rq17).

Proof. As shown in Proposition %g is a uniformly discrete set iR, that the distance

of adjacent points are ifil, 75(1), T3(1), ..., 75~ ' (1)}. Therefore* Z} W (3). We
write

Z; = {207217227- .. | zi < Zi—l—l}

4This proves Lemma 1 again.



18 S. Akiyama / Pisot number system and its dual tiling

and consider the order-preserving bijectionzg — {0,1,2,...} defined byz; +— i.
Note that by taking module,Z + r2Z + - - - + r4—17Z, all the distance of adjacent points
are identified withl. Therefore the image of the majs uniquely determined by

Wz)=2z (mod MZ+reZ+---+re_1Z).

On the other hand, for any element= Zf;ol fiT5(1) € W(3), there exists a unique
non negative integet such thatw = k (mod r1Z + roZ + --- + rq—1Z) given by

d—1
k=20 fi O
The next Corollary seems interesting of its own.

Corollary 1. For any =z € Z[f], there exist a uniqugy € Zg such thatz = y
(mod mZ+ryZ+ -+ rqg_12).

Proof. By definition, Z[5] = —W (5) U W (). Therefore we can naturally extend the
map. in the proof of Proposition 3 ta:: Z[§] — Z and the assertion follows. O

By this Proposition 3, through the mdpwe have
d—1
W (B)) = U d(Z5) +Zmi‘1>(ﬁ‘)~
=1

Taking the closure ifR?~! we get a periodic locally finite covering:
R =Ty + ®(r)Z 4 - + B(rqg_1)Z.

Theorem 7. If 3 is a Pisot unit with (W) and the cardinality ¢ (1) [n =0,1,... }\
{0} coincides with the degreeof 3, then

R =Ty + ®(r)Z 4 -+ B(rqg_1)7Z.
forms a periodic tiling.

Proof. Take an elementy € W () \ Z}. We wish to prove tha®(w) is not an inner
point of 7). Assume the contrary thét(w) is an inner point.

First we prove the case when> 0. Choose a sufficiently largesuch thatb (5% +
w) € Inn(Ty) and (w)s = (B* + w)s. This is always possible. Indeed if the beta
expansion ofv > 0iSa_,, ...ag ® ajas ... With ajas - - - # 0°°, then we may choose
k > m+d+1suchthap® +w = 10 "™ '@a_,,...ap®a1as ... is admissible. This
means thatv + g% ¢ Z;. However this is impossible siné&(w + %) € T,,q,... and
we already know thafT,, : w € Z[5] N [0, 1)} forms a tiling by Theorem 3. This proves
the casev > 0. Second, assume that< 0. Recall that3* € W (3) fork =0, 1,... by
Lemma 1. By Proposition 3 there exi$tsz (my,...,mq_1) € Z ! andy € Z; such
thatw = y + > m;r; with the beta expansiop = a_,, ...ape. Choosek as above,
then® (5% + w) is still an inner point of, andg* +y = 10F "™ S a_,,...age is
admissible. The* +w = g% +y+ > m,r; & Z} by the uniqueness of the expression
of Proposition 3. Therefore without loss of generality we reduce the problem to the first
case thatv > 0. O
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Coming back to the exampéethe root ofr® —z2—x—1. Thenr; = 1-Ty(1) = 673
andry = 1 — T2(1) = =2 4+ 0~ and we have a periodic tiling:

C=T\+03Z+ (O 2+073Z

depicted in Figure 7. In the casé—32%+2x—1, we haver; = 1-T3(1) =281 —372
andry =1—T5(1) = =" — 5>, Figure 8 is the corresponding figure.

Figure 7. Periodic Rauzy Tiling
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Figure 8. Periodic sofic Tiling

8. Boundary Automaton

The boundary of tiles is captured by a finite state automaton (more precisely a Buchi Au-
tomaton which accept infinite words) in several ways. We wish to describe one method,
whose essential idea is due to Katai [35]. Under the condition (), : w €

Z[B] N [0,1)} forms a covering of degree one Bf—1, and the boundary of the tile is
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a common point of two tiles. Define a labeled directed graph on the vefiggsby
drawing edges

alb
20 —/ 21

whenever two verticesy, z; satisfyzy = 6821 + a — bwith a,b € A. Labels belong to

A x A. An essentiabubgraph of a directed graph is a subgraph such that each vertex has
at least one incoming and also outgoing edge. Take a sufficiently large interval containing
the origin and a large constaBt Consider an induced subgraph by vertices ttatls in

the interval and®(z)| < B. Then the essential graph of this subgraph does not depend
on the choice of the interval anfd provided they are large enough. SuBhand interval

is explicitly given:

5]
= 35 a1 — |80

On the other hand, the admissible infinite word of beta shift is described by an automaton.
By a standard technique to make a Cartesian product of two automata, one obtain a finite
automaton which recognize common infinite words.
The infinite walks attained in this manner give us the intersed@on 7., (w # A)
in terms of infinite words. Therefore it gives the boundaryZgf By this automaton the
boundary of7,, is given as an attractor of a graph directed set. This automaton, called the
neighbor automaton, plays an essential role in the study of topological structure of tiles.
If there is a conjugate of with modulus close td, then the size of neighbor au-
tomaton becomes huge. This is an obstacle to investigate some property of a family of
tiles. If we restrict ourselves to the description of the boundary, there is a better way to
make a smaller automaton, the contact automaton (c.f. [30], [47], [48]).
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