
BOUNDARY PARAMETRIZATION OF PLANAR SELF-AFFINE TILES WITHCOLLINEAR DIGIT SETSHIGEKI AKIYAMA AND BENOÎT LORIDANTAbstrat. We onsider a lass of planar self-aÆne tiles T generated by an expanding integralmatrixM and a ollinear digit set D as follows :M = � 0 �B1 �A � ; D = �� 00 � ; : : : ;� jBj � 10 �� :We give a parametrization S1 ! �T of the boundary of T with standard properties. It isH�older ontinuous and assoiated to a sequene of simple losed polygonal approximations whoseverties lie on �T and have algebrai preimages. We derive a new proof that T is homeomorphito a disk if and only if 2jAj � jB + 2j.1. IntrodutionSelf-aÆne tilings in Rd have attrated wide attention in modeling self-similar strutures whihappear in many branhes of mathematis. It is believed that the boundary of self-aÆne tiles hasnon-integral dimension unless the tile is polygonal [20, 21℄. Indeed the boundary of self-aÆne tilesoften shows a fratal shape, and its topologial study is rather diÆult.In [1℄, we introdued a standard method to parametrize the boundary of self-aÆne tiles if theassoiated ontat automaton is strongly onneted. More preisely we expet that whenever thetile is onneted, there exists an oriented extension of the ontat automaton whih parametrizesthe boundary. And this parametrization is H�older ontinuous and preisely desribed by a yliversion of Dumont-Thomas number system. We on�rmed the existene of suh oriented graphsfor tiles assoiated to quadrati anonial number systems.In this paper, we wish to ontinue this study of parametrization in the ase that the ontatautomaton is not strongly onneted. For this purpose, we study a wider lass of tiles orre-sponding to 2 � 2 integral expanding matrix M = �0 �B1 �A� with ollinear digits sets. Thereare two new aspets to be taken into aount in this lass. Firstly, the multipliation of theexpanding matrix may involve ipping, i.e., the diretion of the boundary piees may hange.To get a parametrization in this ase, we introdue a ertain dupliated automaton whose stateskeep information on alternating diretion. Seond is that the ontat automaton is no longerstrongly onneted, but has two strongly onneted omponents. Thus we have to introdue twoindependent parameterizations and merge them into one. Nevertheless, we an derive exatly thesame standard properties of the parametrization, i.e., it gives step by step approximation of theboundary by polygonal urves whih are topologial irles, whose verties are the �xed point ofthe GIFS and have natural algebrai addresses. Further it intertwines Lebesgue measure on theunit irle to a ertain Hausdor� measure whih is positive and �nite on the boundary of the tile.To simplify the study, we introdue a noteworthy orrespondene between tiles orrespondingto A and �A whih basially omes from the symmetry of digits. This somewhat halves oure�ort for topologial lassi�ation of planar tiles with ollinear digits and we reprove the result ofLeung-Lau [16℄ that the tiles are disk-like if and only if 2jAj � jB + 2j.Date: February 8, 2010.The authors are supported by Japanese Ministry of Eduation, Culture, Sports, Siene and Tehnology, Grant-in Aid for fundamental researh 21540010 and the Japanese Soiety for the Promotion of Siene, grant 08F08714.1
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Figure 1. Tiles with ollinear digit set : A = 2; B = �6 (left) and A = 1; B = �3 (right).2. Statement of the main resultsLet M be a d� d integral expanding matrix, i.e., with eigenvalues greater than 1 in modulus,and D � Zd a �nite set. Then there is a unique nonempty ompat set T = T (M;D) satisfyingMT = [a2D(T + a) (2.1)(see [10℄). Suppose that D � Zd is a omplete residue system of Zd=MZd. Then T has positiveLebesgue measure (see [14℄) and we all it integral self-aÆne tile with digit set D. It is known [15℄that there is a sublattie J of Zd suh that T + J is a tiling of Rd :[s2J (T + s) = Rd and �d((T + s) \ (T + s0)) = 0 if s 6= s0 2 J ;where �d is the d-dimensional Lebesgue measure. If J = Zd, we all T a self-aÆne Zd-tile.In the plane, a basi question is the disk-likeness of the entral tile T , that is, the homeomorphyto a losed disk. In [3℄, a riterion was given in terms of number and on�guration of the neighborsof T in the indued tiling. The ase of a ollinear digit set was then ompletely haraterized in [16℄.Suppose that M has the harateristi polynomial x2 +Ax+B and D = f0; v; 2v; : : : ; (jBj � 1)vgfor some v 2 Z2 suh that v;Mv are linearly independent. Then T is disk-like if and only if2jAj � jB + 2j. The proof relies on the riterion mentioned above and an analysis of the triplepoints of the tiling. This generalized a result of [2℄ for quadrati anonial number system tiles.The usual tehnique onsists in showing that the interior of T is onneted.Reently the authors proposed in [1℄ a standard method to parametrize the boundary of a self-aÆne Zd-tile T (M;D). As a onsequene, disk-likeness of a tile T is obtained diretly by showingthat its boundary is a simple losed urve. In the present paper, we wish to illustrate this methodby reproving the above result of Leung-Lau. Exept for a salor matrix, a 2 � 2 matrix M withharateristi polynomial x2 + Ax + B is onjugate to a form �0 �B1 �A�. Thus without loss ofgenerality, we may deal with the following lass of self-aÆne Z2-tiles:M = � 0 �B1 �A � ; D = �� 00 � ; : : : ;� jBj � 10 �� : (2.2)by multiplying a ommutative matrix �x �Byy x�Ay�. ThenM is expansive i� jAj � B if B � 2, orjAj � jB+2j if B � �2. The tiles orresponding to A = 2; B = �6 (disk-like) and A = 1; B = �3(non disk-like) are depited in Figure 1. Note that for A = 0, the tile is just a retangle. Thus wewill suppose A 6= 0.



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 3Part of this lass was already studied as example in [1℄, namely for 0 < A � B � 2. Thease B � 2, A < 0 an be treated similarly. However, for B � �2, two new phenomena our asexplained below.The main tool to parametrize �T is the redued ontat automaton G(R). It is dedued fromthe ontat automaton that was introdued in [8℄ to ompute the fratal dimension of �T . Wewill reall its onstrution in Setion 3. It has a �nite and symmetri set of states R = �R andtransitions labeled by elements of D. It gives a desription of the boundary of T as the attratorof a graph iterated funtion system, or GIFS for short :�T = [s2RKs (2.3)and Ks = [s a�!s02G(R)M�1(Ks0 + a) (2.4)for a (unique) vetor (Ks)s2R of non-empty ompat sets. By [1℄, if the automaton G(R) isstrongly onneted and some ompatibility onditions are satis�ed, then the parametrization anbe performed. The method is valid for our lass in the ase B � 2. We will show how to adapt itfor the ase B � �2.The �rst new phenomenon is the following. For det(M) = B < 0, one observes a ipping of theboundary piees. That is, the orientation of the boundary piees hanges at eah iteration of (2.4)(see Figure 3). Of ourse, one may think of takingM2 instead ofM. This would keep the numberof states of G(R) but would have the disadvantage to square the number of digits. Indeed, Dshould be replaed by D+MD. We will rather fake the ipping by doubling the number of states.� For eah state S 2 R, we reate the states S and S.� For eah transition S a�! T 2 G(R), we reate the transitions S a�! T and S a�! T .The resulting automaton is denoted by G0(R). It has 2 � jRj states. It is also a GIFS for theboundary, but eah boundary part Ks has been dupliated (ompare Figure 2 and Figure 4). Thiswill allow us to swith between two di�erent orientations of a same boundary part.We denote by G the automaton G(R) if B > 0 or G0(R) if B < 0. We write r for the numberof states of G : r = jRj or r = 2jRj. Let us order arbitrarily the set of verties and the transitionsof G. Thus (2.3) and (2.4) now read�T = r[i=1Ki ; Ki = [i ajo��!jM�1(Kj + a): (2.5)Here, the transitions starting from i have been ordered (label o) from 1 and limax, the number ofthese transitions. We all GO this ordered extension. It gives rise to a mapping	O : GO ! �Tw 7! Pj�1M�jaj ; (2.6)for the in�nite walk w = (i;o1;o2; : : :) := i a1jo1���! s1 a2jo2���! : : : of GO. There are �nitely manypossible ordered extensions GO . In Setion 3, we will be able to �nd an ordered extension suhthat the following ompatibility onditions are satis�ed.	O(i; lmax) = 	O(i+ 1;1) (1 � i � r � 1) (2.7)	O(r; lmax) = 	O(1;1) (2.8)	O(i;o; lmax) = 	O(i;o+ 1;1) (1 � i � r; 1 � o < limax): (2.9)Here, o is the in�nite repetition oo : : :. So (i;1) is the in�nite walk starting from the state i andgoing along the transitions arrying the minimal order. For simpliity, the notation lmax is usedwithout referene to the urrent state. Therefore, the ompatibility onditions express the ideathat the boundary parts (Ki) as well as their subdivisions an be ordered \as they appear around



4 SHIGEKI AKIYAMA AND BENOÎT LORIDANTthe boundary" with mathing extremities. In fat, �T = SjRji=1Ki also holds in the ipping aser = 2jRj. However, all the walks in the ompatibility onditions are wandering along the wholer-states automaton GO. When B < 0, no diret ordering of G(R) an be found to satisfy similaronditions.We now onsider the seond new phenomenon. In [1℄, the onnetion to the interval [0; 1℄ isrealized via a Dumont-Thomas number system indued by the strongly onneted automaton GO .Here, for B < 0, GO is disonneted. For A > 0, G(R) itself is not onneted (see Figure 2). ForA < 0, G(R) is strongly onneted but its double sized version fails to be. Nevertheless, in bothases, we shall see that GO onsists of two idential irreduible omponents. Thus the numbersystem an also be introdued. It runs as follows. Sine GO is made of one (B > 0) or two (B < 0)opies of G(R), the data for this number system is all ontained in G(R). Let dss0 be the numberof transitions in G(R) from s0 to s. Then the inidene matrix isD := (dss0)s;s02R:Let � be the Perron-Frobenius eigenvalue of D. A number system in [0; 1℄ mimis the orderedGIFS (2.5) via uniform subdivisions of the interval [0; 1℄ (see Setion 3). The subdivisions involvepower series of 1� . Identi�ations our in the number system. The above ompatibility onditionsinsure that they are reprodued in the boundary of T . This results in a ontinuous parametrizationC : [0; 1℄! �T . Whether the parametrization is then injetive or not an also be heked. In thisase, the tile T is disk-like.In this way, we will be able to provide a similar desription as in [1℄ for the whole lass. Beforestating the theorems, we mention that some symmetry relation in our lass will redue the numberof ases to be treated. LetP = � 1 00 �1 � ; M1 = � 0 �B1 �A � ; M2 = � 0 �B1 A � (2.10)and D as in (2.2). Moreover, let T1 := T (M1;D) and T2 := T (M2;D). Then one an hek thatPM1P�1 = �M2, PD = D andT2 = PT1 +Xi�0M�2i�12 � jBj � 10 �| {z }=:v : (2.11)This is reeted by a tight onnetion between the automata desribing the boundaries. In theproposition below, we assume the ordered extension to have some symmetry property. It is anatural hoie related to symmetries of G(R). The exat de�nition is given in Setion 5.Proposition 2.1. For i = 1; 2, let Ti as above and Gi the assoiated redued ontat automata(if B > 0) or double sized automata (if B < 0). Let GO1 be any symmetri ordered extension ofG1. Then there exists an ordered extension GO2 of G2 suh that the following diagram ommutes.GO1 id //	O1 �� GO2	O2���T1 f // �T2Here, f(x) = Px + v as in (2.11). Also, id is the identity on the in�nite ordered walks(i;o1;o2; : : :), but the digit labels may not be preserved.The main theorem reads as follows.Theorem 1. Let (M;D) as in (2.2) and T be the self-similar tile satisfying MT = T +D. Thenthere exists an algebrai integer �, a H�older ontinuous mapping C : [0; 1℄! �T with C(0) = C(1)and a hexagon Q with the following properties. Let T0 := Q and (Tn)n�1 de�ned byMTn = Tn�1 +D:



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 5Then :(1) limn!1 �Tn = �T (Hausdor� metri).(2) For all n 2 N, �Tn is a polygonal simple losed urve.(3) Denote by Vn the set of verties of �Tn. For all n 2 N,Vn � Vn+1 � C(Q(�) \ [0; 1℄);i.e., the verties have Q(�)-addresses in the parametrization.We an ompare the parametrization in the above theorem with a Hausdor� measure on theboundary. Sine the tiles are self-aÆne but not neessarily self-similar, a generalized Hausdor�measure is needed. It relies on a pseudo-norm w for whih any expanding aÆne matrixM beomesa similarity : w(Mx) = j det(M)j1=2w(x) (x 2 R2 ): (2.12)For this pseudo norm, Hausdor� measures H�w (� > 0) and dimensions an be de�ned in a similarway as for the Eulidean norm (see [9℄). The following theorem will be easily derived from [1,Theorem 2℄, where the ontat automaton G(R) was assumed to be strongly onneted.Theorem 2. Let T as in Theorem 1, C be the orresponding parametrization. Furthermore, letw be a pseudo-norm suh that (2.12) holds,� := 2 log(�)log(j det(M)j) :and H�w the assoiated Hausdor� measure. Then, for eah boundary part Ks (s 2 R) as in (2.3),1 > H�w(Ks) > 0:Moreover, there is a subdivision of the interval [0; 1℄, t0 := 0 < t1 < : : : < tjRj := 1 suh that1H�w ( C([ti; t)) ) = t� ti (ti � t � ti+1);where  :=Ps2RH�w(Ks).We ompared here subintervals of [0; 1℄ with the Hausdor� measure on eah boundary piee(Ks)s2R. In order to obtain the measure intertwining map from whole [0; 1℄ to �T , the measuredisjointness of these piees would be needed. This does not follow from the open set ondition.This is more related to the Hausdor� dimension of the triple points in the tiling indued by T . Inthis paper, we do not disuss further this point.We an link the boundary parametrization to the reurrent set method. This method wasintrodued by Dekking in [4, 5℄. Given an endomorphism� :< a; b >!< a; b >on the free group < a; b > generated by two letters and a homomorphismg :< a; b >! R2 ;the boundary of a self-similar tile is onstruted. It is approximated by a sequene of simple losedurves. These urves represent the iterates of � on the initial word aba�1b�1. Under a onditionof short range anellations, the sequene onverges in Hausdor� metri to the boundary of aself-similar tile.In our ase, the tile T satisfying MT = T + D is given, and we are looking for appropriateboundary substitution � and embedding g. Let T be a self-aÆne Z2-tile as in Theorem 1. Asubstitution arises naturally from the ordered GIFS (2.5). It sends the letter i to the sequene ofletters j1j2 : : : jlmax aording to the ordered subdivisions in (2.5). We will see that GO has six(B > 0) or twelve (B < 0) states. But by reasons of symmetry, the substitution will at on thefree group generated by only three letters a; b; . Furthermore, let Q be the hexagon of Theorem 1.



6 SHIGEKI AKIYAMA AND BENOÎT LORIDANTWe will prove that Q + Z2 is a tiling of the plane. We denote by C1; C2; : : : ; C6 the onseutiveverties of Q. Then g assoiates the letters to the sides of �Q :g(a) = va := C2 � C1; g(b) = vb := C3 � C2; g() = v := C4 � C3;and is extended to a homomorphism on < a; b;  >. Also, given a redued word a1 : : : am, letp(a1 : : : am) stand for the polygonal path joining0; g(a1); g(a1a2); : : : ; g(a1 : : : am)in this order by straight lines. By this orrespondene, p(�(aba�1b�1�1)) will be a urve on-gruent to �(Q+D) and more generally, p(�n(aba�1b�1�1)) a simple losed urve ongruent to�(Q+D + : : :+Mn�1D).Theorem 3. Let the self-aÆne tile T and the sequene (Tn)n�0 be as in Theorem 1. Then thereis an endomorphism � :< a; b;  >!< a; b;  > and a homomorphism g :< a; b;  >! R2 with thefollowing properties.(1) For all n � 0, M�np(�n(aba�1b�1�1))| {z }=: Kn = �Tn + knfor some kn 2 R2 .(2) (Kn)n�0 onverges to a urve K in Hausdor� metri. Moreover,K = �T + kfor some k 2 R2 .The paper is organized as follows. In Setions 3 and 4, we treat the ase A � 0; B � �2 indetails. Indeed, in this ase G(R) is disonneted and the ipping ours. In Setion 3, we reallthe onstrution of G(R). We derive the parametrization of �T and the assoiated sequene ofapproximations. Setion 4 is devoted to the reurrent set method. In Setion 5, we extend theprevious results to the whole lass. We prove Proposition 2.1, and our theorems follow. We endup the setion with a new proof of the disk-likeness haraterization. In Setion 6, we eventuallymake several omments about possible generalizations of our method.3. G(R) and the boundary parametrizationIn this setion, we onstrut the redued ontat automaton G(R). We introdue its orderedextension and obtain the boundary parametrization.We �rst reall some de�nitions on automata. Let � be a �nite set, or alphabet. Its elements areletters and sequenes of letters are words. �� denotes the set of �nite words, �! the set of in�nitewords. If l = (l1; : : : ; ln) 2 ��, we write jlj = n for the length of l and ljm = (l1; : : : ; lm) for thepre�x of l of length m � n. If l 2 �!, then jlj =1 and pre�xes ljm are de�ned for all m � 1. Theonatenation of two words a and b is denoted by a&b. If a word a is repeated in�nitely manytimes, we write a, meaning a&a&a : : :An automaton is a quadruple A = (�; S; E; I) as follows.� � is an alphabet.� S is a �nite set of states.� I � S is a set of initial states.� E � S � �� S is a set of transitions. If (s; l; s0) 2 E, we write s l�! s0.If for eah (s; l) 2 S � � a transition s l�! s0 exists for at most one s0 2 S, we will say that theautomaton is weak deterministi ; if suh a transition exists for exatly one s0 2 S, the automatonis deterministi. In the other ases, we will all the automaton non-deterministi.



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 7A walk w in the automaton A is a �nite or in�nite sequene of transitions (sn; ln; s0n)n�1 suhthat s1 2 I and s0n = sn+1. We writew : s1 l1�! s2 l2�! s3 l3�! : : : (3.1)We say that w starts from s1, and if w is �nite of the form (sn; ln; s0n)1�n�m, we say it ends ats0m. Having two walks w and w0 suh that w ends where w0 starts, we may onatenate themand write w&w0. The assoiated sequene l = (ln) of letters of a walk w is the label of w. If theautomaton is deterministi or weakly deterministi, then the walk w is ompletely de�ned by itsstarting state s1 and its label l, hene we may simplify the notation and write w = (s1; l).As for words, we an de�ne length and pre�xes of the walk : the length of w is simply jwj = jljand a pre�x wjm (m � jwj) onsists of the �rst m transitions of w :wjm : s1 l1�! s2 l2�! : : : lm�! sm:Let us reall the onstrution of the automaton G(R). Let T = T (M;D) be an integral self-aÆne Z2-tile. Let e1; e2 be the anonial basis of Z2 and R0 := f0;�e1;�e2g. De�ne reursivelythe sets Rn := fk 2 Z2; (Mk +D) \ (l +D) 6= ; for some l 2 Rn�1gand R := Sn�0Rn n f0g. Then R is a �nite set alled ontat set ([8℄). It is used to desribe theboundary of T . Let M � Z2 and G(M) be the automaton de�ned as follows. The states of G(M)are the elements of M , and for k; l 2M , there is a transitionk aja0��! l (a; a0 2 D) i� Mk + a0 = l+ a:We may also simply write k a�! l for suh a transition, sine a0 is then uniquely determined. G(R)is alled the ontat automaton of T . It happens that states of G(R) have no outgoing transitions.Thus we deal with the redued ontat automaton. Let Red(G(M)) be the graph emerging fromG(M) when all states that are not the starting state of an in�nite walk in G(M) are removed.De�ne R to be the subset of R suh that Red(G(R)) = G(R). Then, there are non-empty ompatsets (Ks)s2R suh that �T = [s2RKs (3.2)and Ks = [s a�!s02G(R)M�1(Ks0 + a): (3.3)This was proved in [1℄. Thus the boundary of T is the attrator of this graph iterated funtionsystem (see [7, 18℄). G(R) is usually smaller than the boundary GIFS enountered in the litera-ture [11, 13℄. Indeed, the set of states of the latter onsists of all the neighbors of T , that is, thetiles T + s with T \ (T + s) 6= ;. This may be very large if T is not disk-like.In the remaining part of this setion, we suppose that the matrix M and the digit set D are asin (2.2), where A � 1 and B � �3 (remember that for A = 0, T is just a retangle). In this ase,R = f�P;�Q;�Ngwith P = � 10 � ; Q = � A+ 11 � ; N = � A1 � :The automaton G(R) is depited on Figure 2. The symmetries in G(R) follow from the fat thatk aja0��! l if and only if �k a0ja��! �l.We now ome to the parametrization. We have a surjetive mapping : G(R) ! �Tw 7! Pj�1M�jaj ; (3.4)
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Q

�P �N

�Q
jBj � 1 0
0 A... ...jBj �A� 1 jBj � 1

0 A+ 1... ...jBj �A� 2 jBj � 1
jBj �A� 1 0... ...jBj � 1 A

jBj �A 0... ...jBj � 1 A� 1
0 jBj � 1

A 0... ...jBj � 1 jBj �A� 1
A+ 1 0... ...jBj � 1 jBj �A� 2

0 jBj �A� 1... ...A jBj � 1
0 jBj �A... ...A� 1 jBj � 1

Figure 2. Redued ontat automaton G(R) for A � 1; B � �3.
x1

x2x3x4 KPKQKN
x1 = f0(x4)f0(x3)f0(x2) = f1(x4)x2 = f1(x3)

KP [KQ [KN . KP = f0(KN ) [ f0(KQ) [ f1(KN ).Figure 3. Flipping for (A;B) = (2;�4).where w : s1 a1�! s2 a2�! : : : is an in�nite walk in the automaton G(R). We wish to onnetthe interval [0; 1℄ to the boundary �T via G(R). This is done by introduing a number systemassoiated to G(R). We proeed in four steps.Step 1. First note that sine B = det(M) < 0, a ipping ours. Hene the orientation of theboundary piees hanges at eah iteration of (2.4), as explained in Figure 3. The piture shows theipping for the (roughly represented) boundary part KP . Sine taking M2 instead of M wouldsquare the number of digits, we fake the ipping by doubling the number of states.� For eah state S 2 R, we reate the states S and S.� For eah transition S a�! T 2 G(R), we reate the transitions S a�! T and S a�! T .The resulting automaton G0(R) is depited in Figure 4.Step 2. To de�ne the number system, we need a weak deterministi version of the double sizedautomaton. This is obtained by ordering its states and transitions. The states are ordered from1 to 12. The transitions starting from a state i are then ordered from 1 to lmax. Note that lmaxdepends on i. We all this ordered extension G(R)o. It is depited in Figure 5. In this �gurewe kept trak of the digits assoiated to the edges. In this way, the whole set of transitions is anordered set, from the transition (1; 1) to the transition (12; lmax). A diret onsequene is that foreah n the set of walks of length n is also lexiographially ordered, as well as the set of in�nitewalks. The minimal walk is then wmin = (1; 1; 1; 1; : : :) = (1; 1)
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P Q N

N Q P
jBj � 10...jBj �A� 1jBj � 1 0...jBj �A� 1 jBj �A� 1...jBj � 1jBj �A� 1...jBj � 1 0...jBj �A� 2jBj �A...jBj � 1

0...jBj �A� 2 jBj �A...jBj � 1 �P �Q �N

�N �Q �P
0A...jBj � 10 A...jBj � 1 0...A0...A A+ 1...jBj � 10...A� 1

A+ 1...jBj � 1 0...A� 1

Figure 4. Faking the ipping.
12 Q = 2 10

N = 3 11 P = 1
jBj � 1 10 1... ...jBj �A� 1 lmaxjBj � 1 1 0 lmax... ...jBj �A� 1 1 jBj �A� 1 1... ...jBj � 1 lmaxjBj �A� 1 lmax... ...jBj � 1 1 0 2... ...jBj �A� 2 lmax � 1jBj �A lmax � 1... ...jBj � 1 2

0 lmax � 1... ...jBj �A� 2 2 jBj �A 2... ...jBj � 1 lmax � 1 9 �Q = 5 7

�N = 6 8 �P = 4
0 1A lmax... ...jBj � 1 10 1 A 1... ...jBj � 1 lmax 0 lmax... ...A 10 1... ...A lmax A+ 1 lmax � 1... ...jBj � 1 20 2... ...A� 1 lmax

A+ 1 2... ...jBj � 1 lmax � 1 0 lmax � 1... ...A� 1 2

Figure 5. Ordered extension G(R)o for A � 1; B � �3.and the maximal walk is wmax = (12; lmax)(that is, all the transitions are labeled by the maximal order).Note that the in�nite walks starting from the states 1 to 6 are enough to desribe the boundary.The states 7 to 12 desribe the same boundary parts, but are oriented in the reverse diretion.More preisely, we have the following relation. Let (Ks)s2R be the attrator assoiated to G(R)(see (3.3)). Also, let (Ki)1�i�12 be the solution of the GIFS G(R)o :Ki = [i a�!j2G(R)oM�1(Kj + a); (3.5)Then the following orrespondene holds.KP = K1 = K12 KQ = K2 = K11 KN = K3 = K10K�P = K4 = K9 K�Q = K5 = K8 K�N = K6 = K7: (3.6)Step 3. Consider the inidene matrix of G(R). It onsists of two equal primitive bloks of size3�3. We all � the Perron Frobenius eigenvalue of these bloks and (uP ; uQ; uN ) the positive lefteigenvetor with uP +uQ+uN = 12 . Let D be the inidene matrix of G(R)o. It follows from the�rst two steps that � is the dominant eigenvalue of D. It has multipliity 2 and settingu1 = u4 = u9 = u12 := uP ; u2 = u5 = u8 = u11 := uQ; u3 = u6 = u7 = u10 := uN ;then (ui)1�i�12 is the positive left eigenvetor of D of length 2.Step 4. We eventually obtain the number system. The walks w = (i; o1; o2; : : :) starting fromthe state i will be sent to a subinterval of [0; 1℄ of length ui. We de�ne the transition funtion�0(i; o) = 8><>: 0; if o = 1P 1 � k < o;i k�! j uj ; if o 6= 1:



10 SHIGEKI AKIYAMA AND BENOÎT LORIDANTWe write G(R)o+ when restriting the initial states of G(R)o to f1; : : : ; 6g. Also, we set u0 := 0.Proposition 3.1. Let � be the mapping� : G(R)o+ �! [0; 1℄w 7! limn!1 ( u0 + u1 + : : :+ ui�1+ 1��0(i; o1) + 1�2�0(s1; o2) + : : :+ 1�n�0(sn�1; on) )whenever w is the in�nite walk :w : i o1�! s1 o2�! : : : on�! sn on+1���! : : : :Then � is well-de�ned, inreasing and onto.The proof of this proposition is straight forward and an be done in the same way as in [1,Proposition 3.2℄. The result is also known as Dumont-Thomas number system [6℄ in the ontextof substitutive numeration systems. The identi�ations in this number system play an essentialrôle in our onstrution. Let w 6= w0 2 G(R)o+, say for example w >lex w0. Then �(w) = �(w0)if and only if 1:� w = (i+ 1; 1)w0 = (i; lmax) or 2:� w = (j; o1; : : : ; om; o+ 1; 1)w0 = (j; o1; : : : ; om; o; lmax) (3.7)holds for some state i = 1; : : : ; 6 or some pre�x (j; o1; : : : ; om) and an order o. Thus if t 2 [0; 1℄,��1(t) onsists of at most two elements (see also [1, Lemma 3.3℄).We are now ready to onnet the interval [0; 1℄ to �T . Let�(1) : [0; 1℄ �! G(R)o+t 7! maxlex ��1(t); (3.8)where maxlex maps a �nite set of walks to its lexiographially maximal walk. Also, we de�ne thenatural projetion from the ordered extension to the GIFS :Pr : G(R)o+ �! G(R)(i; o1; o2; : : :) 7! I a1�! S1 a2�! : : : (3.9)It an be visualized in Figure 5 via the walk i a1jo1���! s1 a2jo2���! : : : and the orrespondene1; 12 $ P 2; 11 $ Q 3; 10 $ N : : :and so on as in (3.6).Proposition 3.2. The mapping C : [0; 1℄ �(1)��! G(R)o+ Pr��! G(R)  �! �T is onto and H�olderontinuous.By the orrespondene (3.6), the proof will be very similar to the proof given in [1, Propositions3.4, 3.5℄. C is ontinuous on a dense set, independently of the hoie of G(R)o. Our partiularhoie will give the ontinuity on the remaining ountable part C of [0; 1℄. By the GIFS property,it is enough to hek the ontinuity on a �nite set of points in C. This is the purpose of the lemmabelow. The proof is then indutive.For the purpose of the proof we extend the de�nitions of � and Pr to the whole automatonG(R)o.Lemma 3.3. The ompatibility onditions (Pr(i; lmax)) =  (Pr(i+ 1;1)) (1 � i � 11) (3.10) (Pr(12; lmax)) =  (Pr(1;1)) (3.11) (Pr(i;o; lmax)) =  (Pr(i;o+ 1;1)) (1 � i � 12; 1 � o < limax) (3.12) (Pr(6; lmax)) =  (Pr(1;1)): (3.13)hold.



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 11Proof. Note that the walks in the above equalities end up in yles in G(R)o. Thus these are�nitely many equalities between eventually periodi points. We mentioned in [1℄ a way to hekthem by the use of automata. The equalities involve pairs of sequenes (an)n�1 and (a0n)n�1 thatlead to the same point : Xn�1M�nan =Xn�1M�na0n:The de�nition of the transitions in G(R) has the following onsequene. If the in�nite walks8<: s a1ja001���! s1 a2ja002���! s2 a3ja003���! : : :s a01ja001���! s01 a02ja002���! s02 a03ja003���! : : :exist in G(R), then Pn�1M�nan =Pn�1M�na0n. In fat, this is an equivalene if one enlargesG(R) to the automaton G(S). Here, S � R is the set of all neighbors of T (see [1, Setion 4℄).Conditions (3.10), (3.11) and (3.13) are easily seen. Indeed, for i = 1, we have the equalities :Pr(1; lmax) = 1 jBj�A�1������! 10 jBj�1����! 1 jBj�A�1������! : : :P r(2; 1) = 2 jBj�A�1������! 4 jBj�1����! 6 jBj�A�1������! : : :These walks are yles of length 2 with the same labels. Hene the equality (Pr(1; lmax)) =  (Pr(2; 1))holds trivially. The other ases are treated similarly. Note that (3.13) means C(0) = C(1).For (3.12), we treat the ase i = 1. The parity of o (1 � o < lmax) is of importane. If o is odd,then Pr(1; o; lmax) = 1 a�! Pr(10; lmax)Pr(1; o+ 1; 1) = 1 a�! Pr(11; 1):for some digit a. Hene, by (3.10), the equality (Pr(1; o; lmax)) =  (Pr(1; o + 1; 1))again holds trivially. If o is even, we havePr(1; o; lmax) = 1 a�! Pr(11; lmax)Pr(1; o+ 1; 1) = 1 a+1��! Pr(10; 1):for some a 2 f0; : : : ; jBj �A� 2g. The label of Pr(11; lmax) is (an)n�1 = (jBj �A� 1)(jBj � 1),and the label of Pr(10; 1) is (a0n)n�1 = (jBj � 1)0. Hene it remains to hek that these digitsequenes lead to the same boundary point, that isXn�1M�nan =Xn�1M�na0n:This is beause the walks8<: P aja00���! Q jBj�A�1j0�������! Q jBj�1jA�����! Q jBj�A�1j0�������! : : :P a+1ja00�����! N jBj�1j0�����! P 0jA��! N jBj�1j0�����! : : :both exist in G(R) for some digit a00.The proof is similar for the other relevant values of i. �Proof of Proposition 3.2. LetC := ft 2 [0; 1℄ ; t = u0 + u1 + : : :+ ui�1 + 1��0(i; o1) + 1�2�0(s1; o2) + : : :+ 1�m�0(sm�1; om)for some �nite walk i a1jo1���! s1 a2jo2���! : : : amjom����! sm 2 G(R)og:Then it an be shown that C is ontinuous on C, right ontinuous on [0; 1℄ n C and that limt� Cexists also for all t 2 [0; 1℄ n C. These properties would be valid for any ordering of the automaton.But our speial hoie of G(R)o has also left ontinuity properties. Lemma 3.3 implies the left



12 SHIGEKI AKIYAMA AND BENOÎT LORIDANTontinuity of C at the points assoiated to walks of length m = 0 and m = 1 in the de�nition ofC. Let now t 2 C assoiated to a walk of length m � 2 but not to a walk of smaller length. Thust = �(i; o1; : : : ; om; 1| {z }w )with om 6= 1. We write (a1; a2; : : :) for the labeling sequene of Pr(w). Also, we write fa(x) :=M�1(x+ a). Then,C(t) =  (Pr(w)) = fa1 Æ : : : Æ fam Æ  (Pr(j; om; 1))= fa1 Æ : : : Æ fam Æ  (Pr(j; om � 1; lmax)) (by Condition (3.12))= C(t�)(here j is the ending state of the walk wjm�1 in the automaton G(R)o). Thus C is left ontinuousin t.The H�older ontinuity is then a onsequene of the left ontinuity. It an be proved as in [1℄. �We �nally give the sequene of polygonal approximations assoiated to the above parametriza-tion and prove that they are simple losed urves.Let C : [0; 1℄ ! �T be the parametrization of Proposition 3.2. For N points M1; : : : ;MN ofRd , we denote by [M1; : : : ;MN ℄ the urve joining M1; : : : ;MN in this order by straight lines.Let w(n)1 ; : : : ; w(n)Nn be the �nite walks of length n of the automatonG(R)o+ in the lexiographialorder : (1; 1; : : : ; 1) = w(n)1 �lex w(n)2 �lex : : : �lex w(n)Nn = (6; lmax; : : : ; lmax);where Nn is the number of these walks. For n = 0, these are just the states 1; : : : ; 6. LetC(n)j := C(�(w(n)j &1)) 2 �T (1 � j � Nn):Then we all �n := hC(n)1 ; C(n)2 ; : : : ; C(n)Nn ; C(n)1 i ;the n-th approximation of �T .We will need the following lemmas. The �rst one interprets these approximations as the iteratedsequene of the GIFS G(R). We write G(R)o+n (i) for the walks of length n starting from the statei. Also, for w of length n, we write w+1 the next walk in the lexiographial order. We make theonvention that the maximal walk has the minimal one as follower. For i = 1 : : : 6, let�(n)i := [w2G(R)o+n (i) �C(�(w&1)); C(�(w+1&1))� :Lemma 3.4. For all n 2 N,( �n = S6i=1�(n)i�(n+1)i = Si a�!j2G(R)M�1(�(n)j + a): (3.14)Proof. This is a onsequene of the left ontinuity of the parametrization. The proof is indutive.Note that Pr(j; 1) = Pr(13� j; lmax)



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 13for all j = 1; : : : ; 6 by onstrution of G(R)o. Therefore,Si a�!j2G(R) fa(�(0)j ) = Si ajo��!13�j2G(R)o+(i) fa(� (Pr(13� j; lmax));  (Pr(12� j; lmax))�)= Si ajo��!13�j fa(� (Pr(13� j; lmax));  (Pr(13 � j; 1))�) by (3.10)= Si ajo��!13�j � (Pr(i; o; lmax));  (Pr(i; o; 1))�= Si ajo��!j2 24 (Pr(w+1&1));  (Pr( i; o|{z}w ; 1))35 by (3.12)= �(1)i :The indution step goes similarly. �The seond lemma exhibits a tiling of the plane by hexagons naturally assoiated to theparametrization. will simply write C1; : : : ; C6 instead of C(0)1 ; : : : ; C(0)6 . Hene we have:C1 =  (0(jBj � 1)); C2 =  ((jBj �A� 1)(jBj � 1)); C3 =  ((jBj � 1)(jBj �A� 1));C4 =  ((jBj � 1)0); C5 =  (A0); C6 =  (0A): (3.15)Lemma 3.5. [C1; : : : ; C6; C1℄ is a simple losed urve. Let Q be the losure of its bounded omple-mentary omponent. Then Q+Z2 is a tiling of the plane. Two neighboring tiles have 1-dimensionalintersetion. Moreover, the neighbors of Q are the tiles Q+ s with s 2 R, that is,�Q = [s2RQ \ (Q+ s):Proof. The proof is similar as in [1, Proposition 5.5℄. The oordinates of the verties of Q an beomputed as rational expressions in A;B. The following relations hold.C3 = C1 + (A; 0); C4 = C6 + (A; 1); C2 = C4 + (1; 0); C1 = C5 + (1; 0): (3.16)Moreover, C6 � C5 = ( (A�1)AjBj+1�A ; AjBj+1�A ). This gives the relative position of the verties and thelemma then follows from geometrial onsiderations. �We de�ne the natural approximations of T , when starting with the polygon Q. Let T0 := Q,the hexagon of the above proposition and for all n � 0,MTn+1 = [a2D(Tn + a):By the preeding lemma,MnTn is a union of jDjn hexagons ongruent to Q. Sine two neighboringhexagons have a one dimensional intersetion, this union is disk-like (see [1, Proposition 5.6℄).Moreover, the equality �n = �Tn (3.17)holds for all n. It was proved in [1℄ by showing that �Tn ful�lls the same reurrene relation as�n, given here in Lemma 3.4. Thus �n is a simple losed urve.This leads to the following proposition.Proposition 3.6. �n is a simple losed polygonal urve and its verties have Q(�)-addresses.Moreover, (�n) onverges to �T in Hausdor� metri.Proof. By de�nition, �n is a losed polygonal urve. The verties have Q(�)-addresses, sine theyorrespond to the �nite sums in Proposition 3.1. The onvergene in Hausdor� metri followsfrom Lemma 3.4, sine �T is the attrator of the GIFS G(R). The fat that �n is a simple urvefollows from its equality to �Tn. �Examples of the polygonal tiling and the approximation sequenes are given in Figure 6 (disk-like tile) and Figure 7 (non disk-like tile).
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0.4 Figure 7. A = 1; B = �3 : polygonal tiling, �i (i = 0; 1; 2; 5; 6).4. The relation to the reurrent set methodThe reurrent set method was introdued in [4, 5℄. It produes fratal urves from a givensubstitution and an embedding into the plane. An assumption alled short range anellationis required for the substitution. A fratal urve obtained in this way is the boundary of a self-similar tile. Conversely, given a self-similar tile, it may not be easy to �nd an assoiated boundarysubstitution satisfying short range anellation and the appropriate embedding. For example, thelass of self-similar tiles produed by substitutions on two letters was haraterized in [22℄. Wewill show that our lass an entirely be desribed via the reurrent set method by substitutionson three letters.Let T = T (M;D) be de�ned by the matrix M and the digit set D as in (2.2). We treat thease A > 0; B < 0. A substitution is read o� from the ordered ontat automaton. It is theendomorphism of the free group over three letters < a; b;  >, �rst de�ned for a; b;  aording toFigure 5: a ! ( _ _b)jBj�A�1 _b ! (_b _)A _b ! _awhere _a; _b; _ stand for the inverses of the letters a; b; . This de�nition is then extended to< a; b;  >by onatenation. We all this substitution �.



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 15Remark 4.1. The original twelve letters are redued to six (a; b;  and their inverses). This isbeause there will be three diretions, along whih we will draw the urves in the plane. Firstly,a; b;  are assoiated to 1; 2; 3, and _a; _b; _ to 4; 5; 6, sine the underlying elements of R are exatlyP;Q;N;�P;�Q;�N . Seondly, 7; 8; 9; 10; 11; 12 are assoiated to ; b; a; _; _b; _a respetively, as thestates 7; : : : ; 12 are redundanies to fake the ipping (i and 13 � i give the same diretion butreverse orientation).Let Q be the hexagon whose verties C1; : : : ; C6 were de�ned in (3.15). We proved in Lemma 3.5that Q + Z2 is a tiling of the plane. This allows us to onstrut direted urves in the plane asfollows. Let va := C2 � C1; vb := C3 � C2; v := C4 � C3;v _a := C5 � C4 = �va; v_b := C6 � C1 = �vb; v _ := C1 � C6 = �v;and g the homomorphism g : < a; b;  > ! R2o1o2 : : : on ! vo1 + : : :+ von :The important property of g is that it onnets the ation of � on the words and the ation of Mon the plane. More preisely, for all words w 2< a; b;  >,g(�(w)) =Mg(w): (4.1)Given a redued word a1 : : : am, let p(a1 : : : am) stand for the polygonal path joining0; g(a1); g(a1a2); : : : ; g(a1 : : : am)in this order by straight lines. So if W0 := ab _a_b _, then the urve p(W0) is the boundary ofthe hexagon Q up to a translation by �C1. We say that a direted urve enloses lokwise(resp. ounterlokwise) a bounded set Q0 if it is a simple losed urve oriented lokwise (resp.ounterlokwise) and equal to the boundary of Q0.Proposition 4.2. For all n � 1, p(�n(W0)) enlosesQ� C1 + n�1Xk=0 g(�k( _ab)) +D + : : :+Mn�1D;lokwise if n is odd and ounterlokwise if n is even.Proof. The indutive proof runs as [1, Proposition 6.2℄.First note that p(W0) = p(ab _a_b _) enloses Q� C1 ounter-lokwise. For n = 1,p(�(ab _a_b _)) = p(( _ _b)jBj _a(b)jBja)= p( _aa( _ _b _aa)jBj�1 __b _a(b)jBja)= p( _a(a _ _b _a)jBj(b)jBja)= g( _a) +SjBj�1x=0 hp(a __b _ab) + xg(a _ _b _a)i nSjBj�1x=1 hp( _a) + xg(a _ _b _a)i= g( _a) +SjBj�1x=0 �p(a __b _ab) +� x0 �� nSjBj�1x=1 �p( _a) +� x0 �� :We made a slight abuse of notation : the endpoints of the translates of p( _a) are in fat inluded inthe urve p(�(ab _a_b _)). Eah p(a __b _ab) +� x0 � enloses lokwise the boundary of the hexagonQ� C1 + g(b) +� x0 � ;and these hexagons are essentially disjoint by the tiling property of Q. Thus p((�(ab _a_b _)) isthe boundary of the union Q � C1 + g( _ab) + D of hexagons glued together through the edgesp( _a) + � x0 �. The intersetions are one-dimensional. In other words, p((�(ab _a_b _)) enlosesQ� C1 + g( _ab) +D.



16 SHIGEKI AKIYAMA AND BENOÎT LORIDANTSuppose now the statement true for some n � 1. Thenp(�n+1(ab _a_b _)) = p(�n( _aa( __b _aa)jBj _a(b)jBja))= p((�n( _a(a _ _b _a))jBj(b)jBja)= g(�n( _a)) +SjBj�1x=0 hp(�n(a _ _b _ab)) + xg(�n(a _ _b _a))inSjBj�1x=1 hp(�n( _a)) + xg(�n(a _ _b _a))iUsing the indution hypothesis and the equality (4.1), it follows that p(�n+1(ab _a_b _)) enloses theunion of tiles Q� C1 +D + : : :+MnD + g( _ab) + : : :+ g(�n�1( _ab)) + g(�n( _ab))(lokwise or ounter-lokwise, depending on the parity of n), and we are done. �5. The other asesIn this setion, we show that the previous onstrution of parametrization holds for the wholelass and we haraterize the disk-like ases. Theorems 1, 2 and 3 were proved for B > 0; A > 0in [1℄ and will follow from the results of Setions 3 and 4 for B < 0; A > 0. The remaining asesare easily seen as a onsequene of (2.11). However, it just gives the existene of the orrespondingparametrization for the latter two ases. By proving Proposition 2.1, we want to make sure thatour method is eÆient to produe diretly these parametrizations.We give the meaning of symmetri ordered extension GO. Every state of an ordered extensionGO of G(R) is assoiated to a state s 2 R (sometime via s in the ase B < 0). We all GOsymmetri if the transitions(B > 0) s a�! s0 and � s jBj�1�a������! �s0 are given the same order o:(B < 0 s a�! s0 and � s jBj�1�a������! �s0 (as well as s a�! s0 and �s jBj�1�a������! �s0 )are given the same order o: (5.1)Proof of Proposition 2.1. We onstrut the extension GO2 . The main property we use is the fol-lowing. Remember that s aja0��! s0 (s; s0 2 R) is a transition in the redued automaton G(R) if andonly if Ms+ a0 = s0 + a. R is symmetri, that is, R = �R. Moreover,s a�! s0 2 G1(R1) () �s jBj�1�a������! �s0 2 G1(R1)() �Ps a�! Ps0 2 G2(R2) () Ps jBj�1�a������! �Ps0 2 G2(R2) (5.2)This an be seen from the onstrution of G(R) (Setion 3).We now build up GO2 by introduing an order on G2 as follows. Suppose �rst that B > 0, thatis, G1 = G1(R1) and G2 = G2(R2). Sine R2 = PR1, we naturally transfer the order hosen forR1 to R2 : s$ i 7�! Ps$ i (5.3)However, we transfer the transitions (i;o) of GO1 to transitions of GO2 in a di�erent manner:s a�! t$ i ajo��! j 7�! Ps jBj�1�a������! �Pt$ i jBj�1�a j o��������! j0 2 GO2 (5.4)(thus j0 is de�ned via P(�t) $ j0). We prove that if w = (i;o1;o2; : : :) is a walk in GO1 , then itis also a walk in GO2 . Let us writePr1(w) = s a1�! s1 a2�! s2 a3�! : : : 2 G1:Then the walk w0 := Psi jBj�1�a1������! �Ps1 a2�! Ps2 jBj�1�a3������! : : : 2 G2:
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-1-1.5-2 Figure 8. A = �2; B = �6 : polygonal tiling, �0; : : : ;�4This is a onsequene of (5.2). It now follows from (5.4) and the assumption of symmetry of theordered extension GO1 thati jBj�1�a1jo1��������! j01 a2jo2���! j2 jBj�1�a3jo3��������! : : : 2 GO2 :This argument even shows a one to one orrespondene between GO1 and GO2 . Moreover, let Pr2the natural projetion from GO2 to G2 and  2 the boundary mapping. ThenGO1 id�! GO2 Pr2��! G2  2��! �T2w 7! w 7! w0 7!  2(w0);where  2(w0) = M�1� jBj � 1� a10 �+M�2� a20 �+M�3� jBj � 1� a30 �+ : : := P 1((Pr1(w)) + v:The ase of B < 0 is treated similarly. �Remark 5.1. The onsequenes of this proposition are that :(1) the ompatibility onditions (2.7) to (2.9) are equivalently ful�lled by GO1 and GO2 ;(2) the same (Dumont Thomas-like) number system is assoiated to GO1 and GO2 .We are now able to prove all our theorems.Proof of Theorem 1. The theorem is a diret onsequene of the previous setions for the ase(A � 1; B � �3). Indeed, by Proposition 3.2, we obtain a H�older ontinuous parametrizationC : [0; 1℄! �T , and Lemma 3.5 gives the orresponding hexagon Q. Equality (3.17) together withProposition 3.6 insure that the parametrization and the assoiated sequene of approximationshave the required properties (1),(2),(3) of the theorem.The symmetri ase (A � �1; B � �3) follows from Proposition 2.1, with the simple relationC(t) = f(C 0(t)) between two parametrizations C for (A;B) and C 0 for (�A;B) (A � �1). Theproof for (A � 1; B � 2) was given in [1, Theorem 4℄ and again the symmetri ase (A � �1; B � 2)follows from Proposition 2.1. �Figure 8 represents the ase A = �2; B = �6. It an be also obtained from Figure 6 afterreetion by x-axis and translation.Proof of Theorem 2. The theorem was proved in [1, Theorem 2℄ in the ase that the ontatautomaton G(R) is strongly onneted. It is an appliation of [9, 17℄ that mainly relies on anopen set ondition for the GIFS (see also [1, Proposition 3.13℄).Note that for (A � 1; B � �3) the automaton G(R) is disonneted and onsists of twostrongly onneted omponents (see Figure 2). These two omponents have the same inidenematrix. Thus the results apply separately on eah omponent for a ommon generalized Hausdor�



18 SHIGEKI AKIYAMA AND BENOÎT LORIDANTmeasure. Let � the Perron Frobenius eigenvalue assoiated to the omponents of G(R), as in Step3 of Setion 3. Let H�w, where � := 2 log(�)log(j det(M)j) :Then we have 1 > H�w(Ks) > 0 for eah boundary part Ks (s 2 R). Moreover, there is aseparation property : H�w(Ks) = 1� Xs a�!s02G(R)H�w(Ks0):This remains true for the attrator (Ki)1�i�12 of the dupliated automaton of Figures 5, beauseof the orrespondene (3.6). The proof then runs as in [1℄.The ase (A � 1; B � 2) is part of [1, Theorem 4℄. The remaining symmetri ases (for A � �1)are a onsequene of Proposition 2.1. �We mention that, for (A � 1; B � 2), we even proved in [1℄ the measure disjointness of theboundary parts Ks (s 2 R). In this ase, the desription reads as follows :1H�w ( C([0; t)) ) = t (t 2 [0; 1℄)with  = H�w(�T ). The reason is that eah intersetion Ks\Ks0 appeared in a smaller sale insidesome other boundary part Ks00 . By symmetry, this desription holds also for (A � �1; B � 2).For the other ases, a more detailed study of the triple intersetions would be neessary.Proof of Theorem 3. The ase (A � 1; B � �3) is a onsequene of Proposition 4.2. Indeed,M�np(�n(W0)) enlosesM�nQ�M�nC1 +M�n n�1Xk=0 g(�k( _ab)) +M�nD + : : :+M�1D;that is, M�np(�n(W0)) = �Tn + kn;where kn = �M�nC1+Pnk=1M�kg( _ab). This gives the �rst equality of the theorem. Therefore,the seond equality holds, sine (�Tn)n�0 onverges to �T and (kn)n�0 onverges tok = 1Xk=1M�kg( _ab):Let now (A;B) satisfy A � �1 and B � �3. Let C be the boundary parametrization ofthe orresponding tile, and C 0 of the tile assoiated to the symmetri ase (�A;B). Then, byProposition 2.1, C(t) = f(C 0(t)). Note that f ontains a reetion with respet to the x-axis. Thusa statement similar to Proposition 4.2 holds, after exhanging lokwise and ounterlokwise. Itfollows that Theorem 3 holds in the same manner as above.The ase (A � 1; B � 3) was treated in [1, Setion 6℄ and the symmetri ase (A � �1; B � 3)follows again from Proposition 2.1. �In [16℄, the disk-like tiles T (M;D) among our lass were ompletely haraterized. We are ableto give a new proof of this statement, by showing that the orresponding boundary parametrizationC : [0; 1℄! �T is injetive (up to C(0) = C(1)).Proposition 5.2 (see [16℄). Let (M;D) as in (2.2) and T = T (M;D) the tile de�ned by MT =T +D. Then T is homeomorphi to a disk if and only if 2jAj � jB + 2j.Proof. Suppose that A � 1 and B � �3. Let C be the parametrization of �T onstruted inSetion 3, in partiular Proposition 3.2 :C : [0; 1℄ �(1)��! G(R)o+ Pr��! G(R)  �! �T:



BOUNDARY PARAMETRIZATION COLLINEAR DIGIT SETS 19Remember that �(1) is a reiproal of � : G(R)o+ ! [0; 1℄ (Proposition 3.1).We wonder for whih hoie of (A;B) the urve �T is a simple losed urve, that is, theparametrization C is injetive. The pairs of identi�ed walksf(w;w0) 2 G(R)o �G(R)o ; w 6= w0; �(w) = �(w0)gare given by Equation (3.7). They give rise to an automaton A� (see [1, Proposition 4.1℄), depitedon Figure 9. In this �gure, a walk is admissible if it starts from a olored state (initial state) andpasses through a double irled state (�nal state) in�nitely many times. The admissible walks Win Figure 9 W : sjs0 a1jo1 jj a01jo01���������! s1js01 a2jo2 jj a02jo02���������! : : :onsist exatly in the pairs wjw0 of walks in G(R)o+ :w : s a1jo1���! s1 a2jo2���! : : :and w0 : s0 a01jo01���! s01 a02jo02���! : : :for whih �(w) = �(w0) (and w �lex w0, for simpliity). Sine the ore of the automaton is G(R)o+,we did not represent the transitions. In this part, the two walks w;w0 do not yet distinguish.We proved that suh pairs lead to the same boundary point :�(w) = �(w0))  (Pr(w)) =  (Pr(w0)):This insured the ontinuity of C. Thus they are inluded in the set of pairsf(w;w0) 2 G(R)o �G(R)o ; w 6= w0;  (Pr(w)) =  (Pr(w0))g:Note that C is injetive if and only if both set of pairs are equal, that is if and only if�(w) = �(w0),  (Pr(w)) =  (Pr(w0)):The latter pairs an also be read o� from an automaton. This property was shown in [1,Propositions 4.2, 4.5℄ and follows from the following fat. Let S := fs 2 Z2 ; s 6= 0; T\(T+s) 6= ;gbe the set of neighbors of T . As mentioned in the proof of Lemma 3.3,Xn�1M�nan =Xn�1M�na0n 2 �Tif and only if two in�nite walks8<: s a1ja001���! s1 a2ja002���! s2 a3ja003���! : : :s a01ja001���! s01 a02ja002���! s02 a03ja003���! : : :exist in G(S). Pulling bak these walks to the ordered automaton, one obtains all the pairs (w;w0)of walks of G(R)o+ representing the same boundary point. This splits into two automata : A ,for whih (an)n�1 6= (a0n)n�1, and Asl, for whih the walks w;w0 in G(R)o+ arry the same digitlabels (an)n�1.Suppose that 2A � �B � 2. Using tehniques of [19℄, one an ompute that R = S. Thus inthis ase G(R) = G(S) is the automaton depited in Figure 2. The automata A and Asl arethen easily omputed and depited in Figures 10 and 11. Sine their union produes the same setsof pairs as A�, it follows that the orresponding boundary parametrization C is injetive, thus Tis disk-like.On the ontrary, if 2A > �B � 2, then one an �nd t 6= t0 2 (0; 1) suh that C(t) = C(t0).Indeed, in this ase, jBj �A� 1 � A. Thus the following walks in G(R)o+ (Figure 5) exist :w : 2 jBj�A�1j1�������! 11 jBj�A�1jlmax���������! jBj�A�1j1�������! : : : ;w0 : 5 jBj�A�1jo�������! 8 jBj�A�1jo0��������! 5 jBj�A�1jo�������! : : :
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4j3 6j17j12 9j10jBj � 1j1 jj jBj � 1 jlmax0j1 jj 0 jlmax 0j1 jj 0 jlmaxjBj � 1j1 jj jBj � 1 jlmaxFigure 9. A� for A � 1; B � �3.for some orders o;o0. Then  (Pr(w)) =  (Pr(w0)) holds trivially, whereas obviouslyt := �(w) < �(w0) =: t0:It follows that C has a double point, thus �T an not be a simple losed urve and T is notdisk-like.Sine hangingA to�A does not hange the topology of the orresponding tile (Equality (2.11)),we have for A � �1; B � �3 that T is disk-like if and only if �2A � �B � 2.The ase A � 1; B � 2 was proved using our method in [1, Setion 5℄. This also implies theresult for the symmetri ase A � �1; B � 2. �6. Conluding remarksIn this paper, we gave an automati proof of disk-likeness for a lass of planar self-aÆne tileswith ollinear digit set. It would be interesting to get further topologial informations on thenon-disk-like tiles. We expet this to be possible by use of our parametrization. The diÆultylies in the omputation of the automaton giving the non trivial identi�ations, that is, the pointswhere our parametrization fails to be injetive. This is related to the omplementation problem
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