
BOUNDARY PARAMETRIZATION OF PLANAR SELF-AFFINE TILES WITHCOLLINEAR DIGIT SETSHIGEKI AKIYAMA AND BENOÎT LORIDANTAbstra
t. We 
onsider a 
lass of planar self-aÆne tiles T generated by an expanding integralmatrixM and a 
ollinear digit set D as follows :M = � 0 �B1 �A � ; D = �� 00 � ; : : : ;� jBj � 10 �� :We give a parametrization S1 ! �T of the boundary of T with standard properties. It isH�older 
ontinuous and asso
iated to a sequen
e of simple 
losed polygonal approximations whoseverti
es lie on �T and have algebrai
 preimages. We derive a new proof that T is homeomorphi
to a disk if and only if 2jAj � jB + 2j.1. Introdu
tionSelf-aÆne tilings in Rd have attra
ted wide attention in modeling self-similar stru
tures whi
happear in many bran
hes of mathemati
s. It is believed that the boundary of self-aÆne tiles hasnon-integral dimension unless the tile is polygonal [20, 21℄. Indeed the boundary of self-aÆne tilesoften shows a fra
tal shape, and its topologi
al study is rather diÆ
ult.In [1℄, we introdu
ed a standard method to parametrize the boundary of self-aÆne tiles if theasso
iated 
onta
t automaton is strongly 
onne
ted. More pre
isely we expe
t that whenever thetile is 
onne
ted, there exists an oriented extension of the 
onta
t automaton whi
h parametrizesthe boundary. And this parametrization is H�older 
ontinuous and pre
isely des
ribed by a 
y
li
version of Dumont-Thomas number system. We 
on�rmed the existen
e of su
h oriented graphsfor tiles asso
iated to quadrati
 
anoni
al number systems.In this paper, we wish to 
ontinue this study of parametrization in the 
ase that the 
onta
tautomaton is not strongly 
onne
ted. For this purpose, we study a wider 
lass of tiles 
orre-sponding to 2 � 2 integral expanding matrix M = �0 �B1 �A� with 
ollinear digits sets. Thereare two new aspe
ts to be taken into a

ount in this 
lass. Firstly, the multipli
ation of theexpanding matrix may involve 
ipping, i.e., the dire
tion of the boundary pie
es may 
hange.To get a parametrization in this 
ase, we introdu
e a 
ertain dupli
ated automaton whose stateskeep information on alternating dire
tion. Se
ond is that the 
onta
t automaton is no longerstrongly 
onne
ted, but has two strongly 
onne
ted 
omponents. Thus we have to introdu
e twoindependent parameterizations and merge them into one. Nevertheless, we 
an derive exa
tly thesame standard properties of the parametrization, i.e., it gives step by step approximation of theboundary by polygonal 
urves whi
h are topologi
al 
ir
les, whose verti
es are the �xed point ofthe GIFS and have natural algebrai
 addresses. Further it intertwines Lebesgue measure on theunit 
ir
le to a 
ertain Hausdor� measure whi
h is positive and �nite on the boundary of the tile.To simplify the study, we introdu
e a noteworthy 
orresponden
e between tiles 
orrespondingto A and �A whi
h basi
ally 
omes from the symmetry of digits. This somewhat halves oure�ort for topologi
al 
lassi�
ation of planar tiles with 
ollinear digits and we reprove the result ofLeung-Lau [16℄ that the tiles are disk-like if and only if 2jAj � jB + 2j.Date: February 8, 2010.The authors are supported by Japanese Ministry of Edu
ation, Culture, Sports, S
ien
e and Te
hnology, Grant-in Aid for fundamental resear
h 21540010 and the Japanese So
iety for the Promotion of S
ien
e, grant 08F08714.1
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Figure 1. Tiles with 
ollinear digit set : A = 2; B = �6 (left) and A = 1; B = �3 (right).2. Statement of the main resultsLet M be a d� d integral expanding matrix, i.e., with eigenvalues greater than 1 in modulus,and D � Zd a �nite set. Then there is a unique nonempty 
ompa
t set T = T (M;D) satisfyingMT = [a2D(T + a) (2.1)(see [10℄). Suppose that D � Zd is a 
omplete residue system of Zd=MZd. Then T has positiveLebesgue measure (see [14℄) and we 
all it integral self-aÆne tile with digit set D. It is known [15℄that there is a sublatti
e J of Zd su
h that T + J is a tiling of Rd :[s2J (T + s) = Rd and �d((T + s) \ (T + s0)) = 0 if s 6= s0 2 J ;where �d is the d-dimensional Lebesgue measure. If J = Zd, we 
all T a self-aÆne Zd-tile.In the plane, a basi
 question is the disk-likeness of the 
entral tile T , that is, the homeomorphyto a 
losed disk. In [3℄, a 
riterion was given in terms of number and 
on�guration of the neighborsof T in the indu
ed tiling. The 
ase of a 
ollinear digit set was then 
ompletely 
hara
terized in [16℄.Suppose that M has the 
hara
teristi
 polynomial x2 +Ax+B and D = f0; v; 2v; : : : ; (jBj � 1)vgfor some v 2 Z2 su
h that v;Mv are linearly independent. Then T is disk-like if and only if2jAj � jB + 2j. The proof relies on the 
riterion mentioned above and an analysis of the triplepoints of the tiling. This generalized a result of [2℄ for quadrati
 
anoni
al number system tiles.The usual te
hnique 
onsists in showing that the interior of T is 
onne
ted.Re
ently the authors proposed in [1℄ a standard method to parametrize the boundary of a self-aÆne Zd-tile T (M;D). As a 
onsequen
e, disk-likeness of a tile T is obtained dire
tly by showingthat its boundary is a simple 
losed 
urve. In the present paper, we wish to illustrate this methodby reproving the above result of Leung-Lau. Ex
ept for a s
alor matrix, a 2 � 2 matrix M with
hara
teristi
 polynomial x2 + Ax + B is 
onjugate to a form �0 �B1 �A�. Thus without loss ofgenerality, we may deal with the following 
lass of self-aÆne Z2-tiles:M = � 0 �B1 �A � ; D = �� 00 � ; : : : ;� jBj � 10 �� : (2.2)by multiplying a 
ommutative matrix �x �Byy x�Ay�. ThenM is expansive i� jAj � B if B � 2, orjAj � jB+2j if B � �2. The tiles 
orresponding to A = 2; B = �6 (disk-like) and A = 1; B = �3(non disk-like) are depi
ted in Figure 1. Note that for A = 0, the tile is just a re
tangle. Thus wewill suppose A 6= 0.



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 3Part of this 
lass was already studied as example in [1℄, namely for 0 < A � B � 2. The
ase B � 2, A < 0 
an be treated similarly. However, for B � �2, two new phenomena o

ur asexplained below.The main tool to parametrize �T is the redu
ed 
onta
t automaton G(R). It is dedu
ed fromthe 
onta
t automaton that was introdu
ed in [8℄ to 
ompute the fra
tal dimension of �T . Wewill re
all its 
onstru
tion in Se
tion 3. It has a �nite and symmetri
 set of states R = �R andtransitions labeled by elements of D. It gives a des
ription of the boundary of T as the attra
torof a graph iterated fun
tion system, or GIFS for short :�T = [s2RKs (2.3)and Ks = [s a�!s02G(R)M�1(Ks0 + a) (2.4)for a (unique) ve
tor (Ks)s2R of non-empty 
ompa
t sets. By [1℄, if the automaton G(R) isstrongly 
onne
ted and some 
ompatibility 
onditions are satis�ed, then the parametrization 
anbe performed. The method is valid for our 
lass in the 
ase B � 2. We will show how to adapt itfor the 
ase B � �2.The �rst new phenomenon is the following. For det(M) = B < 0, one observes a 
ipping of theboundary pie
es. That is, the orientation of the boundary pie
es 
hanges at ea
h iteration of (2.4)(see Figure 3). Of 
ourse, one may think of takingM2 instead ofM. This would keep the numberof states of G(R) but would have the disadvantage to square the number of digits. Indeed, Dshould be repla
ed by D+MD. We will rather fake the 
ipping by doubling the number of states.� For ea
h state S 2 R, we 
reate the states S and S.� For ea
h transition S a�! T 2 G(R), we 
reate the transitions S a�! T and S a�! T .The resulting automaton is denoted by G0(R). It has 2 � jRj states. It is also a GIFS for theboundary, but ea
h boundary part Ks has been dupli
ated (
ompare Figure 2 and Figure 4). Thiswill allow us to swit
h between two di�erent orientations of a same boundary part.We denote by G the automaton G(R) if B > 0 or G0(R) if B < 0. We write r for the numberof states of G : r = jRj or r = 2jRj. Let us order arbitrarily the set of verti
es and the transitionsof G. Thus (2.3) and (2.4) now read�T = r[i=1Ki ; Ki = [i ajo��!jM�1(Kj + a): (2.5)Here, the transitions starting from i have been ordered (label o) from 1 and limax, the number ofthese transitions. We 
all GO this ordered extension. It gives rise to a mapping	O : GO ! �Tw 7! Pj�1M�jaj ; (2.6)for the in�nite walk w = (i;o1;o2; : : :) := i a1jo1���! s1 a2jo2���! : : : of GO. There are �nitely manypossible ordered extensions GO . In Se
tion 3, we will be able to �nd an ordered extension su
hthat the following 
ompatibility 
onditions are satis�ed.	O(i; lmax) = 	O(i+ 1;1) (1 � i � r � 1) (2.7)	O(r; lmax) = 	O(1;1) (2.8)	O(i;o; lmax) = 	O(i;o+ 1;1) (1 � i � r; 1 � o < limax): (2.9)Here, o is the in�nite repetition oo : : :. So (i;1) is the in�nite walk starting from the state i andgoing along the transitions 
arrying the minimal order. For simpli
ity, the notation lmax is usedwithout referen
e to the 
urrent state. Therefore, the 
ompatibility 
onditions express the ideathat the boundary parts (Ki) as well as their subdivisions 
an be ordered \as they appear around



4 SHIGEKI AKIYAMA AND BENOÎT LORIDANTthe boundary" with mat
hing extremities. In fa
t, �T = SjRji=1Ki also holds in the 
ipping 
aser = 2jRj. However, all the walks in the 
ompatibility 
onditions are wandering along the wholer-states automaton GO. When B < 0, no dire
t ordering of G(R) 
an be found to satisfy similar
onditions.We now 
onsider the se
ond new phenomenon. In [1℄, the 
onne
tion to the interval [0; 1℄ isrealized via a Dumont-Thomas number system indu
ed by the strongly 
onne
ted automaton GO .Here, for B < 0, GO is dis
onne
ted. For A > 0, G(R) itself is not 
onne
ted (see Figure 2). ForA < 0, G(R) is strongly 
onne
ted but its double sized version fails to be. Nevertheless, in both
ases, we shall see that GO 
onsists of two identi
al irredu
ible 
omponents. Thus the numbersystem 
an also be introdu
ed. It runs as follows. Sin
e GO is made of one (B > 0) or two (B < 0)
opies of G(R), the data for this number system is all 
ontained in G(R). Let dss0 be the numberof transitions in G(R) from s0 to s. Then the in
iden
e matrix isD := (dss0)s;s02R:Let � be the Perron-Frobenius eigenvalue of D. A number system in [0; 1℄ mimi
s the orderedGIFS (2.5) via uniform subdivisions of the interval [0; 1℄ (see Se
tion 3). The subdivisions involvepower series of 1� . Identi�
ations o

ur in the number system. The above 
ompatibility 
onditionsinsure that they are reprodu
ed in the boundary of T . This results in a 
ontinuous parametrizationC : [0; 1℄! �T . Whether the parametrization is then inje
tive or not 
an also be 
he
ked. In this
ase, the tile T is disk-like.In this way, we will be able to provide a similar des
ription as in [1℄ for the whole 
lass. Beforestating the theorems, we mention that some symmetry relation in our 
lass will redu
e the numberof 
ases to be treated. LetP = � 1 00 �1 � ; M1 = � 0 �B1 �A � ; M2 = � 0 �B1 A � (2.10)and D as in (2.2). Moreover, let T1 := T (M1;D) and T2 := T (M2;D). Then one 
an 
he
k thatPM1P�1 = �M2, PD = D andT2 = PT1 +Xi�0M�2i�12 � jBj � 10 �| {z }=:v : (2.11)This is re
e
ted by a tight 
onne
tion between the automata des
ribing the boundaries. In theproposition below, we assume the ordered extension to have some symmetry property. It is anatural 
hoi
e related to symmetries of G(R). The exa
t de�nition is given in Se
tion 5.Proposition 2.1. For i = 1; 2, let Ti as above and Gi the asso
iated redu
ed 
onta
t automata(if B > 0) or double sized automata (if B < 0). Let GO1 be any symmetri
 ordered extension ofG1. Then there exists an ordered extension GO2 of G2 su
h that the following diagram 
ommutes.GO1 id //	O1 �� GO2	O2���T1 f // �T2Here, f(x) = Px + v as in (2.11). Also, id is the identity on the in�nite ordered walks(i;o1;o2; : : :), but the digit labels may not be preserved.The main theorem reads as follows.Theorem 1. Let (M;D) as in (2.2) and T be the self-similar tile satisfying MT = T +D. Thenthere exists an algebrai
 integer �, a H�older 
ontinuous mapping C : [0; 1℄! �T with C(0) = C(1)and a hexagon Q with the following properties. Let T0 := Q and (Tn)n�1 de�ned byMTn = Tn�1 +D:



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 5Then :(1) limn!1 �Tn = �T (Hausdor� metri
).(2) For all n 2 N, �Tn is a polygonal simple 
losed 
urve.(3) Denote by Vn the set of verti
es of �Tn. For all n 2 N,Vn � Vn+1 � C(Q(�) \ [0; 1℄);i.e., the verti
es have Q(�)-addresses in the parametrization.We 
an 
ompare the parametrization in the above theorem with a Hausdor� measure on theboundary. Sin
e the tiles are self-aÆne but not ne
essarily self-similar, a generalized Hausdor�measure is needed. It relies on a pseudo-norm w for whi
h any expanding aÆne matrixM be
omesa similarity : w(Mx) = j det(M)j1=2w(x) (x 2 R2 ): (2.12)For this pseudo norm, Hausdor� measures H�w (� > 0) and dimensions 
an be de�ned in a similarway as for the Eu
lidean norm (see [9℄). The following theorem will be easily derived from [1,Theorem 2℄, where the 
onta
t automaton G(R) was assumed to be strongly 
onne
ted.Theorem 2. Let T as in Theorem 1, C be the 
orresponding parametrization. Furthermore, letw be a pseudo-norm su
h that (2.12) holds,� := 2 log(�)log(j det(M)j) :and H�w the asso
iated Hausdor� measure. Then, for ea
h boundary part Ks (s 2 R) as in (2.3),1 > H�w(Ks) > 0:Moreover, there is a subdivision of the interval [0; 1℄, t0 := 0 < t1 < : : : < tjRj := 1 su
h that1
H�w ( C([ti; t)) ) = t� ti (ti � t � ti+1);where 
 :=Ps2RH�w(Ks).We 
ompared here subintervals of [0; 1℄ with the Hausdor� measure on ea
h boundary pie
e(Ks)s2R. In order to obtain the measure intertwining map from whole [0; 1℄ to �T , the measuredisjointness of these pie
es would be needed. This does not follow from the open set 
ondition.This is more related to the Hausdor� dimension of the triple points in the tiling indu
ed by T . Inthis paper, we do not dis
uss further this point.We 
an link the boundary parametrization to the re
urrent set method. This method wasintrodu
ed by Dekking in [4, 5℄. Given an endomorphism� :< a; b >!< a; b >on the free group < a; b > generated by two letters and a homomorphismg :< a; b >! R2 ;the boundary of a self-similar tile is 
onstru
ted. It is approximated by a sequen
e of simple 
losed
urves. These 
urves represent the iterates of � on the initial word aba�1b�1. Under a 
onditionof short range 
an
ellations, the sequen
e 
onverges in Hausdor� metri
 to the boundary of aself-similar tile.In our 
ase, the tile T satisfying MT = T + D is given, and we are looking for appropriateboundary substitution � and embedding g. Let T be a self-aÆne Z2-tile as in Theorem 1. Asubstitution arises naturally from the ordered GIFS (2.5). It sends the letter i to the sequen
e ofletters j1j2 : : : jlmax a

ording to the ordered subdivisions in (2.5). We will see that GO has six(B > 0) or twelve (B < 0) states. But by reasons of symmetry, the substitution will a
t on thefree group generated by only three letters a; b; 
. Furthermore, let Q be the hexagon of Theorem 1.



6 SHIGEKI AKIYAMA AND BENOÎT LORIDANTWe will prove that Q + Z2 is a tiling of the plane. We denote by C1; C2; : : : ; C6 the 
onse
utiveverti
es of Q. Then g asso
iates the letters to the sides of �Q :g(a) = va := C2 � C1; g(b) = vb := C3 � C2; g(
) = v
 := C4 � C3;and is extended to a homomorphism on < a; b; 
 >. Also, given a redu
ed word a1 : : : am, letp(a1 : : : am) stand for the polygonal path joining0; g(a1); g(a1a2); : : : ; g(a1 : : : am)in this order by straight lines. By this 
orresponden
e, p(�(ab
a�1b�1
�1)) will be a 
urve 
on-gruent to �(Q+D) and more generally, p(�n(ab
a�1b�1
�1)) a simple 
losed 
urve 
ongruent to�(Q+D + : : :+Mn�1D).Theorem 3. Let the self-aÆne tile T and the sequen
e (Tn)n�0 be as in Theorem 1. Then thereis an endomorphism � :< a; b; 
 >!< a; b; 
 > and a homomorphism g :< a; b; 
 >! R2 with thefollowing properties.(1) For all n � 0, M�np(�n(ab
a�1b�1
�1))| {z }=: Kn = �Tn + knfor some kn 2 R2 .(2) (Kn)n�0 
onverges to a 
urve K in Hausdor� metri
. Moreover,K = �T + kfor some k 2 R2 .The paper is organized as follows. In Se
tions 3 and 4, we treat the 
ase A � 0; B � �2 indetails. Indeed, in this 
ase G(R) is dis
onne
ted and the 
ipping o

urs. In Se
tion 3, we re
allthe 
onstru
tion of G(R). We derive the parametrization of �T and the asso
iated sequen
e ofapproximations. Se
tion 4 is devoted to the re
urrent set method. In Se
tion 5, we extend theprevious results to the whole 
lass. We prove Proposition 2.1, and our theorems follow. We endup the se
tion with a new proof of the disk-likeness 
hara
terization. In Se
tion 6, we eventuallymake several 
omments about possible generalizations of our method.3. G(R) and the boundary parametrizationIn this se
tion, we 
onstru
t the redu
ed 
onta
t automaton G(R). We introdu
e its orderedextension and obtain the boundary parametrization.We �rst re
all some de�nitions on automata. Let � be a �nite set, or alphabet. Its elements areletters and sequen
es of letters are words. �� denotes the set of �nite words, �! the set of in�nitewords. If l = (l1; : : : ; ln) 2 ��, we write jlj = n for the length of l and ljm = (l1; : : : ; lm) for thepre�x of l of length m � n. If l 2 �!, then jlj =1 and pre�xes ljm are de�ned for all m � 1. The
on
atenation of two words a and b is denoted by a&b. If a word a is repeated in�nitely manytimes, we write a, meaning a&a&a : : :An automaton is a quadruple A = (�; S; E; I) as follows.� � is an alphabet.� S is a �nite set of states.� I � S is a set of initial states.� E � S � �� S is a set of transitions. If (s; l; s0) 2 E, we write s l�! s0.If for ea
h (s; l) 2 S � � a transition s l�! s0 exists for at most one s0 2 S, we will say that theautomaton is weak deterministi
 ; if su
h a transition exists for exa
tly one s0 2 S, the automatonis deterministi
. In the other 
ases, we will 
all the automaton non-deterministi
.



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 7A walk w in the automaton A is a �nite or in�nite sequen
e of transitions (sn; ln; s0n)n�1 su
hthat s1 2 I and s0n = sn+1. We writew : s1 l1�! s2 l2�! s3 l3�! : : : (3.1)We say that w starts from s1, and if w is �nite of the form (sn; ln; s0n)1�n�m, we say it ends ats0m. Having two walks w and w0 su
h that w ends where w0 starts, we may 
on
atenate themand write w&w0. The asso
iated sequen
e l = (ln) of letters of a walk w is the label of w. If theautomaton is deterministi
 or weakly deterministi
, then the walk w is 
ompletely de�ned by itsstarting state s1 and its label l, hen
e we may simplify the notation and write w = (s1; l).As for words, we 
an de�ne length and pre�xes of the walk : the length of w is simply jwj = jljand a pre�x wjm (m � jwj) 
onsists of the �rst m transitions of w :wjm : s1 l1�! s2 l2�! : : : lm�! sm:Let us re
all the 
onstru
tion of the automaton G(R). Let T = T (M;D) be an integral self-aÆne Z2-tile. Let e1; e2 be the 
anoni
al basis of Z2 and R0 := f0;�e1;�e2g. De�ne re
ursivelythe sets Rn := fk 2 Z2; (Mk +D) \ (l +D) 6= ; for some l 2 Rn�1gand R := Sn�0Rn n f0g. Then R is a �nite set 
alled 
onta
t set ([8℄). It is used to des
ribe theboundary of T . Let M � Z2 and G(M) be the automaton de�ned as follows. The states of G(M)are the elements of M , and for k; l 2M , there is a transitionk aja0��! l (a; a0 2 D) i� Mk + a0 = l+ a:We may also simply write k a�! l for su
h a transition, sin
e a0 is then uniquely determined. G(R)is 
alled the 
onta
t automaton of T . It happens that states of G(R) have no outgoing transitions.Thus we deal with the redu
ed 
onta
t automaton. Let Red(G(M)) be the graph emerging fromG(M) when all states that are not the starting state of an in�nite walk in G(M) are removed.De�ne R to be the subset of R su
h that Red(G(R)) = G(R). Then, there are non-empty 
ompa
tsets (Ks)s2R su
h that �T = [s2RKs (3.2)and Ks = [s a�!s02G(R)M�1(Ks0 + a): (3.3)This was proved in [1℄. Thus the boundary of T is the attra
tor of this graph iterated fun
tionsystem (see [7, 18℄). G(R) is usually smaller than the boundary GIFS en
ountered in the litera-ture [11, 13℄. Indeed, the set of states of the latter 
onsists of all the neighbors of T , that is, thetiles T + s with T \ (T + s) 6= ;. This may be very large if T is not disk-like.In the remaining part of this se
tion, we suppose that the matrix M and the digit set D are asin (2.2), where A � 1 and B � �3 (remember that for A = 0, T is just a re
tangle). In this 
ase,R = f�P;�Q;�Ngwith P = � 10 � ; Q = � A+ 11 � ; N = � A1 � :The automaton G(R) is depi
ted on Figure 2. The symmetries in G(R) follow from the fa
t thatk aja0��! l if and only if �k a0ja��! �l.We now 
ome to the parametrization. We have a surje
tive mapping : G(R) ! �Tw 7! Pj�1M�jaj ; (3.4)
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Q

�P �N

�Q
jBj � 1 0
0 A... ...jBj �A� 1 jBj � 1

0 A+ 1... ...jBj �A� 2 jBj � 1
jBj �A� 1 0... ...jBj � 1 A

jBj �A 0... ...jBj � 1 A� 1
0 jBj � 1

A 0... ...jBj � 1 jBj �A� 1
A+ 1 0... ...jBj � 1 jBj �A� 2

0 jBj �A� 1... ...A jBj � 1
0 jBj �A... ...A� 1 jBj � 1

Figure 2. Redu
ed 
onta
t automaton G(R) for A � 1; B � �3.
x1

x2x3x4 KPKQKN
x1 = f0(x4)f0(x3)f0(x2) = f1(x4)x2 = f1(x3)

KP [KQ [KN . KP = f0(KN ) [ f0(KQ) [ f1(KN ).Figure 3. Flipping for (A;B) = (2;�4).where w : s1 a1�! s2 a2�! : : : is an in�nite walk in the automaton G(R). We wish to 
onne
tthe interval [0; 1℄ to the boundary �T via G(R). This is done by introdu
ing a number systemasso
iated to G(R). We pro
eed in four steps.Step 1. First note that sin
e B = det(M) < 0, a 
ipping o

urs. Hen
e the orientation of theboundary pie
es 
hanges at ea
h iteration of (2.4), as explained in Figure 3. The pi
ture shows the
ipping for the (roughly represented) boundary part KP . Sin
e taking M2 instead of M wouldsquare the number of digits, we fake the 
ipping by doubling the number of states.� For ea
h state S 2 R, we 
reate the states S and S.� For ea
h transition S a�! T 2 G(R), we 
reate the transitions S a�! T and S a�! T .The resulting automaton G0(R) is depi
ted in Figure 4.Step 2. To de�ne the number system, we need a weak deterministi
 version of the double sizedautomaton. This is obtained by ordering its states and transitions. The states are ordered from1 to 12. The transitions starting from a state i are then ordered from 1 to lmax. Note that lmaxdepends on i. We 
all this ordered extension G(R)o. It is depi
ted in Figure 5. In this �gurewe kept tra
k of the digits asso
iated to the edges. In this way, the whole set of transitions is anordered set, from the transition (1; 1) to the transition (12; lmax). A dire
t 
onsequen
e is that forea
h n the set of walks of length n is also lexi
ographi
ally ordered, as well as the set of in�nitewalks. The minimal walk is then wmin = (1; 1; 1; 1; : : :) = (1; 1)
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P Q N

N Q P
jBj � 10...jBj �A� 1jBj � 1 0...jBj �A� 1 jBj �A� 1...jBj � 1jBj �A� 1...jBj � 1 0...jBj �A� 2jBj �A...jBj � 1

0...jBj �A� 2 jBj �A...jBj � 1 �P �Q �N

�N �Q �P
0A...jBj � 10 A...jBj � 1 0...A0...A A+ 1...jBj � 10...A� 1

A+ 1...jBj � 1 0...A� 1

Figure 4. Faking the 
ipping.
12 Q = 2 10

N = 3 11 P = 1
jBj � 1 10 1... ...jBj �A� 1 lmaxjBj � 1 1 0 lmax... ...jBj �A� 1 1 jBj �A� 1 1... ...jBj � 1 lmaxjBj �A� 1 lmax... ...jBj � 1 1 0 2... ...jBj �A� 2 lmax � 1jBj �A lmax � 1... ...jBj � 1 2

0 lmax � 1... ...jBj �A� 2 2 jBj �A 2... ...jBj � 1 lmax � 1 9 �Q = 5 7

�N = 6 8 �P = 4
0 1A lmax... ...jBj � 1 10 1 A 1... ...jBj � 1 lmax 0 lmax... ...A 10 1... ...A lmax A+ 1 lmax � 1... ...jBj � 1 20 2... ...A� 1 lmax

A+ 1 2... ...jBj � 1 lmax � 1 0 lmax � 1... ...A� 1 2

Figure 5. Ordered extension G(R)o for A � 1; B � �3.and the maximal walk is wmax = (12; lmax)(that is, all the transitions are labeled by the maximal order).Note that the in�nite walks starting from the states 1 to 6 are enough to des
ribe the boundary.The states 7 to 12 des
ribe the same boundary parts, but are oriented in the reverse dire
tion.More pre
isely, we have the following relation. Let (Ks)s2R be the attra
tor asso
iated to G(R)(see (3.3)). Also, let (Ki)1�i�12 be the solution of the GIFS G(R)o :Ki = [i a�!j2G(R)oM�1(Kj + a); (3.5)Then the following 
orresponden
e holds.KP = K1 = K12 KQ = K2 = K11 KN = K3 = K10K�P = K4 = K9 K�Q = K5 = K8 K�N = K6 = K7: (3.6)Step 3. Consider the in
iden
e matrix of G(R). It 
onsists of two equal primitive blo
ks of size3�3. We 
all � the Perron Frobenius eigenvalue of these blo
ks and (uP ; uQ; uN ) the positive lefteigenve
tor with uP +uQ+uN = 12 . Let D be the in
iden
e matrix of G(R)o. It follows from the�rst two steps that � is the dominant eigenvalue of D. It has multipli
ity 2 and settingu1 = u4 = u9 = u12 := uP ; u2 = u5 = u8 = u11 := uQ; u3 = u6 = u7 = u10 := uN ;then (ui)1�i�12 is the positive left eigenve
tor of D of length 2.Step 4. We eventually obtain the number system. The walks w = (i; o1; o2; : : :) starting fromthe state i will be sent to a subinterval of [0; 1℄ of length ui. We de�ne the transition fun
tion�0(i; o) = 8><>: 0; if o = 1P 1 � k < o;i k�! j uj ; if o 6= 1:



10 SHIGEKI AKIYAMA AND BENOÎT LORIDANTWe write G(R)o+ when restri
ting the initial states of G(R)o to f1; : : : ; 6g. Also, we set u0 := 0.Proposition 3.1. Let � be the mapping� : G(R)o+ �! [0; 1℄w 7! limn!1 ( u0 + u1 + : : :+ ui�1+ 1��0(i; o1) + 1�2�0(s1; o2) + : : :+ 1�n�0(sn�1; on) )whenever w is the in�nite walk :w : i o1�! s1 o2�! : : : on�! sn on+1���! : : : :Then � is well-de�ned, in
reasing and onto.The proof of this proposition is straight forward and 
an be done in the same way as in [1,Proposition 3.2℄. The result is also known as Dumont-Thomas number system [6℄ in the 
ontextof substitutive numeration systems. The identi�
ations in this number system play an essentialrôle in our 
onstru
tion. Let w 6= w0 2 G(R)o+, say for example w >lex w0. Then �(w) = �(w0)if and only if 1:� w = (i+ 1; 1)w0 = (i; lmax) or 2:� w = (j; o1; : : : ; om; o+ 1; 1)w0 = (j; o1; : : : ; om; o; lmax) (3.7)holds for some state i = 1; : : : ; 6 or some pre�x (j; o1; : : : ; om) and an order o. Thus if t 2 [0; 1℄,��1(t) 
onsists of at most two elements (see also [1, Lemma 3.3℄).We are now ready to 
onne
t the interval [0; 1℄ to �T . Let�(1) : [0; 1℄ �! G(R)o+t 7! maxlex ��1(t); (3.8)where maxlex maps a �nite set of walks to its lexi
ographi
ally maximal walk. Also, we de�ne thenatural proje
tion from the ordered extension to the GIFS :Pr : G(R)o+ �! G(R)(i; o1; o2; : : :) 7! I a1�! S1 a2�! : : : (3.9)It 
an be visualized in Figure 5 via the walk i a1jo1���! s1 a2jo2���! : : : and the 
orresponden
e1; 12 $ P 2; 11 $ Q 3; 10 $ N : : :and so on as in (3.6).Proposition 3.2. The mapping C : [0; 1℄ �(1)��! G(R)o+ Pr��! G(R)  �! �T is onto and H�older
ontinuous.By the 
orresponden
e (3.6), the proof will be very similar to the proof given in [1, Propositions3.4, 3.5℄. C is 
ontinuous on a dense set, independently of the 
hoi
e of G(R)o. Our parti
ular
hoi
e will give the 
ontinuity on the remaining 
ountable part C of [0; 1℄. By the GIFS property,it is enough to 
he
k the 
ontinuity on a �nite set of points in C. This is the purpose of the lemmabelow. The proof is then indu
tive.For the purpose of the proof we extend the de�nitions of � and Pr to the whole automatonG(R)o.Lemma 3.3. The 
ompatibility 
onditions (Pr(i; lmax)) =  (Pr(i+ 1;1)) (1 � i � 11) (3.10) (Pr(12; lmax)) =  (Pr(1;1)) (3.11) (Pr(i;o; lmax)) =  (Pr(i;o+ 1;1)) (1 � i � 12; 1 � o < limax) (3.12) (Pr(6; lmax)) =  (Pr(1;1)): (3.13)hold.



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 11Proof. Note that the walks in the above equalities end up in 
y
les in G(R)o. Thus these are�nitely many equalities between eventually periodi
 points. We mentioned in [1℄ a way to 
he
kthem by the use of automata. The equalities involve pairs of sequen
es (an)n�1 and (a0n)n�1 thatlead to the same point : Xn�1M�nan =Xn�1M�na0n:The de�nition of the transitions in G(R) has the following 
onsequen
e. If the in�nite walks8<: s a1ja001���! s1 a2ja002���! s2 a3ja003���! : : :s a01ja001���! s01 a02ja002���! s02 a03ja003���! : : :exist in G(R), then Pn�1M�nan =Pn�1M�na0n. In fa
t, this is an equivalen
e if one enlargesG(R) to the automaton G(S). Here, S � R is the set of all neighbors of T (see [1, Se
tion 4℄).Conditions (3.10), (3.11) and (3.13) are easily seen. Indeed, for i = 1, we have the equalities :Pr(1; lmax) = 1 jBj�A�1������! 10 jBj�1����! 1 jBj�A�1������! : : :P r(2; 1) = 2 jBj�A�1������! 4 jBj�1����! 6 jBj�A�1������! : : :These walks are 
y
les of length 2 with the same labels. Hen
e the equality (Pr(1; lmax)) =  (Pr(2; 1))holds trivially. The other 
ases are treated similarly. Note that (3.13) means C(0) = C(1).For (3.12), we treat the 
ase i = 1. The parity of o (1 � o < lmax) is of importan
e. If o is odd,then Pr(1; o; lmax) = 1 a�! Pr(10; lmax)Pr(1; o+ 1; 1) = 1 a�! Pr(11; 1):for some digit a. Hen
e, by (3.10), the equality (Pr(1; o; lmax)) =  (Pr(1; o + 1; 1))again holds trivially. If o is even, we havePr(1; o; lmax) = 1 a�! Pr(11; lmax)Pr(1; o+ 1; 1) = 1 a+1��! Pr(10; 1):for some a 2 f0; : : : ; jBj �A� 2g. The label of Pr(11; lmax) is (an)n�1 = (jBj �A� 1)(jBj � 1),and the label of Pr(10; 1) is (a0n)n�1 = (jBj � 1)0. Hen
e it remains to 
he
k that these digitsequen
es lead to the same boundary point, that isXn�1M�nan =Xn�1M�na0n:This is be
ause the walks8<: P aja00���! Q jBj�A�1j0�������! Q jBj�1jA�����! Q jBj�A�1j0�������! : : :P a+1ja00�����! N jBj�1j0�����! P 0jA��! N jBj�1j0�����! : : :both exist in G(R) for some digit a00.The proof is similar for the other relevant values of i. �Proof of Proposition 3.2. LetC := ft 2 [0; 1℄ ; t = u0 + u1 + : : :+ ui�1 + 1��0(i; o1) + 1�2�0(s1; o2) + : : :+ 1�m�0(sm�1; om)for some �nite walk i a1jo1���! s1 a2jo2���! : : : amjom����! sm 2 G(R)og:Then it 
an be shown that C is 
ontinuous on C, right 
ontinuous on [0; 1℄ n C and that limt� Cexists also for all t 2 [0; 1℄ n C. These properties would be valid for any ordering of the automaton.But our spe
ial 
hoi
e of G(R)o has also left 
ontinuity properties. Lemma 3.3 implies the left
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ontinuity of C at the points asso
iated to walks of length m = 0 and m = 1 in the de�nition ofC. Let now t 2 C asso
iated to a walk of length m � 2 but not to a walk of smaller length. Thust = �(i; o1; : : : ; om; 1| {z }w )with om 6= 1. We write (a1; a2; : : :) for the labeling sequen
e of Pr(w). Also, we write fa(x) :=M�1(x+ a). Then,C(t) =  (Pr(w)) = fa1 Æ : : : Æ fam Æ  (Pr(j; om; 1))= fa1 Æ : : : Æ fam Æ  (Pr(j; om � 1; lmax)) (by Condition (3.12))= C(t�)(here j is the ending state of the walk wjm�1 in the automaton G(R)o). Thus C is left 
ontinuousin t.The H�older 
ontinuity is then a 
onsequen
e of the left 
ontinuity. It 
an be proved as in [1℄. �We �nally give the sequen
e of polygonal approximations asso
iated to the above parametriza-tion and prove that they are simple 
losed 
urves.Let C : [0; 1℄ ! �T be the parametrization of Proposition 3.2. For N points M1; : : : ;MN ofRd , we denote by [M1; : : : ;MN ℄ the 
urve joining M1; : : : ;MN in this order by straight lines.Let w(n)1 ; : : : ; w(n)Nn be the �nite walks of length n of the automatonG(R)o+ in the lexi
ographi
alorder : (1; 1; : : : ; 1) = w(n)1 �lex w(n)2 �lex : : : �lex w(n)Nn = (6; lmax; : : : ; lmax);where Nn is the number of these walks. For n = 0, these are just the states 1; : : : ; 6. LetC(n)j := C(�(w(n)j &1)) 2 �T (1 � j � Nn):Then we 
all �n := hC(n)1 ; C(n)2 ; : : : ; C(n)Nn ; C(n)1 i ;the n-th approximation of �T .We will need the following lemmas. The �rst one interprets these approximations as the iteratedsequen
e of the GIFS G(R). We write G(R)o+n (i) for the walks of length n starting from the statei. Also, for w of length n, we write w+1 the next walk in the lexi
ographi
al order. We make the
onvention that the maximal walk has the minimal one as follower. For i = 1 : : : 6, let�(n)i := [w2G(R)o+n (i) �C(�(w&1)); C(�(w+1&1))� :Lemma 3.4. For all n 2 N,( �n = S6i=1�(n)i�(n+1)i = Si a�!j2G(R)M�1(�(n)j + a): (3.14)Proof. This is a 
onsequen
e of the left 
ontinuity of the parametrization. The proof is indu
tive.Note that Pr(j; 1) = Pr(13� j; lmax)
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onstru
tion of G(R)o. Therefore,Si a�!j2G(R) fa(�(0)j ) = Si ajo��!13�j2G(R)o+(i) fa(� (Pr(13� j; lmax));  (Pr(12� j; lmax))�)= Si ajo��!13�j fa(� (Pr(13� j; lmax));  (Pr(13 � j; 1))�) by (3.10)= Si ajo��!13�j � (Pr(i; o; lmax));  (Pr(i; o; 1))�= Si ajo��!j2 24 (Pr(w+1&1));  (Pr( i; o|{z}w ; 1))35 by (3.12)= �(1)i :The indu
tion step goes similarly. �The se
ond lemma exhibits a tiling of the plane by hexagons naturally asso
iated to theparametrization. will simply write C1; : : : ; C6 instead of C(0)1 ; : : : ; C(0)6 . Hen
e we have:C1 =  (0(jBj � 1)); C2 =  ((jBj �A� 1)(jBj � 1)); C3 =  ((jBj � 1)(jBj �A� 1));C4 =  ((jBj � 1)0); C5 =  (A0); C6 =  (0A): (3.15)Lemma 3.5. [C1; : : : ; C6; C1℄ is a simple 
losed 
urve. Let Q be the 
losure of its bounded 
omple-mentary 
omponent. Then Q+Z2 is a tiling of the plane. Two neighboring tiles have 1-dimensionalinterse
tion. Moreover, the neighbors of Q are the tiles Q+ s with s 2 R, that is,�Q = [s2RQ \ (Q+ s):Proof. The proof is similar as in [1, Proposition 5.5℄. The 
oordinates of the verti
es of Q 
an be
omputed as rational expressions in A;B. The following relations hold.C3 = C1 + (A; 0); C4 = C6 + (A; 1); C2 = C4 + (1; 0); C1 = C5 + (1; 0): (3.16)Moreover, C6 � C5 = ( (A�1)AjBj+1�A ; AjBj+1�A ). This gives the relative position of the verti
es and thelemma then follows from geometri
al 
onsiderations. �We de�ne the natural approximations of T , when starting with the polygon Q. Let T0 := Q,the hexagon of the above proposition and for all n � 0,MTn+1 = [a2D(Tn + a):By the pre
eding lemma,MnTn is a union of jDjn hexagons 
ongruent to Q. Sin
e two neighboringhexagons have a one dimensional interse
tion, this union is disk-like (see [1, Proposition 5.6℄).Moreover, the equality �n = �Tn (3.17)holds for all n. It was proved in [1℄ by showing that �Tn ful�lls the same re
urren
e relation as�n, given here in Lemma 3.4. Thus �n is a simple 
losed 
urve.This leads to the following proposition.Proposition 3.6. �n is a simple 
losed polygonal 
urve and its verti
es have Q(�)-addresses.Moreover, (�n) 
onverges to �T in Hausdor� metri
.Proof. By de�nition, �n is a 
losed polygonal 
urve. The verti
es have Q(�)-addresses, sin
e they
orrespond to the �nite sums in Proposition 3.1. The 
onvergen
e in Hausdor� metri
 followsfrom Lemma 3.4, sin
e �T is the attra
tor of the GIFS G(R). The fa
t that �n is a simple 
urvefollows from its equality to �Tn. �Examples of the polygonal tiling and the approximation sequen
es are given in Figure 6 (disk-like tile) and Figure 7 (non disk-like tile).
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1.4

1.2

1

0.8

0.6

0.4 Figure 7. A = 1; B = �3 : polygonal tiling, �i (i = 0; 1; 2; 5; 6).4. The relation to the re
urrent set methodThe re
urrent set method was introdu
ed in [4, 5℄. It produ
es fra
tal 
urves from a givensubstitution and an embedding into the plane. An assumption 
alled short range 
an
ellationis required for the substitution. A fra
tal 
urve obtained in this way is the boundary of a self-similar tile. Conversely, given a self-similar tile, it may not be easy to �nd an asso
iated boundarysubstitution satisfying short range 
an
ellation and the appropriate embedding. For example, the
lass of self-similar tiles produ
ed by substitutions on two letters was 
hara
terized in [22℄. Wewill show that our 
lass 
an entirely be des
ribed via the re
urrent set method by substitutionson three letters.Let T = T (M;D) be de�ned by the matrix M and the digit set D as in (2.2). We treat the
ase A > 0; B < 0. A substitution is read o� from the ordered 
onta
t automaton. It is theendomorphism of the free group over three letters < a; b; 
 >, �rst de�ned for a; b; 
 a

ording toFigure 5: a ! ( _
 _b)jBj�A�1 _
b ! (_b _
)A _b
 ! _awhere _a; _b; _
 stand for the inverses of the letters a; b; 
. This de�nition is then extended to< a; b; 
 >by 
on
atenation. We 
all this substitution �.



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 15Remark 4.1. The original twelve letters are redu
ed to six (a; b; 
 and their inverses). This isbe
ause there will be three dire
tions, along whi
h we will draw the 
urves in the plane. Firstly,a; b; 
 are asso
iated to 1; 2; 3, and _a; _b; _
 to 4; 5; 6, sin
e the underlying elements of R are exa
tlyP;Q;N;�P;�Q;�N . Se
ondly, 7; 8; 9; 10; 11; 12 are asso
iated to 
; b; a; _
; _b; _a respe
tively, as thestates 7; : : : ; 12 are redundan
ies to fake the 
ipping (i and 13 � i give the same dire
tion butreverse orientation).Let Q be the hexagon whose verti
es C1; : : : ; C6 were de�ned in (3.15). We proved in Lemma 3.5that Q + Z2 is a tiling of the plane. This allows us to 
onstru
t dire
ted 
urves in the plane asfollows. Let va := C2 � C1; vb := C3 � C2; v
 := C4 � C3;v _a := C5 � C4 = �va; v_b := C6 � C1 = �vb; v _
 := C1 � C6 = �v
;and g the homomorphism g : < a; b; 
 > ! R2o1o2 : : : on ! vo1 + : : :+ von :The important property of g is that it 
onne
ts the a
tion of � on the words and the a
tion of Mon the plane. More pre
isely, for all words w 2< a; b; 
 >,g(�(w)) =Mg(w): (4.1)Given a redu
ed word a1 : : : am, let p(a1 : : : am) stand for the polygonal path joining0; g(a1); g(a1a2); : : : ; g(a1 : : : am)in this order by straight lines. So if W0 := ab
 _a_b _
, then the 
urve p(W0) is the boundary ofthe hexagon Q up to a translation by �C1. We say that a dire
ted 
urve en
loses 
lo
kwise(resp. 
ounter
lo
kwise) a bounded set Q0 if it is a simple 
losed 
urve oriented 
lo
kwise (resp.
ounter
lo
kwise) and equal to the boundary of Q0.Proposition 4.2. For all n � 1, p(�n(W0)) en
losesQ� C1 + n�1Xk=0 g(�k( _ab
)) +D + : : :+Mn�1D;
lo
kwise if n is odd and 
ounter
lo
kwise if n is even.Proof. The indu
tive proof runs as [1, Proposition 6.2℄.First note that p(W0) = p(ab
 _a_b _
) en
loses Q� C1 
ounter-
lo
kwise. For n = 1,p(�(ab
 _a_b _
)) = p(( _
 _b)jBj _a(
b)jBja)= p( _aa( _
 _b _aa)jBj�1 _
_b _a(
b)jBja)= p( _a(a _
 _b _a)jBj(
b)jBja)= g( _a) +SjBj�1x=0 hp(a _
_b _a
b) + xg(a _
 _b _a)i nSjBj�1x=1 hp( _a) + xg(a _
 _b _a)i= g( _a) +SjBj�1x=0 �p(a _
_b _a
b) +� x0 �� nSjBj�1x=1 �p( _a) +� x0 �� :We made a slight abuse of notation : the endpoints of the translates of p( _a) are in fa
t in
luded inthe 
urve p(�(ab
 _a_b _
)). Ea
h p(a _
_b _a
b) +� x0 � en
loses 
lo
kwise the boundary of the hexagonQ� C1 + g(
b) +� x0 � ;and these hexagons are essentially disjoint by the tiling property of Q. Thus p((�(ab
 _a_b _
)) isthe boundary of the union Q � C1 + g( _a
b) + D of hexagons glued together through the edgesp( _a) + � x0 �. The interse
tions are one-dimensional. In other words, p((�(ab
 _a_b _
)) en
losesQ� C1 + g( _ab
) +D.



16 SHIGEKI AKIYAMA AND BENOÎT LORIDANTSuppose now the statement true for some n � 1. Thenp(�n+1(ab
 _a_b _
)) = p(�n( _aa( _
_b _aa)jBj _a(
b)jBja))= p((�n( _a(a _
 _b _a))jBj(
b)jBja)= g(�n( _a)) +SjBj�1x=0 hp(�n(a _
 _b _a
b)) + xg(�n(a _
 _b _a))inSjBj�1x=1 hp(�n( _a)) + xg(�n(a _
 _b _a))iUsing the indu
tion hypothesis and the equality (4.1), it follows that p(�n+1(ab
 _a_b _
)) en
loses theunion of tiles Q� C1 +D + : : :+MnD + g( _ab
) + : : :+ g(�n�1( _ab
)) + g(�n( _ab
))(
lo
kwise or 
ounter-
lo
kwise, depending on the parity of n), and we are done. �5. The other 
asesIn this se
tion, we show that the previous 
onstru
tion of parametrization holds for the whole
lass and we 
hara
terize the disk-like 
ases. Theorems 1, 2 and 3 were proved for B > 0; A > 0in [1℄ and will follow from the results of Se
tions 3 and 4 for B < 0; A > 0. The remaining 
asesare easily seen as a 
onsequen
e of (2.11). However, it just gives the existen
e of the 
orrespondingparametrization for the latter two 
ases. By proving Proposition 2.1, we want to make sure thatour method is eÆ
ient to produ
e dire
tly these parametrizations.We give the meaning of symmetri
 ordered extension GO. Every state of an ordered extensionGO of G(R) is asso
iated to a state s 2 R (sometime via s in the 
ase B < 0). We 
all GOsymmetri
 if the transitions(B > 0) s a�! s0 and � s jBj�1�a������! �s0 are given the same order o:(B < 0 s a�! s0 and � s jBj�1�a������! �s0 (as well as s a�! s0 and �s jBj�1�a������! �s0 )are given the same order o: (5.1)Proof of Proposition 2.1. We 
onstru
t the extension GO2 . The main property we use is the fol-lowing. Remember that s aja0��! s0 (s; s0 2 R) is a transition in the redu
ed automaton G(R) if andonly if Ms+ a0 = s0 + a. R is symmetri
, that is, R = �R. Moreover,s a�! s0 2 G1(R1) () �s jBj�1�a������! �s0 2 G1(R1)() �Ps a�! Ps0 2 G2(R2) () Ps jBj�1�a������! �Ps0 2 G2(R2) (5.2)This 
an be seen from the 
onstru
tion of G(R) (Se
tion 3).We now build up GO2 by introdu
ing an order on G2 as follows. Suppose �rst that B > 0, thatis, G1 = G1(R1) and G2 = G2(R2). Sin
e R2 = PR1, we naturally transfer the order 
hosen forR1 to R2 : s$ i 7�! Ps$ i (5.3)However, we transfer the transitions (i;o) of GO1 to transitions of GO2 in a di�erent manner:s a�! t$ i ajo��! j 7�! Ps jBj�1�a������! �Pt$ i jBj�1�a j o��������! j0 2 GO2 (5.4)(thus j0 is de�ned via P(�t) $ j0). We prove that if w = (i;o1;o2; : : :) is a walk in GO1 , then itis also a walk in GO2 . Let us writePr1(w) = s a1�! s1 a2�! s2 a3�! : : : 2 G1:Then the walk w0 := Psi jBj�1�a1������! �Ps1 a2�! Ps2 jBj�1�a3������! : : : 2 G2:
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-1-1.5-2 Figure 8. A = �2; B = �6 : polygonal tiling, �0; : : : ;�4This is a 
onsequen
e of (5.2). It now follows from (5.4) and the assumption of symmetry of theordered extension GO1 thati jBj�1�a1jo1��������! j01 a2jo2���! j2 jBj�1�a3jo3��������! : : : 2 GO2 :This argument even shows a one to one 
orresponden
e between GO1 and GO2 . Moreover, let Pr2the natural proje
tion from GO2 to G2 and  2 the boundary mapping. ThenGO1 id�! GO2 Pr2��! G2  2��! �T2w 7! w 7! w0 7!  2(w0);where  2(w0) = M�1� jBj � 1� a10 �+M�2� a20 �+M�3� jBj � 1� a30 �+ : : := P 1((Pr1(w)) + v:The 
ase of B < 0 is treated similarly. �Remark 5.1. The 
onsequen
es of this proposition are that :(1) the 
ompatibility 
onditions (2.7) to (2.9) are equivalently ful�lled by GO1 and GO2 ;(2) the same (Dumont Thomas-like) number system is asso
iated to GO1 and GO2 .We are now able to prove all our theorems.Proof of Theorem 1. The theorem is a dire
t 
onsequen
e of the previous se
tions for the 
ase(A � 1; B � �3). Indeed, by Proposition 3.2, we obtain a H�older 
ontinuous parametrizationC : [0; 1℄! �T , and Lemma 3.5 gives the 
orresponding hexagon Q. Equality (3.17) together withProposition 3.6 insure that the parametrization and the asso
iated sequen
e of approximationshave the required properties (1),(2),(3) of the theorem.The symmetri
 
ase (A � �1; B � �3) follows from Proposition 2.1, with the simple relationC(t) = f(C 0(t)) between two parametrizations C for (A;B) and C 0 for (�A;B) (A � �1). Theproof for (A � 1; B � 2) was given in [1, Theorem 4℄ and again the symmetri
 
ase (A � �1; B � 2)follows from Proposition 2.1. �Figure 8 represents the 
ase A = �2; B = �6. It 
an be also obtained from Figure 6 afterre
e
tion by x-axis and translation.Proof of Theorem 2. The theorem was proved in [1, Theorem 2℄ in the 
ase that the 
onta
tautomaton G(R) is strongly 
onne
ted. It is an appli
ation of [9, 17℄ that mainly relies on anopen set 
ondition for the GIFS (see also [1, Proposition 3.13℄).Note that for (A � 1; B � �3) the automaton G(R) is dis
onne
ted and 
onsists of twostrongly 
onne
ted 
omponents (see Figure 2). These two 
omponents have the same in
iden
ematrix. Thus the results apply separately on ea
h 
omponent for a 
ommon generalized Hausdor�



18 SHIGEKI AKIYAMA AND BENOÎT LORIDANTmeasure. Let � the Perron Frobenius eigenvalue asso
iated to the 
omponents of G(R), as in Step3 of Se
tion 3. Let H�w, where � := 2 log(�)log(j det(M)j) :Then we have 1 > H�w(Ks) > 0 for ea
h boundary part Ks (s 2 R). Moreover, there is aseparation property : H�w(Ks) = 1� Xs a�!s02G(R)H�w(Ks0):This remains true for the attra
tor (Ki)1�i�12 of the dupli
ated automaton of Figures 5, be
auseof the 
orresponden
e (3.6). The proof then runs as in [1℄.The 
ase (A � 1; B � 2) is part of [1, Theorem 4℄. The remaining symmetri
 
ases (for A � �1)are a 
onsequen
e of Proposition 2.1. �We mention that, for (A � 1; B � 2), we even proved in [1℄ the measure disjointness of theboundary parts Ks (s 2 R). In this 
ase, the des
ription reads as follows :1
H�w ( C([0; t)) ) = t (t 2 [0; 1℄)with 
 = H�w(�T ). The reason is that ea
h interse
tion Ks\Ks0 appeared in a smaller s
ale insidesome other boundary part Ks00 . By symmetry, this des
ription holds also for (A � �1; B � 2).For the other 
ases, a more detailed study of the triple interse
tions would be ne
essary.Proof of Theorem 3. The 
ase (A � 1; B � �3) is a 
onsequen
e of Proposition 4.2. Indeed,M�np(�n(W0)) en
losesM�nQ�M�nC1 +M�n n�1Xk=0 g(�k( _ab
)) +M�nD + : : :+M�1D;that is, M�np(�n(W0)) = �Tn + kn;where kn = �M�nC1+Pnk=1M�kg( _ab
). This gives the �rst equality of the theorem. Therefore,the se
ond equality holds, sin
e (�Tn)n�0 
onverges to �T and (kn)n�0 
onverges tok = 1Xk=1M�kg( _ab
):Let now (A;B) satisfy A � �1 and B � �3. Let C be the boundary parametrization ofthe 
orresponding tile, and C 0 of the tile asso
iated to the symmetri
 
ase (�A;B). Then, byProposition 2.1, C(t) = f(C 0(t)). Note that f 
ontains a re
e
tion with respe
t to the x-axis. Thusa statement similar to Proposition 4.2 holds, after ex
hanging 
lo
kwise and 
ounter
lo
kwise. Itfollows that Theorem 3 holds in the same manner as above.The 
ase (A � 1; B � 3) was treated in [1, Se
tion 6℄ and the symmetri
 
ase (A � �1; B � 3)follows again from Proposition 2.1. �In [16℄, the disk-like tiles T (M;D) among our 
lass were 
ompletely 
hara
terized. We are ableto give a new proof of this statement, by showing that the 
orresponding boundary parametrizationC : [0; 1℄! �T is inje
tive (up to C(0) = C(1)).Proposition 5.2 (see [16℄). Let (M;D) as in (2.2) and T = T (M;D) the tile de�ned by MT =T +D. Then T is homeomorphi
 to a disk if and only if 2jAj � jB + 2j.Proof. Suppose that A � 1 and B � �3. Let C be the parametrization of �T 
onstru
ted inSe
tion 3, in parti
ular Proposition 3.2 :C : [0; 1℄ �(1)��! G(R)o+ Pr��! G(R)  �! �T:
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ipro
al of � : G(R)o+ ! [0; 1℄ (Proposition 3.1).We wonder for whi
h 
hoi
e of (A;B) the 
urve �T is a simple 
losed 
urve, that is, theparametrization C is inje
tive. The pairs of identi�ed walksf(w;w0) 2 G(R)o �G(R)o ; w 6= w0; �(w) = �(w0)gare given by Equation (3.7). They give rise to an automaton A� (see [1, Proposition 4.1℄), depi
tedon Figure 9. In this �gure, a walk is admissible if it starts from a 
olored state (initial state) andpasses through a double 
ir
led state (�nal state) in�nitely many times. The admissible walks Win Figure 9 W : sjs0 a1jo1 jj a01jo01���������! s1js01 a2jo2 jj a02jo02���������! : : :
onsist exa
tly in the pairs wjw0 of walks in G(R)o+ :w : s a1jo1���! s1 a2jo2���! : : :and w0 : s0 a01jo01���! s01 a02jo02���! : : :for whi
h �(w) = �(w0) (and w �lex w0, for simpli
ity). Sin
e the 
ore of the automaton is G(R)o+,we did not represent the transitions. In this part, the two walks w;w0 do not yet distinguish.We proved that su
h pairs lead to the same boundary point :�(w) = �(w0))  (Pr(w)) =  (Pr(w0)):This insured the 
ontinuity of C. Thus they are in
luded in the set of pairsf(w;w0) 2 G(R)o �G(R)o ; w 6= w0;  (Pr(w)) =  (Pr(w0))g:Note that C is inje
tive if and only if both set of pairs are equal, that is if and only if�(w) = �(w0),  (Pr(w)) =  (Pr(w0)):The latter pairs 
an also be read o� from an automaton. This property was shown in [1,Propositions 4.2, 4.5℄ and follows from the following fa
t. Let S := fs 2 Z2 ; s 6= 0; T\(T+s) 6= ;gbe the set of neighbors of T . As mentioned in the proof of Lemma 3.3,Xn�1M�nan =Xn�1M�na0n 2 �Tif and only if two in�nite walks8<: s a1ja001���! s1 a2ja002���! s2 a3ja003���! : : :s a01ja001���! s01 a02ja002���! s02 a03ja003���! : : :exist in G(S). Pulling ba
k these walks to the ordered automaton, one obtains all the pairs (w;w0)of walks of G(R)o+ representing the same boundary point. This splits into two automata : A ,for whi
h (an)n�1 6= (a0n)n�1, and Asl, for whi
h the walks w;w0 in G(R)o+ 
arry the same digitlabels (an)n�1.Suppose that 2A � �B � 2. Using te
hniques of [19℄, one 
an 
ompute that R = S. Thus inthis 
ase G(R) = G(S) is the automaton depi
ted in Figure 2. The automata A and Asl arethen easily 
omputed and depi
ted in Figures 10 and 11. Sin
e their union produ
es the same setsof pairs as A�, it follows that the 
orresponding boundary parametrization C is inje
tive, thus Tis disk-like.On the 
ontrary, if 2A > �B � 2, then one 
an �nd t 6= t0 2 (0; 1) su
h that C(t) = C(t0).Indeed, in this 
ase, jBj �A� 1 � A. Thus the following walks in G(R)o+ (Figure 5) exist :w : 2 jBj�A�1j1�������! 11 jBj�A�1jlmax���������! jBj�A�1j1�������! : : : ;w0 : 5 jBj�A�1jo�������! 8 jBj�A�1jo0��������! 5 jBj�A�1jo�������! : : :
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4j3 6j17j12 9j10jBj � 1j1 jj jBj � 1 jlmax0j1 jj 0 jlmax 0j1 jj 0 jlmaxjBj � 1j1 jj jBj � 1 jlmaxFigure 9. A� for A � 1; B � �3.for some orders o;o0. Then  (Pr(w)) =  (Pr(w0)) holds trivially, whereas obviouslyt := �(w) < �(w0) =: t0:It follows that C has a double point, thus �T 
an not be a simple 
losed 
urve and T is notdisk-like.Sin
e 
hangingA to�A does not 
hange the topology of the 
orresponding tile (Equality (2.11)),we have for A � �1; B � �3 that T is disk-like if and only if �2A � �B � 2.The 
ase A � 1; B � 2 was proved using our method in [1, Se
tion 5℄. This also implies theresult for the symmetri
 
ase A � �1; B � 2. �6. Con
luding remarksIn this paper, we gave an automati
 proof of disk-likeness for a 
lass of planar self-aÆne tileswith 
ollinear digit set. It would be interesting to get further topologi
al informations on thenon-disk-like tiles. We expe
t this to be possible by use of our parametrization. The diÆ
ultylies in the 
omputation of the automaton giving the non trivial identi�
ations, that is, the pointswhere our parametrization fails to be inje
tive. This is related to the 
omplementation problem
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Figure 10. A for A � 1; B � �3 and 2A � �B � 2.of B�u
hi automata. However in some appli
ations, like the Heighway dragon, these identi�
ationsare \small" (for example 
ountable) and the 
omputations seem to be tra
table (see forth
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