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Abstract

Shift radix systems provide a unified notation to study several
important types of number systems. However, the classification of
such systems is already hard in two dimensions. In this paper, we
consider a symmetric version of this concept which turns out to be
easier: the set of such number systems with finite expansions can be
completely classified in dimension two.

1 Introduction

Shift radix systems, defined in [4], provide a unified notation for canonical
number systems (for short CNS) as well as β-expansions. Both concepts are
generalisations of the well-known b-ary expansions of integers.

Let d ≥ 1 be an integer and r = (r1, . . . , rd) ∈ Rd. With r we associate a
mapping τ̃r : Zd → Zd in the following way: if z = (z1, . . . , zd) ∈ Zd then
let

τ̃r(z) = (z2, . . . , zd,−brzc), (1.1)

where rz = r1z1 + · · ·+rdzd is the inner product of the vectors r and z. Then
(Zd, τ̃r) is called a shift radix system (for short SRS) on Zd. From (1.1) it
follows that τ̃r(z) = (z2, . . . , zd+1) if and only if

0 ≤ r1z1 + r2z2 + · · · + rdzd + zd+1 < 1. (1.2)

It is an important problem for CNS and β-expansions to determine
whether or not each number admits a finite expansion. In SRS language,
it translates to one question:

For which r, do all orbits of (Zd, τ̃r) end in 0 = (0, . . . , 0) ?
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Unfortunately, already for d = 2, this seems to be a hard problem, though
in [5], a partial answer is given. A main difficulty arises when the polynomial
xd + rdx

d−1 + · · · + r1 has a root close to the unit circle.
In the present paper, we will study a ‘symmetric’ version of SRS. We

consider a mapping

τr(z) = (z2, . . . , zd,−brz + 1
2
c) (1.3)

instead of (1.1). Therefore, we obtain a condition

−1
2
≤ r1z1 + r2z2 + · · · + rdzd + zd+1 < 1

2
(1.4)

instead of (1.2). Then (Zd, τr) is called a symmetric shift radix system (for
short SSRS) on Zd. Let

Dd := {r ∈ Rd : ∀ z ∈ Zd, the sequence (τ k
r (z))∞k=0 is eventually periodic},

D0
d := {r ∈ Rd : ∀ z ∈ Zd, ∃ k > 0 : τ k

r (z) = 0}.

Our aim is to describe as precisely as possible the sets Dd and D0
d. For d = 1,

we have:
D1 = [−1, 1] and D0

1 =
(
−1

2
, 1

2

]
. (1.5)

Since τr(x) = −brx+ 1
2
c, both equalities are almost trivial. In fact, to deduce

the second one, we just have to look at orbits τn
r (±1), n = 1, 2, . . . . 1

Curiously the minor change from (1.1) to (1.3) affects substantially the
behaviour of the system. The above finiteness problem for d = 2 is satisfac-
tory settled in Theorem 5.2 by giving an exact shape (Figure 1) of D0

2, which
forms the main result of this paper. The difficulty in d = 2 disappears in
this case. An essential reason is that the corresponding roots stay far inside
the unit circle when we deal with D0

2. Theorems 2.2 and 3.8 illustrate the
strength of this result.

On the other hand the change from (1.1) to (1.3) gives rise to changes of
the digit sets of the number systems. They are symmetric canonical number
systems and symmetric β-expansions. By considering a ternary expansion
using digits {−1, 0, 1} instead of {0, 1, 2}, we can easily imagine this change
in the case of canonical number systems. We shall discuss basic facts on the
symbolic system associated with this expansion in §3. See [10, 17, 22, 23] for
results on usual β-expansions.

Note that
τ ′
r(z) = (z2, . . . , zd,−

⌈
rz − 1

2

⌉
) (1.6)

defines a slightly different system. However, it is isomorphic to the one
obtained from τr through an involution correspondence Zd 3 z 7→ −z ∈ Zd.
Obviously, the sets Dd and D0

d are identical for both systems.

1This can also be seen as a corollary of Theorem 5.2.
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2 SSRS and symmetric CNS

The only difference between symmetric CNS and usual CNS is the set of
digits. Let

P (x) = xd + bd−1x
d−1 + · · · + b0 ∈ Z[x]

with b0 6= 0 and R = Z[x]/P (x)Z[x]. Define a digit set N = [− |b0|
2

, |b0|
2

) ∩ Z
which consists of |b0| consecutive integers.

We say that an element of R has a finite representation, if it admits a
representation of the form

`0 + `1x + · · · + `hx
h

with `j ∈ N for 0 ≤ j ≤ h. This representation, if it exists, is unique since N
forms a complete residue system of R/xR. Actually the digits are determined
from `0 to `h by the so called backward division algorithm: letting

z = z(0) = z0 + z1x + · · · + zd−1x
d−1 ∈ R, zj ∈ Z,

we first get `0 ∈ N by z0 ≡ `0 (mod b0). Then `0 is a unique choice in N
such that z(0) − `0 ≡ 0 (mod x) and one put z(1) := (z(0) − `0)/x. Iterate this
process and define z(n) ∈ R by z(n) := (z(n−1) − `n−1)/x with zn−1 ≡ `n−1

(mod b0). Then we obtain

z(0) = `0 + `1x + · · · + `n−1x
n−1 + xnz(n).

Thus, z admits a finite representation, if and only if there is an n with
z(n) = 0.

The numbers `j = `j(z), j ≥ 0, are called the digits of z with respect to
(P (x),N ). The pair (P (x),N ) is called symmetric canonical number system
(for short SCNS) in R, if each z ∈ R has a finite representation. In other
words, a SCNS requires, that for each initial value z ∈ R, the backward
division algorithm terminates in finitely many steps.

Theorem 2.1 (cf. [4, Theorem 3.1]) Let P (x) := xd + bd− 1x
d−1 + · · ·+ b0 ∈

Z[x] and N = [− |b0|
2

, |b0|
2

) ∩ Z.2 Then (P (x),N ) is a SCNS if and only if

(r1, . . . , rd) :=
(

1
b0

, bd−1

b0
, . . . , b1

b0

)
∈ D0

d.

We omit the proof since it is identical to [4, Theorem 3.1]. When b0 is
negative, the corresponding system comes from (1.6) instead of (1.4).

Generalising a result of Kátai [18] for Gaussian integers, we have

2Instead, one may take (− |b0|
2 , |b0|

2 ]∩Z which corresponds to the isomorphic system by
the involution z 7→ −z.
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Theorem 2.2 1. (x + a,N ) is a SCNS if and only if a ≥ 2 or a < −2.

2. (x2+Ax+B,N ) is a SCNS if and only if one of the following condition
holds

(a) |A| < 1 + B/2 and |B| ≥ 2,

(b) A = 1 + B/2 and |B| > 2.

This is a consequence of Theorems 5.2 and 2.1 for d ∈ {1, 2}. For instance,
if d = 2 we have

− 1

B
− 1

2
<

A

B
≤ 1

B
+

1

2
and

1

B
≤ 1

2
.

Example 2.3 (x2 + 2x + 2, {−1, 0}) is a SCNS while (x2 − 2x + 2, {−1, 0})
is not. These correspond to (1

2
, 1) ∈ D0

2 and (1
2
,−1) 6∈ D0

2 in Figure 1. For
example, compare

1 − x ≡ −1 − x − x2 − x3 − x4 (mod x2 + 2x + 2)

and

1 − x ≡ −1 − x − · · · − xn−1 + xn(1 − x) (mod x2 − 2x + 2).

3 SSRS and symmetric β-expansions

β-expansions of real numbers were introduced by Rényi [23]. Since then,
their arithmetic, diophantine and ergodic properties have been extensively
studied by several authors (cf. for instance [1, 2, 9, 10, 15, 22, 26]). For a
recent survey, we refer to Chapter 7 in Lothaire [21]. In the present paper,
we consider a symmetric version of this concept.

Let β > 1 be a fixed real number. Define3

Tβ : [−1
2
, 1

2
) → [−1

2
, 1

2
) by

x 7→ βx − bβx + 1
2
c.

For every x ∈ [−1
2
, 1

2
), Tβ generates an expansion

x =
∞∑

j=1

dj(x)

βj
,

3An isomorphic system using (1.6) is defined by x 7→ βx + b−βx + 1
2c which acts on

(−1
2 , 1

2 ].
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where dj = dj(x) = bβT j−1
β (x) + 1

2
c for every j ≥ 1. We shall consider the

digits dj as functions of x. When the argument is clear, we shall write dj

instead of dj(x). We will call this expansion a symmetric β-expansion of x
in base β. Each dj(x) is contained in N = (−β+1

2
, β+1

2
) ∩ Z, the digit set.

Define a map

d : [−1
2
, 1

2
) → N N by

x 7→ d1(x)d2(x) · · · .

By considering formally an orbit starting from 1
2
, we also define an expansion

d
(

1
2

)
.

It should be noticed that when 1 < β < 2, the dynamical system
([−1

2
, 1

2
), Tβ) does not have an invariant measure which is absolutely con-

tinuous to the Lebesgue measure, since each orbit of x 6= 0 eventually falls
into [−1

2
, β

2
− 1) ∪ [1 − β

2
, 1

2
). Hence no x 6= 0 has a finite expansion. We do

not address to the ergodic study of this system, e.g., the construction of the
invariant measure for β ≥ 2, in the present paper.

For β > 1 and x ∈ [−1
2
, 1

2
), we will call an infinite series of the form

x =
∑∞

j=1 sj/β
j, sk ∈ N a representation of x in base β. In general, there

exist infinitely many representations of x in base β.
Let us treat hereafter W = N N as a shift space, endowed with the lexico-

graphical order <lex and the product topology. Let σ be the one sided shift
on W , that is, σ(s1s2 · · · ) = (s2s3 · · · ). The language L(U) of a subshift U
is the set of all words which appear as subwords of an element of U .

A sequence (si)
∞
i=1 ∈ W is called admissible, if there exists a number

x ∈ [−1
2
, 1

2
) such that si = di(x) holds for each i ≥ 1. This means, that

(si)
∞
i=1 is realized as a symmetric β-expansion x =

∑∞
j=1 sj/β

j.
Let A be the set of all admissible sequences. The symmetric β-shift S is

defined to be the closure of A by the topology of W . Then S is a subshift of
the full shift W .

The mapping d : [−1
2
, 1

2
) → A is continuous and fulfils d ◦ Tβ = σ ◦ d,

which shows that the following diagram is commutative:

[−1
2
, 1

2
)

Tβ //

d

²²

[−1
2
, 1

2
)

d

²²
A σ

// A.

An infinite sequence s = (si)
∞
i=1 ∈ W is admissible (i.e., s ∈ A) if and only if

− 1

2βn−1
≤

∞∑
i=n

si

βi
<

1

2βn−1
for every n ≥ 1. (3.1)
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It is easy to see that d is an order-preserving map:

x < y ⇐⇒ d(x) <lex d(y)

for x, y ∈ [−1
2
, 1

2
). For s = (si)

∞
i=1 ∈ W , we write −s = (−si)

∞
i=1.

Theorem 3.1 An infinite sequence s = (si)
∞
i=1 ∈ W is admissible (i.e.,

s ∈ A) if and only if

d(−1
2
) ≤lex σn(s) <lex −d(−1

2
)

for all n = 0, 1, · · · .

Proof. Since d is order-preserving, the necessity of this inequality is ob-
vious. Let us prove that σm(s) <lex −d(−1

2
) for m ≥ n ≥ 1 implies

sn

β
+

sn+1

β2
+ . . . <

1

2
.

Let −d(−1
2
) = t̄1t̄2 · · · . Decompose σn(s) into admissible blocks in the follow-

ing manner: σn(s) = sn+1sn+2 · · · = w
(n)
1 w

(n)
2 · · · with w

(n)
i ∈ N ∗ such that

w
(n)
i = t̄1 · · · t̄`v with v ∈ N and v <lex t̄`+1. In other words, each word w

(n)
i

coincides with the prefix of −d(−1
2
) apart from the last digit of w

(n)
i and all

blocks are chosen to have maximal length with this property. By definition
of the symmetric β-expansion, we have

− 1

2βn
<

1

2
−

n∑
i=1

t̄i
βi

≤ 1

2βn
.

This implies that

ki∑
v=1

ci,v

βv
≤

ki∑
v=1

t̄i
βv

− 1

βki
<

1

2

(
1 − 1

βki

)
for w

(n)
i = ci,1 · · · ci,ki

. Therefore

∞∑
i=1

si+n

βi
<

1

2

(
1 − 1

βk1

)
+

1

2βk1

(
1 − 1

βk2

)
+

+
1

2βk1+k2

(
1 − 1

βk3

)
+ · · · =

1

2
.

In a similar manner, we prove that d(−1
2
) ≤lex σm(s) for m ≥ n ≥ 1 implies

−1

2
≤ sn

β
+

sn+1

β2
+ · · · .
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¤

A word w1 · · ·wm ∈ N ∗ is admissible if it is contained in the language
L(S). The next corollary gives a combinatorial criterion for words to be
admissible.

Corollary 3.2 Let d(−1
2
) = t1t2 · · · and −d(−1

2
) = t̄1t̄2 · · · . A word

s1 · · · sm ∈ N ∗ is admissible if and only if

t1 · · · tm−n+1 ≤lex sn · · · sm ≤lex t̄1 · · · t̄m−n+1 (3.2)

for 1 ≤ n ≤ m.

Proof. If the word s1 · · · sm is admissible, then by definition, there exists
an admissible sequence v1v2 · · · ∈ A, such that s1 · · · smv1v2 · · · is admissible.
Thus the necessity of (3.2) follows from

d(−1
2
) ≤lex σn(s1 · · · smv1v2 · · · ) <lex −d(−1

2
) for n ≥ 0.

Now we prove the sufficiency of (3.2). Similarly as in the proof of Theorem
3.1, one can decompose s1 · · · sm into admissible blocks in two ways

s1 · · · sm = w1w2 · · ·wp = w′
1w

′
2 · · ·w′

q

by d(−1
2
) and −d(−1

2
) respectively. In other words, each proper prefix of

wi (resp. w′
i) is a prefix of t1t2 · · · (resp. t̄1t̄2 · · · ) and the wi (resp. w′

i) are
chosen to have maximal length with this property. Only the last wp and w′

q

can coincide with a prefix of t1t2 · · · (resp. t̄1t̄2 · · · ). We wish to find an
extension v1v2 · · · ∈ A such that s1 · · · smv1v2 · · · is admissible.

If wp (resp. w′
q) is not a prefix of t1t2 · · · (resp. t̄1t̄2 · · · ) simultaneously,

then t1 · · · tm <lex s1 · · · sm <lex t̄1 · · · t̄m. Thus any v1v2 · · · ∈ A works, since
t1t2 . . . ≤lex σn(s1 · · · smv1v2 · · · ) <lex t̄1t̄2 · · · for any n ≥ 0.

Now assume that wp = t1 · · · tk and w′
q is not a prefix of t̄1t̄2 · · · . Then

w′
q = t̄1 · · · t̄k′−1 sm with sm < t̄k′ . Thus s1 · · · smv1v2 · · · <lex t̄1t̄2 · · · for

any v1v2 · · · ∈ A. In this case we take v1v2 · · · = tk+1tk+2 · · · ∈ A. Then
s1 · · · smv1v2 · · · is admissible. Similarly if w′

q = t̄1 · · · t̄k and wp is not a
prefix of t1t2 · · · , we take v1v2 · · · = t̄k+1t̄k+2 · · · .

Finally if wp = t1 · · · tk and w′
q = t̄1 · · · t̄k′ , then without loss of gener-

ality we assume that k ≥ k′. Then w′
q is a suffix of wp. In this case we

take v1v2 · · · = tk+1tk+2 · · · . Then, s1 · · · smv1v2 · · · must be admissible since
t1t2 · · · and t̄1 · · · t̄k′tk+1tk+2 · · · are suffixes of d(−1

2
). ¤

The sequence d(x) associated with x is said to be finite if there exists
m ≥ 0, such that dj = 0 for j ≥ m. It is called eventually periodic if there
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exist m ≥ 0 and p > 0, such that dj+p = dj for j ≥ m. If d(x) is finite, we
can write d(x) = d1 · · · dm−1 for simplicity.

An eventually periodic word in N N is denoted by

b1 · · · bk (bk+1 · · · bk+`)
ω

with the period bk+1, . . . , bk+`. Obviously, if d(1
2
) is finite or eventually pe-

riodic, then β must be an algebraic integer. Note that −Tβ(x) = Tβ(−x)
holds when Tβ(x) 6= −1

2
. Therefore, if T n

β (x) 6= −1
2

for all n ≥ 0, then
d(x) = −d(−x).

An important consequence is that there exists m ≥ 0 such that

d(−1
2
) = ±σmd(1

2
).

Especially, d(−1
2
) is finite if and only if d(1

2
) is finite. The same is valid

for eventual periodicity. Furthermore, there is a direct relation between d(1
2
)

and d(−1
2
), even when Tm

β (1
2
) = −1

2
holds for some m > 0:

Lemma 3.3 Let d(−1
2
) = t1t2 · · · and −d(−1

2
) = t̄1t̄2 · · · . The following

statements are equivalent:

(1) There exists an m > 0 such that Tm
β

(
1
2

)
= −1

2
.

(2) d
(
−1

2

)
is purely periodic, i.e., d

(
−1

2

)
= (t1 · · · t`)ω .

(3) d
(

1
2

)
has the form d

(
1
2

)
= t̄1 · · · t̄`−1(t̄` + 1) (t1 · · · t`)ω .

Proof. The expansion d(1
2
) can not be purely periodic. In fact, d(1

2
) =

(a1 · · · ap)
ω implies T p

β (1
2
) = 1

2
which is impossible. Therefore (2) implies

d
(
−1

2

)
6= −d

(
1
2

)
and consequently (1). Assume (1). Take the smallest

m, such that Tm
β (1

2
) = −1

2
. This means that βTm−1

β (1
2
) ∈ 1

2
+ Z. Then

Tm
β (−1

2
) = Tβ(Tm−1

β (−1
2
)) = Tβ(−Tm−1

β (1
2
)) = −1

2
, which shows (2). Suppose

(2) is valid. Take the smallest m such that Tm
β (−1

2
) = −1

2
. Then Tm

β (1
2
) =

Tβ(Tm−1
β (1

2
)) = Tβ(−Tm−1

β (−1
2
)) = −1

2
which shows (3) (and also (1)). The

expansion of (3) gives β`(1
2
−

∑`
i=1 t̄iβ

−i) = 1
2

which shows (2). ¤

Remark 3.4 Notice that if d(−1
2
) is purely periodic, then the norm of β is

odd. Therefore, if the norm of β is even, then −d(1
2
) = d(−1

2
).

Now we discuss basic symbolic dynamical properties of the symmetric β-
shift. Recall that a subshift U of the full shift W is of finite type if it can be
described by a finite set of forbidden blocks. A subshift U is called sofic if
each element is recognised by a finite automaton (cf. [20, 21]).
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Theorem 3.5 The symmetric β-shift S is sofic if and only if d(−1
2
) is even-

tually periodic.

Proof. We follow the classical technique described in [14]. For an intro-
duction to automata theory, we refer to [13, 24]. The proof of Theorem 3.1
also implies that s ∈ S if and only if

d(−1
2
) ≤lex σn(s) ≤lex −d(−1

2
) (3.3)

holds for all n ≥ 0.

Assume that d(−1
2
) = t1 · · · tN (tN+1 · · · tN+p)

ω, such that tk+p = tk for all
k ≥ N + 1. Construct an automaton S1 as follows: The set of states is given
by {s1, . . . , sN+p} and the labels are taken from N . The initial state is s1.
For j < N +p, draw an arrow from sj to sj+1 labeled by tj, while arrows with
greater labels lead to s1. Draw an arrow from sN+p to sN+1 labeled by tN+p,
while arrows with greater labels lead back to s1. This automaton can check
if a given sequence s ∈ W fulfils d(−1

2
) ≤lex σn(s) for all n ≥ 0. Analogously,

we construct an automaton S2 that checks if σn(s) ≤lex −d(−1
2
) holds for all

n ≥ 0. Finally, using S1 and S2, we construct a product automaton S1 × S2

that checks if d(−1
2
) ≤lex σn(s) ≤lex −d(−1

2
) holds for all n ≥ 0. This shows

that S is sofic.

Recall that we denote by L(S) the language of S. Suppose that d(−1
2
) =

t1t2 · · · is not eventually periodic. Then the sequences tktk+1tk+2 · · · are
pairwise different for all k ≥ 1. Therefore, for all pairs j, ` ≥ 1, j 6= `, there
exist p ≥ 0, such that tj+p 6= t`+p and w := tj · · · tj+p−1 = t` · · · t`+p−1 (with
the convention that, if p = 0, then w is equal to the empty word). W.l.o.g.,
we assume that tj+p > t`+p. Then t1 · · · tj−1w t`+p <lex d(−1

2
), and therefore

t1 · · · tj−1w t`+p 6∈ L(S) and t1 · · · t`−1w t`+p ∈ L(S). Thus, the number of
right congruence classes modulo L(S) is infinite. Therefore, L(S) is not
recognisable by a finite automaton. ¤

Recall that a subshift U is M -step if it can be described by a collection
of forbidden blocks all of which have length M +1. If a subshift U is of finite
type, then there is an M ≥ 0 such that U is M -step (cf. [20, Proposition
2.1.7]).

Theorem 3.6 The symmetric β-shift S is of finite type if and only if d(−1
2
)

is purely periodic.4

4Unlike usual β-expansion, if d(−1
2 ) is finite, then it is not of finite type. This fact

follows from the proof below with tN+1 · · · tN+p = 0p.
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Proof. Suppose that d(−1
2
) = (t1 · · · tm)ω. Then the set

U =
⋃

1≤i≤m

{±u ∈ N i : u <lex t1 · · · ti}

is a finite set of forbidden words. From (3.3), it is easy to show that s ∈ W
is an element of S if no subword of s is contained in U .

If S is of finite type, then it is sofic. Thus by Theorem 3.5, d(−1
2
) must

be eventually periodic. Set t̄i = −ti and assume that there exists N ≥ 1 that

−d(−1
2
) = t̄1 · · · t̄N (t̄N+1 · · · t̄N+p)

ω

where t̄k+p = t̄k for all k ≥ N + 1 and t̄N 6= t̄N+p. Since d(−1
2
) is not purely

periodic, we have −T k
β (−1

2
) < 1

2
and σk(−d(−1

2
)) <lex −d(−1

2
) for k ≥ 1.

By the admissible block decomposition as in the proof of Theorem 3.1, for
each positive integer s, there exists a k ∈ {1, 2, . . . , p} such that

σn((t̄N+1 · · · t̄N+p)
st̄N+1 · · · t̄N+k−1(t̄N+k + 1)) ≤lex t̄1 · · · t̄sp+N+k−n

for each n ≤ sp+N +k−1. Here we used an abusive terminology of σ acting
on finite words by σ(w1 · · ·wm) = w2 · · ·wm. By Corollary 3.2, we have

(t̄N+1 · · · t̄N+p)
st̄N+1 · · · t̄N+k−1(t̄N+k + 1) ∈ L(S).

Since S is of finite type, it must be M -step with some M ≥ 0. Take a
positive integer s such that sp ≥ max(N + p,M). Then the two words
t̄1 · · · t̄N(t̄N+1 · · · t̄N+p)

s and (t̄N+1 · · · t̄N+p)
st̄N+1 · · · t̄N+k−1(t̄N+k+1) are both

in L(S). However

t̄1 · · · t̄N(t̄N+1 · · · t̄N+p)
pt̄N+1 · · · t̄N+k−1(t̄N+k + 1) 6∈ L(S).

This is a contradiction. ¤

For a real number x, there exists m ≥ 0 ∈ Z that β−mx ∈ [−1
2
, 1

2
) with

d(β−mx) = x1x2 · · · . Following the usual convention to express real numbers,
we write:

x = x1 · · · xm.xm+1xm+2 · · · (3.4)

using the ‘decimal’ point. For the integer part x1 · · · xm, the leading zeros
may be omitted.

The sequence (3.4) is called a symmetric β-expansion of x. In the sequel,
we will use the following notations:

Per(β) = {x ∈ R : x has eventually periodic symmetric β-expansion},
Fin(β) = {x ∈ R : x has finite symmetric β-expansion }.
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Recall that a Pisot number is an algebraic integer β > 1 for which all algebraic
conjugates γ with γ 6= β satisfy |γ| < 1. If β is a Pisot number, then
Per(β) = Q(β) which follows by a similar proof as in [9, 26]. Especially S is
sofic when β is a Pisot number.

Following [15], we say that β has the symmetric finiteness property if

Fin(β) = Z[β−1]. (SF)

A similar proof as in [15] allows us to show, that if β has the property (SF),
then β is a Pisot number. Moreover the weaker condition Z∩[0,∞) ⊂ Fin(β)
implies the same fact (cf. [3]). For symmetric SRS, we can show:

Theorem 3.7 Let β be a Pisot number with the minimal polynomial Xd −
a1X

d−1 − · · · − ad. Set

rd−j+1 =
aj

β
+

aj+1

β2
+ · · · + ad

βd−j+1
for 2 ≤ j ≤ d.

Then β has the property (SF) if and only if r = (r1, . . . , rd−1) ∈ D0
d−1.

This is merely a reformulation of [4, Theorem 2.1] originally due to Hollander
[16]. Using (1.5) and Theorems 5.2 and 3.7, we can show:

Theorem 3.8 1. The quadratic Pisot number β with the minimal poly-
nomial X2 − aX − b has the property (SF), if and only if

−1

2
<

b

β
≤ 1

2
.

2. The cubic Pisot number β with the minimal polynomial X3 − AX2 −
BX − C has the property (SF), if and only if

−C

β
− 1

2
<

B

β
+

C

β2
≤ C

β
+

1

2
and

C

β
<

1

2
.

The first statement is an application of (1.5) and Theorem 3.7 with d = 2,
r1 = b/β. The second statement follows from Theorems 5.2 and 3.7 with
d = 3, r1 = C/β and r2 = B/β + C/β2. Note that C/β 6= 1

2
since C is an

integer.
In both quadratic and cubic cases of Theorem 3.8, each right inequality

can not be an equality, taking the degree of β into consideration.

Example 3.9 (x3−3x2−2x−1, {−2,−1, 0, 1, 2}) has the property (SF) since
(0.276, 0.627) ∈ D0

2 in Figure 1. We have d(−1/2) = ((−2)1(−1)(−1)111)ω

and for example
d(β2 − 4β + 1) = (−1)(−1).
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On the other hand, (x3 − 3x2 − 3x − 1, {−2,−1, 0, 1, 2}) does not have the
property (SF), since (0.260, 0.847) 6∈ D0

2. We have d(−1/2) = ((−2)011)ω

and
d(β2 − 4β + 1) = (2(−2))ω .

Both of them are of finite type by Theorem 3.6.

Theorem 3.8 is substantially stronger than the one in [3] where the cubic
Pisot units with (F) are classified. The characterisation problem of cubic
Pisot numbers with (F) is still open for the usual β-expansion. Some partial
answers for this problem are given in [5].

4 Basic properties of symmetric SRS

Let us first study Dd. For r = (r1, . . . , rd) ∈ Rd, let

R(r) =



0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1

−r1 −r2 · · · −rd−1 −rd


.

For M ∈ Rd×d, denote by %(M) the spectral radius of M , i.e., the maximum
absolute value of all eigenvalues of M . For any δ > %(M), we can fix a vector
norm ‖ · ‖M,δ with ‖Mv‖M,δ ≤ δ‖v‖M,δ. For instance, if ||| · ||| denotes the
euclidean norm, then

‖x‖M,δ :=
∞

max
k=0

{
1

δk
|||Mkx|||

}
(4.1)

has the desired property. This maximum exists since lim
k→∞

|||Mkx|||/δk = 0.

For a similar definition, see the formula (3.2) of [19]. Note that ‖ · ‖M,δ

depends on M and δ. For simplicity, we write

%(r) := %(R(r)) and ‖x‖r,δ := ‖x‖R(r),δ. (4.2)

Let Ed = {r ∈ Rd : %(r) < 1}. It is known that the closure Ed is a regular
set, i.e., the set coincides with the closure of its interior (cf. [4, Lemma 4.3]).
Furthermore, Ed coincides with {r ∈ Rd : %(r) ≤ 1}. Thus

Ed ⊂ Dd ⊂ Ed.
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It seems to be a hard problem to characterise the set Dd∩∂Ed (cf. [5]). In the
non symmetric case (1.1), some partial results have been proved by Akiyama
et al. [6].

Now we turn to the study of D0
d. Similarly as in [4], we can deduce a

bound for the periodic orbits. Let r ∈ Rd with %(r) < δ < 1. If a is periodic
for τr, then

‖a‖r,δ ≤
1

2(1 − δ)
=: K.

Simply by testing all a ∈ Zd with ‖a‖r,δ ≤ K, this estimate provides an
algorithm to determine whether r ∈ E is contained in D0

d or not.
However, we do not use this method in the present paper because we

develop an efficient alternative way. Let ei = (0, . . . , 0, 1, 0, . . . , 0) be the i-
th unit vector. For a given r = (r1, . . . , rd), we say that a finite set V(r) ⊂ Zd

is a set of witnesses for r, if {ei,−ei} ⊂ V(r) for 1 ≤ i ≤ d, and for each
(z1, . . . , zd) ⊂ V(r), the element (z2, . . . zd+1) belongs to V(r) provided that

−1 < r1z1 + · · · + rdzd + zd+1 < 1. (4.3)

If ρ(r) < 1, then V(r) can be constructed by successive addition of new
elements (z2, . . . , zd+1). For simplicity, we write V = V(r) when r is fixed. Let
G(V) be a directed graph with vertices V and edges defined by (z1, . . . , zd) →
(z2, . . . , zd+1) if and only if

−1
2
≤ r1z1 + · · · + rdzd + zd+1 < 1

2
. (4.4)

Note that the set of vertices V is exactly the same as in [4, Theorem 5.1].
However, the edges are defined in a different manner. By definition, for each
vertex there exists exactly one outgoing edge.

Theorem 4.1 Let r ∈ Rd. If every walk in the graph G(V(r)) falls into the
trivial cycle 0 → 0, then r belongs to D0

d.

Proof. The proof is a generalisation of ideas from [4, 7, 8, 11, 12]. Let
r = (r1, . . . , rd). We say that a ∈ Zd is SSRS-finite, if there is a k ≥ 0 such
that τ k

r (a) = 0.
Suppose that a is SSRS-finite and b ∈ V . We will prove that a + b is

SSRS-finite. Denote by τr(a) = (a2, . . . , ad+1) and τr(b) = (b2, . . . , bd+1).
Since ad+1 = −bra + 1

2
c, bd+1 = −brb + 1

2
c, we obtain

−1
2

≤ r1a1 + · · · + rdad + ad+1 < 1
2

and (4.5)

−1
2

≤ r1b1 + · · · + rdbd + bd+1 < 1
2
. (4.6)
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Thus
−1 ≤ r1(a1 + b1) + · · · + rd(ad + bd) + ad+1 + bd+1︸ ︷︷ ︸

=: ξ

< 1.

We distinguish between three cases.

(i) If 1
2
≤ ξ, then 0 < r1b1 + · · · + rdbd + bd+1 implies

−1 < r1b1 + · · · + rdbd + bd+1 − 1 < 1

and

−1
2
≤ r1(a1 + b1) + · · · + rd(ad + bd) + ad+1 + bd+1 − 1 < 1

2
.

Thus take η = (b2, . . . , bd, bd+1 − 1) ∈ V .

(ii) If ξ < −1
2
, then r1b1 + · · · + rdbd + bd+1 < 0 implies

−1 < r1b1 + · · · + rdbd + bd+1 + 1 < 1

and

−1
2
≤ r1(a1 + b1) + · · · + rd(ad + bd) + ad+1 + bd+1 + 1 < 1

2
.

In this case, we take η = (b2, . . . , bd, bd+1 + 1) ∈ V .

(iii) If −1
2
≤ ξ < 1

2
, then take η = (b2, . . . , bd, bd+1) ∈ V .

Therefore, in any case, there exists η ∈ V such that τr(a + b) = τr(a) + η
with η =: η(1) ∈ V . Repeating this argument, we find that

τ k
r (a + b) = τ k

r (a) + η(k)

with η(k) ∈ V . Since a is SSRS-finite, there is a k such that τ k
r (a) = 0. By

the assumption of the Theorem, we conclude that a+b is SSRS-finite. Since
V contains the i-th unit vectors, the proof is finished. ¤

The set D0
d can be constructed from Dd by cutting out countable many

families of convex polyhedra. The following technique was developed in [4,
16, 25]. Consider a finite sequence a1, . . . , aL of integers. Define aj (j ∈ Z)
by periodicity aj = aj+L. This gives a periodic bi-infinite word designated
by π = [a1, . . . , aL]∞ ∈ ZZ which is called a cycle of length L. We define the
set:

P (π) = {r ∈ Rd : −1
2
≤ r1a1+j + · · ·+ rdad+j + ad+j+1 < 1

2
for j ∈ Z}. (4.7)
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Since each of these inequalities gives an upper (resp. lower) halfspace in
Rd, the system (4.7) defines a (possibly degenerated) convex polyhedron.
A cycle π = [a1, . . . , ad]

∞ of period L is called primitive, 5 if the vectors
(a1+j, . . . , ad+j) are pairwise different for j = 0, . . . , L − 1. Using this termi-
nology, we trivially have

D0
d = Dd \

⋃
π

P (π),

where π runs through all non zero primitive cycles π = [a1, . . . , aL]∞ of arbi-
trary length. Unfortunately since the set of periods is infinite, this expression
is far from being practical.

As an analogy of Theorem 5.2 in [4], the next theorem gives an efficient
algorithm for a closed set H ⊂ Ed to construct H ∩ D0

d. The basic idea is
to collect and merge all possible graphs G(V(r)) which correspond to points
r ∈ H. This allows us to apply Theorem 4.1 not only for a single point r but
also for the set H. The proof given below is rewritten from the one in [4] in
order to make clearer the convergence of the algorithm.

Theorem 4.2 Let r1, . . . , rk ∈ Dd and let H be the convex hull of r1, . . . , rk.
Assume that H is contained in the interior of Dd and sufficiently small in
diameter. Then there exists an algorithm to construct a finite directed graph
G = (V,E) with vertices V ⊂ Zd and edges E ⊂ V × V which satisfy

(i) ±ei ∈ V for all i = 1, . . . , d,

(ii) G(V(s)) is a subgraph of G for all s ∈ H,

(iii) H ∩ D0
d = H \

⋃
π P (π), where π are taken over all nonzero primitive

cycles of G.

Proof. For z ∈ Zd, let

m(z) = min
1≤i≤k

{−brizc}

ξ1(z) = min{m(z),−M(−z)},

M(z) = max
1≤i≤k

{−brizc} ,

ξ2(z) = max{−m(−z),M(z)}.

Set V1 = {±ei : i = 1, . . . , n} and define inductively 6

Vi+1 = Vi ∪ {(z2, . . . , zd, j) : z = (z1, . . . , zd) ∈ Vi and j ∈ [ξ1(z), ξ2(z)] ∩ Z}.
5Remark that this definition depends on the dimension d.
6In fact, ξ1(z) = −M(−z) and ξ2(z) = M(z) always hold. See [4].
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Assume for the moment that there exists a finite limit set V =
⋃

i Vi, i.e.,
there exists i with Vi+1 = Vi := V . Draw edges

z = (z1, . . . , zd) → (z2, . . . , zd, j)

according to the SSRS algorithm, i.e.,

min
1≤i≤k

{−briz + 1
2
c} ≤ j ≤ max

1≤i≤k
{−briz + 1

2
c}.

We claim that this finite graph G := (V,E) has the desired properties.
In fact, the condition (i) is trivial. For s ∈ H, the graph G(V(s)) was

given by the algorithm:

V1(s) = {ei,−ei : i = 1, . . . , n}
Vi+1(s) = Vi(s) ∪ {(z2, . . . , zd, j) : z = (z1, . . . , zd) ∈ Vi(s) and − 1 < sz + j < 1}

together with the corresponding edges. The inequality −1 < sz+ j < 1 only
gives

j ∈ [ξ1(z), ξ2(z)] ∩ Z
since s is a convex linear combination of ri’s. Hence we see that G(V(s))
is a subgraph of G which shows the property (ii). Now let us prove (iii).
Obviously

H \
⋃
π

P (π) ⊃ H ∩ D0
d.

Take r ∈ H \ D0
d. In view of Theorem 4.1 since H ⊂ Dd, there exists a non

zero primitive cycle π in G(V(r)) and r ∈ P (π). By using (ii), π is a non zero
primitive cycle of (V,E) as well. This shows that

r 6∈ H \
⋃
π

P (π)

which proves the claim.
Finally it remains to show the existence of i with Vi+1 = Vi, i.e., the

convergence of our procedure, provided the diameter of H is sufficiently small.
According to (4.1), we start with an arbitrary point r ∈ Ed with ρ(r) < δ < 1
and choose a norm ‖ · ‖r,δ, such that R(r) is contractive. For a matrix M ,
the same symbol ‖M‖r,δ stands for the operator norm, that is,

‖M‖r,δ = sup
v 6=0

‖Mv‖r,δ

‖v‖r,δ

.

Take H small enough such that r ∈ H and for any s ∈ H, we have

‖R(s) − R(r)‖r,δ < δ1 < 1 − δ.



Symmetric shift radix systems 17

This is possible since ‖ · ‖r,δ is continuous. Put δ2 = δ1 + δ < 1. Then, by
induction, for any si ∈ H and v ∈ Rd, we have

‖R(sk) · · ·R(s2)R(s1)v‖r,δ < δk
2‖v‖r,δ. (4.8)

Since j ∈ [ξ1(z), ξ2(z)]∩Z, the mapping (z1, . . . , zd) → (z2, . . . , zd, j) is given
by

(z2, . . . , zd, j)
t = R(s)(z1, . . . , zd)

t + u

with |||u||| ≤ 1
2

and s ∈ H. Successive applications of this mapping yield
elements of the form

R(sk) · · ·R(s1)(z1, . . . , zd)
t + R(sk) · · ·R(s2)u1 + R(sk) · · ·R(s3)u2 + . . . + uk

with bounded ui’s. By using the estimate (4.8), the set Vi (i = 1, 2, . . . ) must
be uniformly bounded. Thus there exists i such that Vi = Vi+1. ¤

This algorithm is quite sensitive to the choice of the initial convex hull
H. Let us denote by G(H) the corresponding graph by this algorithm. (It
might be an infinite graph.) If the convex hull H is subdivided into several
convex hulls

⋃
i Hi, then G(H) ⊃

⋃
i G(Hi) but it is usually not equal. For

example, let d = 2 and Hi (i = 1, 2) be segments from (1
2
, 0) to (1

2
, 1) and from

(1
2
, 0) to (1

2
,−1). Then G(H1 ∪H2) is infinite7 since one can easily show that

(n−1, n) ∈ Vn+1 for n ≥ 2, but both G(Hi) are finite graphs with 19 vertices.
Especially G(H) is usually larger than

⋃
r∈H G(V(r)). Therefore subdivision

of the initial convex hull H is meaningful not only by the requirement of
Theorem 4.2 but also from the computational point of view. Even if we get
a finite graph G(H) given by the algorithm, further subdivision of H may
drastically help us to create smaller graphs. This is practically important
since it is hard to list up all the primitive cycles out of a large graph.

Since for each compact set A ⊂ Ed we can find a finite covering of A by
sufficiently small convex hulls containing open balls, Theorem 4.2 theoreti-
cally gives an algorithm to construct A∩D0

d. The clue of convergence is the
smallness of H with respect to the norm ‖ · ‖r,δ. This criterion is not easily
checked. However from the proof, H must be smaller if it is located closer
to the boundary ∂Ed since δ becomes larger. When implementing Theorem
4.2 in a computer language equipped with interruption, there is no need to
care on the smallness of H. Perform ‘trial and error’. If we get a finite graph
G(H), then we are ready. If the graph grows too large, then interrupt and
restart with a smaller H.

7This also shows the necessity of subdivision in the proof of Theorem 5.2.
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5 Two dimensional symmetric SRS

In this section, we give a complete description of D0
2. We already know that

D2 ⊂ ∆ := (E2)
ω = {(x, y) ∈ R2 : x ≤ 1, |y| ≤ x + 1}.

First we show

Proposition 5.1 D0
2 ⊂ ∆

2
:= {(x, y) ∈ R2 : x ≤ 1

2
, |y| ≤ x + 1

2
}.

Proof. We give cycle π’s so that F = ∆ \ ∆
2

is completely covered by the
cutout P (π)’s. The purpose is almost fulfilled by the following five cycles.

• π1 = [−1]∞ gives P (π1) = {(x, y) : −3
2

< y + x ≤ −1
2
}.

• π2 = [1,−1]∞ gives P (π2) = {(x, y) : 1
2

< y − x < 3
2
}.

• π3 = [−1, 0, 1]∞ gives
P (π3) = {(x, y) : 1

2
< x ≤ 3

2
, 1

2
≤ y < 3

2
, −1

2
< y − x ≤ 1

2
}.

• π4 = [0,−1, 0, 1]∞ gives
P (π4) = {(x, y) : 1

2
< x < 3

2
, −1

2
< y < 1

2
}.

• π5 = [1, 1, 0,−1,−1, 0]∞ gives
P (π5) = {(x, y) : 1

2
< x < 3

2
,−3

2
< y < −1

2
,−1

2
< y + x < 1

2
}.

Then

F \
( 5⋃

i=1

P (πi)
)

= {(1, 1
2
), (1, 3

2
)} ∪ {(x, y) : 1

2
< x ≤ 1, y = −1

2
}︸ ︷︷ ︸

=:M

.

It is easily proved that

(1, 1
2
) = P ([0, 1,−1,−1, 1, 0,−1]∞),

(1, 3
2
) = P ([0, 1,−2, 2,−1,−1, 2,−2, 1, 0,−1, 1,−1]∞),

M = P ([0, 1, 0,−1,−1]∞).

¤

Theorem 5.2 Define two segments by L1 = {(x, y) : |x| ≤ 1
2
, y = −x − 1

2
}

and L2 = {(1
2
, y) : 1

2
< y < 1}. Then D0

2 = ∆
2
\ (L1 ∪ L2).
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Proof. In light of Proposition 5.1, we subdivide the triangle ∆
2

into small
ones and apply Theorem 4.2. Let T (a, b, c) be the triangle of vertices a,b and
c. Applying Theorem 4.2 for ∆1 = T ((−1

2
, 0), (0,−1

2
), (0, 1

2
)), the associated

graph (V1, E1) is given by

V1 = {(0, 1), (1, 0), (0,−1), (−1, 0), (−1,−1), (1,−1), (0, 0), (−1, 1), (1, 1)}

and

E1 = {(−1,−1) → (−1,−1), (−1,−1) → (−1, 0), (0,−1) → (−1,−1),

(0,−1) → (−1, 0), (1,−1) → (−1,−1), (1,−1) → (−1, 0),

(−1, 0) → (0,−1), (−1, 0) → (0, 0), (0, 0) → (0, 0),

(1, 0) → (0, 0), (−1, 1) → (1,−1), (−1, 1) → (1, 0), (0, 1) → (1,−1),

(0, 1) → (1, 0), (1, 1) → (1,−1), (1, 1) → (1, 0)}.

This graph has exactly one non-trivial 8 strongly connected component (cf.
Figure 2):

(−1,−1) ← (−1,−1) → (−1, 0) ↔ (0,−1) → (−1,−1).

This yields three primitive cycles: π1 = [−1]∞, θ1 = [0,−1]∞ and θ2 =
[−1,−1, 0]∞. Since

P (π1) = {(x, y) : −3
2

< x + y ≤ −1
2
},

P (θ1) = {(x, y) : −1
2

< y ≤ 1
2
,−3

2
< x ≤ −1

2
} and

P (θ2) = ∅,

we have shown that ∆1 ∩ D0
2 = ∆1 \ L1.

We proceed in a similar manner with

∆2 = T ((1
2
, 0), (0,−1

2
), (0, 1

2
))

∆3 = T ((1
2
, 0), (0, 1

2
), (1

2
, 1

2
))

∆4 = T ((1
2
, 1), (0, 1

2
), (1

2
, 1

2
))

∆5 = T ((1
2
, 0), (0,−1

2
), (1

2
,−1

2
))

∆6 = T ((1
2
,−1), (0,−1

2
), (1

2
,−1

2
)).

The corresponding graphs (Vi, Ei) (i = 2, . . . , 6) are depicted in Figures
3, 4, 5, 6 and 7.

The triangle ∆2 only gives π1 which shows ∆2∩D0
2 = ∆2\L1. The triangle

∆3 gives rise to the primitive cycle [−1,−1, 1]∞. Since P ([−1,−1, 1]∞) = ∅,
8The 0-cycle always forms a single component.
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1L

(1,−2)

(1,2)

(−1,0)

L2

(1/2,−1)

(1/2,1)

∆1 ∆

∆5

∆6

∆3

∆

2

4

��
��
��
��

��
��
��
��

Figure 1: The sets D0
2 and E2.

we have ∆3 ⊂ D0
2. The triangle ∆4 only gives θ3 = [0,−1, 1]∞ and P (θ3) =

{(x, y) : 1
2
≤ x < 3

2
, 1

2
< y ≤ 3

2
, −1

2
≤ y − x < 1

2
}. Thus we have

∆4∩D0
2 = ∆4 \L2. Both ∆5 and ∆6 only give π1. Thus (∆5∪∆6)\L1 ⊂ D0

2.
Summing up, we have shown the result. ¤

Remark 5.3 The referee pointed out that in the last proof, several regions
could be merged like ∆3 ∪ ∆4 and ∆1 ∪ ∆2 ∪ ∆5 ∪ ∆6 to obtain the same
result. This comment is correct and we will have two larger graphs with 19
vertices. As we discussed the end of §4, this algorithm is rather sensitive to
the choice of subdivisions and under this choice we have to study all primitive
cycles in these new graphs. This may be finished automatically by computer.
However by our choice, the graphs are smaller and all computation can be
confirmed possibly by hand. The reader may easily list up all primitive cycles
by observing the graphs listed below. In this sense, we believe that our choice
is more handy than the suggestion by the referee.
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(−1,1) (0,1)

(−1,0) (0,0) (1,0)

(0,−1) (1,−1)

(−1,0)

(−1,−1) (0,−1)(−1,−1)

(1,1)

Figure 2: The graph (V1, E1).

(1,−1)(−1,−1)

(1,0)(0,0)(−1,0)

(−1,1) (0,1) (1,1)

(0,−1) (−1,−1)

Figure 3: The graph (V2, E2).
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(−1,1) (0,1) (1,1)

(−1,0) (0,0) (1,0)

(−1,−1) (0,−1) (1,−1)

(−1,1)

(−1,−1) (1,−1)

Figure 4: The graph (V3, E3).

(−1,1) (0,1)

(−1,0) (0,0) (1,0)

(0,−1) (1,−1)

(−1,1)

(0,−1)

(1,0)

Figure 5: The graph (V4, E4).

(−1,1) (0,1) (1,1)

(−1,0) (0,0) (1,0)

(−1,−1) (0,−1) (1,−1) (−1,−1)

Figure 6: The graph (V5, E5).
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(0,1) (1,1)

(−1,0) (0,0) (1,0)

(−1,−1) (0,−1) (−1,−1)

Figure 7: The graph (V6, E6).
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