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Abstract

Non-standard number representation has proved to be useful in the speed-up of
some algorithms, and in the modelization of solids called quasicrystals. Using tools
from automata theory we study the set Zβ of β-integers, that is, the set of real
numbers which have a zero fractional part when expanded in a real base β, for a
given β > 1. In particular, when β is a Pisot number — like the golden mean —, the
set Zβ is a Meyer set, which implies that there exists a finite set F (which depends
only on β) such that Zβ − Zβ ⊂ Zβ + F . Such a finite set F , even of minimal size,
is not uniquely determined.

In this paper we give a method to construct the sets F and an algorithm, whose
complexity is exponential in time and space, to minimize their size. We also give a
finite transducer that performs the decomposition of the elements of Zβ − Zβ as a
sum belonging to Zβ + F .

1 Introduction

It is well known that the choice of an adequate number representation can speed-up some
algorithms. For instance, the signed-digit number representation consists of an integer
base β > 1 and a set of signed digits {−a,−a+1, . . . , a} with β/2 6 a 6 β−1; in such a
system a number may have several representations. This property of redundancy allows
fast addition and multiplication, and also to design on-line algorithms, see [3, 8, 10]. A
complex base like −1 + i allows to expand any complex number as a sequence of digits
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0 and 1 with no splitting of the real and the imaginary part, and is convenient for some
algorithms, see [26].

Special attention has been raised to the case where the base β is a non-integer real
number. In this case the number system is naturally redundant, see [25]. The well-
known fact that addition is computable by a finite transducer when the base is an
integer can be extended to some special type of non-integer base. A Pisot number (or
a Pisot-Vijayaraghavan number) is an algebraic integer > 1 such that all its algebraic
conjugates have modulus strictly less than one. The natural integers and the golden
mean are Pisot numbers. It happens that, when the base is a Pisot number, addition is
computable by a finite transducer as well [11]. So Pisot numbers can be considered as a
nice generalization of the natural integers.

Another domain where these numbers play an important role is the modelization of
the so-called “quasicrystals”. The classical crystallography prescribes entirely the pos-
sible orders of symmetry of crystals: it can be 2, 3, 4 or 6. When physicists observed
in the eighties new alloys presenting a symmetry of order 5, and a long-range aperi-
odic order, the mathematical notion of quasicrystals had already been introduced by
Meyer [20, 21, 22, 23, 24] in order to define a generalization of ideal crystalline struc-
tures. So the name of Meyer set was given to a mathematical idealization of these
solids.

A set X of R
d is a Meyer set if it is a Delaunay set — that is, a set which is uniformly

discrete and relatively dense — and if there exists a finite set F such that the set of
differences X − X is a subset of X + F . Meyer [20] has shown that if X is a Meyer set
and if β > 1 is a real number such that βX ⊂ X then β must be a Pisot or a Salem
number 1. Conversely for each d and for each Pisot or Salem number β, there exists a
Meyer set X ⊂ R

d such that βX ⊂ X . Note that all the quasicrystals observed in the

real world are linked to quadratic Pisot numbers, namely 1+
√

5
2 , 1 +

√
2 and 2 +

√
3,

see [4].
In classical crystallography, crystals are sitting in a lattice, whose vertices are indexed

by integers. In quasicrystallography, the points of a quasicrystal are labelled by the so-
called β-integers, which are real numbers such that their fractional part is equal to 0
when they are expanded in base β (see Section 2 for definitions). So numeration in
real base β is an adequate tool for the description of these solids. As a consequence,
β-integers are handled as words, and the set of the expansions of β-integers is known to
be recognizable by a finite state automaton when β is a Pisot number (see [13]).

When β is a Pisot number, the set Zβ of β-integers is a Meyer set, see [7]. In this
paper, by means of automata theory tools, we give an algorithm that computes a minimal
set F such that Zβ − Zβ ⊂ Zβ + F .

With a geometrical approach, Lagarias [18] has given a general construction of a set
F satisfying X − X ⊂ X + F for any Meyer set X. But the sets obtained are huge and
no method of minimization of these sets is known. Minimal sets F are given in [7] for Zβ

when β is a quadratic Pisot unit. When β is a quadratic Pisot number, a possible set F
for Zβ is exhibited in [14]. The method consists in giving a bound on the length of the

1A Salem number is an algebraic integer such that every conjugate has modulus smaller than or equal

to 1, and at least one of them has modulus 1.
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fractional part of the β-expansion of the sum (resp. the difference) of two β-expansions.
In this work we use different methods, coming from automata theory. We first give

the minimal finite automata describing the formal addition and subtraction, that is the
digit-sum and digit-difference, of β-integers in the case where β is a Parry number (see
definition in Section 2). Every Pisot number is a Parry number, but the converse does
not hold.

We then give a construction of a finite set F of minimal size such that Zβ − Zβ ⊂
Zβ+F making use of automata. This algorithm of minimization, which is the first known,
is exponential in time an space. It also computes a finite transducer that performs the
decomposition of the result of the formal subtraction Zβ − Zβ into a sum belonging to
Zβ + F .

A preliminary version of this work has been presented in [2].

2 Preliminaries

Let A be a finite alphabet. A concatenation of letters of A is called a word. The set A∗

of all finite words equipped with the operation of concatenation and the empty word ε
is a free monoid. We denote by ak the word obtained by concatenating k letters a. The
length of a word w = w0w1 · · ·wn−1 is denoted by |w| = n. One considers also infinite
words v = v0v1v2 · · · . The set of infinite words on A is denoted by AN. An infinite word
v is said to be eventually periodic if it is of the form v = wzω, where w and z are in
A∗ and zω = zzz · · · . A factor of a finite or infinite word w is a finite word v such that
w = uvz ; if u = ε, the word v is a prefix of w.

The lexicographic order for infinite words over an ordered alphabet is defined by
v <lex w if there exist factorizations v = uav ′ and y = ubw′, for some word u ∈ A∗,
a, b ∈ A such that a < b, and v′, w′ ∈ AN.

Beta-expansions

Definitions and results can be found in [19, Chapter 7]. Let β > 1 be a real number.
Any non-negative real number x can be represented in base β by the following greedy
algorithm [27].

Denote by b.c and by {.} the integral part and the fractional part of a number. There
exists k ∈ Z such that βk 6 x < βk+1. Let xk = bx/βkc and rk = {x/βk}. For i < k,
put xi = bβri+1c, and ri = {βri+1}. Then x = xkβ

k + xk−1β
k−1 + · · · . If x < 1, we get

k < 0 and we put x0 = x−1 = · · · = xk+1 = 0. The sequence (xi)k>i>−∞ is called the
(greedy) β-expansion of x, and is denoted by

〈x〉β = xkxk−1 · · · x1x0 · x−1x−2 · · ·

most significant digit first. The part x−1x−2 · · · after the “decimal” point is called the
β-fractional part of x.

The digits xi are elements of the canonical alphabet Aβ = {0, . . . , bβc} if β /∈ N and
Aβ = {0, . . . , β − 1} otherwise. When a β-expansion ends in infinitely many zeroes, it is
said to be finite, and the 0’s are omitted.
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A finite or infinite word w on Aβ which is the β-expansion of some non-negative
number x is said to be admissible. Leading 0’s are allowed. The normalization on an
alphabet of digits D ⊇ Aβ is the function that maps a word w = wk · · ·w0 on D onto

the β-expansion of its numerical value
∑k

i=0 diβ
i in base β. The same notion exists for

infinite words. Addition is a particular case of normalization: first add digit-wise two
β-expansions; this gives a word on the alphabet {0, . . . , 2bβc}; then normalize to obtain
the result. It is known that for every alphabet D normalization is computable by a finite
transducer [11].

Denote by Dβ the set of β-expansions of numbers of [0, 1) and by σ the shift defined
by σ(xkxk−1 · · · ) = xk−1xk−2 · · · . Then Dβ is shift-invariant. Let Sβ be its closure in
AN

β . The set Sβ is a symbolic dynamical system, called the β-shift. There is a peculiar
representation of the number 1 which can be used to characterize the elements of the
β-shift. It is denoted by dβ(1), and computed by the following process [27]. Let the
β-transform be defined on [0, 1] by Tβ(x) = βx mod 1. Then dβ(1) = (ti)i>1, where
ti = bβT i−1

β (1)c. Note that bβc = t1.
Set d∗β(1) = (t1 · · · tm−1(tm − 1))ω if dβ(1) = t1 · · · tm is finite, and d∗β(1) = dβ(1) if

dβ(1) is infinite. Then a sequence s of natural integers is an element of Dβ if and only if
for every p > 1, σp(s) is strictly less in the lexicographic order than d∗

β(1), see Parry [25].
The numbers β such that dβ(1) is eventually periodic are called Parry numbers, and

simple Parry numbers in the case where dβ(1) is finite. When β is a Pisot number then
dβ(1) is finite or infinite eventually periodic [5, 29].

Example 1 If β = 1+
√

5
2 , then dβ(1) = 11 and d∗β(1) = (10)ω.

If β = 3+
√

5
2 , then dβ(1) = 21ω = d∗β(1).

The set Zβ of β-integers is the set of real numbers x such that the β-fractional part
of |x| is equal to 0,

Zβ = {x ∈ R | 〈|x|〉β = xk · · · x0} = Z
+
β ∪ Z

−
β

where Z
+
β is the set of non-negative β-integers, and Z

−
β = −Z

+
β . Observe that

−Zβ = Zβ and β(Zβ) ⊂ Zβ.

Notice that, if β is an integer, the set of β-integers is just Z.
Denote L+

β the set of β-expansions of the elements of Z
+
β with possible leading 0’s;

then L+
β is equal to the set of finite factors of Sβ.

Meyer sets

We recall here several definitions and results from Meyer that can be found in [20, 21,
22, 23, 24]. A set X ⊂ R

d is uniformly discrete if there exists a positive real r such that
for any x ∈ R

d, the open ball of center x and radius r contains at most one point of X.
If Y ⊂ X and X is uniformly discrete, then Y is uniformly discrete. A set X ⊂ R

d is
relatively dense if there exists a positive real R such that for any x ∈ R

d, the open ball
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of center x and radius R contains at least one point of X. If X ⊂ Y and X is relatively
dense, then Y is relatively dense. A set X is a Delaunay set if it is uniformly discrete
and relatively dense.

The set X − X is the set {x − y | x ∈ X, y ∈ X}. A set X is a Meyer set if it is a
Delaunay set and there exists a finite set F such that X − X ⊂ X + F . Lagarias has
proved [18] that a set X is a Meyer set if and only if both X and X − X are Delaunay
sets. Note that when X is a Delaunay set, then X − X is relatively dense, but not
necessarily uniformly discrete. For example X = {n + 1

|n|+2 | n ∈ Z} is a Delaunay set
and X − X has 1 as point of accumulation.

Lemma 1 For β a real number > 1, the set Zβ of β-integers is relatively dense.

Proof . Indeed any non-negative real number x can be expanded as

〈x〉β = xkxk−1 · · · x1x0 · x−1x−2 · · ·

thus x = z + r with z =
∑k

i=0 xiβ
i ∈ Z

+
β , and 0 6 r =

∑

i<0 xiβ
i < 1 is the β-fractional

part of x. Thus the maximal distance between two consecutive elements of Zβ is equal
to 1. �

The following result is already proved in [7], but we give here a different proof.

Proposition 1 If β is a Pisot number, then the set Zβ of β-integers is a Meyer set.

Proof . Let us prove that Zβ is uniformly discrete when β is a Pisot number. Indeed the
minimal distance between two consecutive points a and b of Zβ with 〈|a|〉β = aN · · · a0

and 〈|b|〉β = bN · · · b0 is equal to the minimum of
∣

∣

∣

∑N
i=0(ai − bi)β

i
∣

∣

∣
.

Since an integral linear combination of algebraic integers is still an algebraic integer,
∑N

i=0(ai − bi)β
i is an algebraic integer. Let β(2), . . . , β(d) be the conjugates of β = β(1).

As the product of all the conjugates of an algebraic integer is a positive integer, we get

∣

∣

∣

d
∏

j=1

(

N
∑

i=0

(ai − bi)(β
(j))i

)

∣

∣

∣
> 1.

As all conjugates of β have a modulus strictly less than 1 and |ai − bi| 6 2bβc,

∣

∣

∣

N
∑

i=0

(ai − bi)β
i
∣

∣

∣
>

1
∏d

j=2
2bβc

1−|β(j)|
.

Since this bound is independent of N , Zβ is uniformly discrete. Using Lemma 1, Zβ is
a Delaunay set.

The uniform discretness of Zβ − Zβ can be proved as above with |ai − bi| 6 4bβc.
Moreover as Zβ is a Delaunay set, Zβ − Zβ is relatively dense, thus it is a Meyer set. �
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3 Automata for Zβ − Zβ

In this section we construct automata that symbolically describe the elements of Zβ−Zβ

when β is a Parry number. This simple symbolical description of the elements of Zβ−Zβ

will be used, in the following sections, to determine minimal sets F associated with the
Meyer set Zβ when β is a Pisot number.

3.1 Minimal automaton for Zβ

When β is a Parry number, the set L+
β is recognizable by a minimal finite automaton [13],

of which we recall the construction. The reader is referred to [9] and [28] for definitions
and results in automata theory. Let us recall the classical construction of the minimal
automaton recognizing a language L. The right congruence modulo L is defined as
follows: two words v and w are congruent modulo L if they have the same right contextes,
more precisely v ∼L w if vu ∈ L if and only if wu ∈ L. The minimal automaton of L
is then constructed as follows: the states are the right classes mod L, denoted by [.]L.
There is a transition from [v]L to [v′]L labelled by a if [v′]L = [va]L. The initial state is
[ε]L. A state [v]L is terminal if v belongs to L.

If dβ(1) = t1 · · · tm is finite, the automaton A
Z

+
β

recognizing L+
β has m states, denoted

0, 1, . . . , m − 1. The name of state i stands for [t1 · · · ti]L+
β
, and 0 = [ε]L+

β
. Denote by

suffk the suffix of d∗β(1) starting at index k > 1. Note that, because of the admissibility
condition, the right context of state i is entirely determined by suff i+1, which is the
greatest word in the lexicographic order that can be read from i. For each 0 6 i 6 m−2
there is an edge between states i and i+1 labelled by ti+1. For each 0 6 i 6 m−1 there
are ti+1 edges between states i and 0 labelled by 0, 1, . . . , ti+1 − 1. The initial state is 0;
every state is terminal. The automaton is shown on Fig. 1.

0 1 2 m − 2 m − 1
t1 t2 tm−1

0, . . . , t1 − 1

0, . . . , t2 − 1

0, . . . , tm − 1

0, . . . , t3 − 1

0, . . . , tm−1 − 1

Figure 1: Automaton A
Z

+
β

when dβ(1) = t1 · · · tm.

The case where dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω is infinite eventually periodic is

similar. The automaton A
Z

+
β

recognizing L+
β has m + p states 0, . . . , m + p − 1. For
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each 0 6 i 6 m + p − 2 there is an edge between i and i + 1 labelled by ti+1. For each
0 6 i 6 m+ p− 1 there are ti+1 edges between i and 0 labelled by 0, . . . , ti+1 − 1. There
is an edge from m + p − 1 to m labelled by tm+p. The initial state is 0; every state is
terminal. The automaton is shown on Fig. 2.

0 1 2 m − 1 m
t1 t2 tm

0, . . . , t1 − 1

0, . . . , t2 − 1

0, . . . , tm+1 − 1

0, . . . , t3 − 1

0, . . . , tm − 1

m + p − 2 m + p − 1
tm+p−1

0, . . . , tm+p − 1

tm+p

0, . . . , tm+p−1 − 1

Figure 2: Automaton A
Z

+
β

when dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω.

We introduce some notations. Set k̄ = −k, where k is an integer, and let Aβ =

{bβc, . . . , 1̄, 0}. We denote by L−
β ⊂ Aβ

∗
the set {w = wN · · ·w0 | w = wN · · ·w0 =

〈−x〉β , x ∈ Z
−
β }.

Clearly the set L−
β is recognizable by the same automaton as L+

β , but with negative

labels on edges. Then the set Lβ = L+
β ∪ L−

β of β-expansions of the elements of Zβ

is recognized by the finite automaton AZβ
= A

Z
+
β
∪ A

Z
−

β
. By abuse we say that Zβ is

recognized by AZβ
.

Example 2 Take β = 1+
√

5
2 . Minimal automata A

Z
+
β
, A

Z
−

β
and AZβ

are given in Fig. 3.

Initial states are indicated by an incoming arrow, and all states are terminal.

Since
Zβ − Zβ = (Z+

β − Z
+
β ) ∪ (Z+

β + Z
+
β ) ∪−(Z+

β + Z
+
β ) (1)

we introduce symbolic representations of Z
+
β + Z

+
β and Z

+
β − Z

+
β . More precisely the

formal addition of elements of Z
+
β consists in adding elements without carry. More

precisely,

L+
β +L+

β = {(aN + bN ) · · · (a0 + b0) | N > 0, aN · · · a0, bN · · · b0 ∈ L+
β } ⊂ {0, . . . , 2bβc}∗.

Similarly the formal subtraction of elements of Z
+
β is defined by

L+
β −L+

β = {(aN−bN ) · · · (a0−b0) | N > 0, aN · · · a0, bN · · · b0 ∈ L+
β } ⊂ {−bβc, . . . , bβc}∗.
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0 1

0

1

0

0 1

0

1̄

0

1
0

0

1̄

10

1̄

00

Figure 3: Automata A
Z

+
β
, A

Z
−

β
and AZβ

3.2 Minimal automaton of L
+
β + L

+
β

We give a direct construction of the minimal automaton of L+
β + L+

β when β is a Parry

number. Let Q = {0, 1, . . . , h − 1} be the set of states of the minimal automaton of L+
β

(h = m or h = m + p according to the value of dβ(1), see Section 3.1).
We construct an automaton S as follows.

The set of states is the set QS = {(i, j) ∈ Q2 | i 6 j}. The cardinality of this set is equal
to h(h + 1)/2. The initial state is (0, 0) and every state is terminal.
Let c be in {0, . . . , 2bβc}∗, and let (i, j) be in QS . Let Cc(i, j) = {(i′, j′) ∈ Q2 | ∃a, b ∈
Aβ, c = a + b, i

a−→ i′ and j
b−→ j′ in A

Z
+
β
}. If Cc(i, j) is empty there is no transition

outgoing from state (i, j) with label c.
Suppose that Cc(i, j) is not empty. Let (i′, j′) ∈ Cc(i, j). We have seen in Section 3.1
that the right context modulo L+

β of state i′ is entirely determined by suff i′+1, and
similarly for j ′. Take (r, s) ∈ Cc(i, j) such that suffr+1 + suffs+1 >lex suffi′+1 + suffj′+1

for all (i′, j′) ∈ Cc(i, j). This choice ensures that the future readings will be the greatest
possible in the lexicographic order. Then we define in S a transition (i, j)

c−→ (r, s) if
r 6 s, or a transition (i, j)

c−→ (s, r) otherwise.
Thus the following holds true.

Proposition 2 The automaton S is the minimal automaton of L+
β + L+

β .

3.3 Minimal automaton of L
+
β − L

+
β

We construct an automaton D for L+
β − L+

β as follows.

The set of states is the set QD = {(i, 0), (0, i) ∈ Q2 | 0 6 i 6 h − 1}. The cardinality of
this set is equal to 2h − 1. The initial state is (0, 0) and every state is terminal.
Let c be in {0, . . . , bβc}∗ and let (i, j) be in QD. If c = ti+1 and if i

c−→ i + 1 in A
Z

+
β

we define in D a transition (i, j)
c−→ (i + 1, 0). If c < ti+1 we define a transition

(i, j)
c−→ (0, 0). Symmetrically if c̄ = −tj+1 and if j

c−→ j + 1 in A
Z

+
β

we define a
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transition (i, j)
c̄−→ (0, j + 1). If c̄ > −tj+1 there is a transition (i, j)

c̄−→ (0, 0). In each
case the future readings will be the greatest possible in the lexicographic order. Thus
the following holds true.

Proposition 3 The automaton D is the minimal automaton of L+
β − L+

β .

3.4 Fibonacci example

Example 3 In Fig. 4 are drawn the minimal automata A
Z

+
β

+Z
+
β
, and A

Z
+
β
−Z

+
β

in the

case where β = 1+
√

5
2 . Every state is terminal.

0, 0 0, 11, 1

0 1

1

02

0

0, 0 1, 0

0, 1

0

1

0

1̄0

1̄

1

Figure 4: Automata A
Z

+
β

+Z
+
β

and A
Z

+
β
−Z

+
β
.

4 A family of finite sets containing a minimal set F

When β is a Pisot number, the set of beta-integers Zβ is a Meyer set so there exists a
finite set F such that Zβ − Zβ ⊂ Zβ + F . Our goal is to construct sets F as small as
possible for Zβ.

Note the following property of minimal sets F .

Lemma 2 If F is a set of minimal size such that Zβ − Zβ ⊂ Zβ + F then

F ⊂
(

Zβ − Zβ

)

− Zβ.

Proof . Let F be a set of minimal size such that Zβ − Zβ ⊂ Zβ + F , that is

∀x ∈ Zβ − Zβ, ∃ (y, f) ∈ Zβ × F such that x = y + f.

If there exists f ∈ F such that for all x ∈ Zβ − Zβ and for all y ∈ Zβ, f 6= x − y then
F ′ = F \ {f} satisfies Zβ − Zβ ⊂ Zβ + F ′ and F ′ is strictly smaller than F , that is
contradictory with F minimal. �

Note that there may exist several sets F of minimal size.

Example 4 For β = (1+
√

5)/2 the possible minimal sets F such that Zβ−Zβ ⊂ Zβ +F
are the following

1. F = {0, β − 1,−β + 1} = {0, 1
β ,− 1

β}, see [7]
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2. F = {0, β − 2,−β + 2} = {0, 1
β2 ,− 1

β2 } ⊂ [−1
2 , 1

2 [, see [12]

3. F = {0, β − 1,−β + 2} = {0, 1
β , 1

β2 } ⊂ [0, 1[.

Proof . To prove 3., suppose from 1. that for x and y in Zβ there exists z in Zβ such that
x− y = z − 1

β . Suppose first z in Z
+
β . Denote 〈z〉β = zk · · · z0 and let zi be the rightmost

non-zero digit. If i is even, then x − y = z(1) + 1
β2 where z(1) has for β-expansion

the word zk · · · zi+1(01)
i/20, and is thus in Z

+
β . If i is odd, then x − y = z(2) where

z(2) has for β-expansion zk · · · zi+1(01)
di/2e. Now suppose that z belongs to Z

−
β . Let

〈−z〉β = u = uk · · · u0. First suppose that u0 = 0, then write u in the form u′0(01)`0 (if
necessary u can be prefixed by two zeroes); then −(x− y) = −z + 1

β is equal to v(1) − 1
β2

where v(1) has for β-expansion the word u′0102`. If u0 = 1, then u can be written as
u′0(01)` ; then −(x − y) has for β-expansion the word u′0102`−1. �

Using properties of the algebraic conjugates of the elements of minimal sets F , we
first define finite sets from which can be extracted the finite sets F .

Lemma 3 Let β be a Pisot number of degree d, let I ⊂ R be an interval of finite length
greater than or equal to 1 and let W be the following set

W =

{

x ∈ Z[β] | x ∈ I and for 2 6 j 6 d, |x(j)| <
3bβc

1 − |β(j)|

}

,

where x(2), . . . , x(d) are the algebraic conjugates of x. Then W is finite, and Zβ − Zβ ⊂
Zβ + W .

Proof . From Lemma 1 the maximal distance between two consecutive points of Zβ is
equal to 1, thus one can find a finite set F such that Zβ − Zβ ⊂ Zβ + F in any interval
I of length greater than or equal to 1. Fix an interval I of length > 1 and let F be a
finite subset of I of minimal size such that Zβ − Zβ ⊂ Zβ + F . Let x ∈ F , then from
Lemma 2, x ∈ (Zβ − Zβ) − Zβ and can be written as

x =
N
∑

i=0

(ai − bi)β
i −

N
∑

i=0

ciβ
i with |ai|, |bi|, |ci| 6 bβc.

So

for 2 6 j 6 d x(j) =

N
∑

i=0

(ai − bi − ci)(β
(j))i with |ai − bi − ci| 6 3bβc.

As β is a Pisot number, for all j > 2, |β(j)| < 1 and |∑N
i=0(β

(j))i| < (1 − |β(j)|)−1.
We obtain in this way the announced bound on the moduli of the conjugates of x and
x ∈ W . So F is a subset of W .

Since β is a Pisot number the set W contains only points of Z[β] with bounded
modulus and whose all conjugates have bounded modulus, thus W is finite. �

The choice of any interval I ⊂] − 1, 1[ of length 1 allows us to reduce the size of the
set containing a minimal set F .
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Lemma 4 Let β be a Pisot number of degree d, let I ⊂] − 1, 1[ be an interval of length
1 and let U be the following set

U =

{

x ∈ Z[β] | x ∈ I and for 2 6 j 6 d, |x(j)| <
2bβc

1 − |β(j)|

}

.

Then U is finite and Zβ − Zβ ⊂ Zβ + U .

Proof . We choose here I ⊂] − 1, 1[ of length 1 and improve the bound on the moduli of
the conjugates of x given in Lemma 3 by considering the decomposition

Zβ − Zβ = (Z+
β − Z

+
β ) ∪ (Z+

β + Z
+
β ) ∪ −(Z+

β + Z
+
β ).

More precisely let F be a finite subset of I of minimal size such that Zβ−Zβ ⊂ Zβ+F
and let x ∈ F , then x ∈ (Zβ − Zβ) − Zβ and can be written as

x =
N
∑

i=0

(ai − bi)β
i −

N
∑

i=0

ciβ
i.

We study |ai − bi − ci| according to the signs of ai, bi and ci. Recall that |ai|, |bi| and
|ci| are smaller than bβc. In Z

+
β − Z

+
β and Z

−
β − Z

−
β , the products aibi are non-negative

and the coefficients satisfy |ai − bi| 6 bβc. When F ⊂] − 1, 1[, Z
+
β + Z

+
β ⊂ Z

+
β + F and

−
(

Z
+
β + Z

+
β

)

⊂ Z
−
β + F , so when aibi 6 0, then aici > 0 and we have |ai − ci| 6 bβc.

Thus when F ⊂] − 1, 1[, we get in all cases |ai − bi − ci| 6 2bβc. Thus

for 2 6 j 6 d x(j) =
N
∑

i=0

(ai − bi − ci)(β
(j))i with |ai − bi − ci| 6 2bβc,

and the announced bound on the moduli of the conjugates of x holds true. The proof
that U is finite is the same as for W . �

Remark 1 In what follows we restrict our study to the sets U defined in Lemma 4 as
finite subsets of intervals I ⊂]− 1, 1[ of length 1, but all constructions remain valid with
small changes for the finite sets W introduced in Lemma 3 as finite subsets of arbitrary
intervals of length greater or equal to 1.

Quadratic Pisot numbers

We now establish a bound on the size of the sets U of Lemma 4 for any quadratic Pisot
number β. Recall [13] that a quadratic Pisot number β has a minimal polynomial of the
form Mβ = X2 − aX − b, with either a > b > 1, or a > 3 and 0 > b > −a + 2. In the
first case dβ(1) = ab, and in the second one dβ(1) = (a − 1)(a + b − 1)ω.
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Proposition 4 Let β be a quadratic Pisot number with minimal polynomial Mβ = X2−
aX − b. Then for any interval I ⊂] − 1, 1[ of length 1, Card(U) 6 2dB − 1e + 1, with

B =



















a
a−b+1 + a(a+2)

(a+1)(a−b+1) + 1
a+1 when a > b > a

2 ,
2(a+1)
a−b+1 + 1

a when 0 < b 6 a
2 ,

2a−3
a+b−1 + 1

a−1 when − a
2 < b < 0,

2(a−1)
a+b−1 + 1

a−2 when − a + 2 6 b 6 −a
2 .

Proof . Denote by β ′ the algebraic conjugate of β. Any point x of Z[β] and its algebraic
conjugate x′ can be written as x = x1 + x2β and x′ = x1 + x2β

′ where x1, x2 ∈ Z. Then

(

x1

x2

)

=
1

β − β′

(

−β′ β
1 −1

)(

x
x′

)

.

Note that for each value of x2 there is only one possible value for x1 such that x ∈ U
since x1 is an integer and the interval I is of length 1. So if, for all x ∈ U , |x2| < B then
|x2| 6 dB − 1e and Card(U) 6 2dB − 1e + 1.

We establish the bound on the modulus of x2 using the inequalities |x| < 1 and
|x′| 6 2bβc/(1 − |β ′|) with bβc = a when b > 0 and bβc = a − 1 when b < 0. Setting
∆ = a2 + 4b, we get
when b > 0,

|x2| <
1√
∆

(

1 +
4a(a + 2 +

√
∆)

(a + 2)2 + ∆

)

6
a

a − b + 1
+

a(a + 2)√
∆(a − b + 1)

+
1√
∆

and when b < 0,

|x2| <
1√
∆

(

1 +
4(a − 1)(a + 2 +

√
∆)

∆ − (a − 2)2

)

6
a − 1

a + b − 1
+

(a − 1)(a − 2)√
∆(a + b − 1)

+
1√
∆

.

The announced bounds follow from the study of ∆ according to the value of b. �

Remark 2 Specifying the values for a and b given above for B, we obtain the following
bounds.

• If a > b > a
2 , then B 6 2a + 1 and Card(U) 6 4a + 1.

• If 0 < b 6 a
2 , then B < 4 and Card(U) 6 7.

• If −a
2 < b < 0, B < 7 and Card(U) 6 13.

• If −a + 2 6 b 6 −a
2 then B 6 2a − 1 and Card(U) 6 4a − 3.

Corollary 1 Let β be a quadratic Pisot unit, i.e, |b| = 1, and I ⊂]− 1, 1[ be an interval
of length 1, then the set U contains at most 5 points.
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Proof . From Proposition 4 when b = 1 or b = −1, B 6 3, in all but two cases.
If Mβ = X2 − 3X + 1, then B 6 4 and |x2| 6 3 but there is no corresponding value

for x1 when |x2| = 3, thus |x2| 6 2 and Card(U) 6 5.
If Mβ = X2−2X−1, we obtain B 6 3 if we do not approximate ∆ in the computation

of the proof of Proposition 4. �

Example 5 Let β = (1 +
√

5)/2 then β ′ = (1 −
√

5)/2. Then

U =
{

x ∈ Z[β] | x ∈ I and |x′| < 2β + 2
}

.

• For I = [−1/2, 1/2[, U = {0, β − 2, 2β − 3, 2 − β, 3 − 2β}.

• For I = [0, 1[, U = {0,−1+β,−3+2β, 2−β}, since the conjugate 4−2β ′ of 4−2β
has a modulus greater than 2β + 2.

Example 4 shows that the size of minimal sets F in this case is equal to 3.

5 A reduction of the sets containing minimal sets F

We present our constructions in the case where I is an interval of length 1 in ] − 1, 1[
and consider the finite subset U of I defined in Lemma 4. By construction a minimal
set F is contained in U and from Lemma 2 F is a subset of (Zβ − Zβ) − Zβ. Thus a
minimal set F is included in U ∩ ((Zβ − Zβ) − Zβ).

In the following we give an algorithm that computes this intersection. Roughly
speaking we construct an automaton that recognizes the Cartesian product (Lβ−Lβ)×Lβ

and whose each state q corresponds to the value of the subtraction of the elements of
Zβ − Zβ and Zβ whose representations label the paths from the initial state to q.

The first step of the construction consists in associating to each element of a minimal
set F at least a path labelled on {−2bβc, · · · , 2bβc}∗ ×{0, · · · , bβc}∗ in a directed graph
G whose set of vertices contains U .

Following [15], we define the directed graph G as follows.

• The set of vertices is

V =

{

x ∈ Z[β] | |x| <
2bβc
β − 1

, and for 2 6 j 6 d, |x(j)| <
2bβc

1 − |β(j)|

}

.

• The labels (b, a) of the transitions belong to {−2bβc, · · · , 2bβc} × {0, · · · , bβc}.

• There is a transition from x ∈ V to y ∈ V labelled by (b, a), denoted x
(b,a)−→ y, if

and only if y = βx + (b − a).

Note that 0 ∈ V and U ⊂ V . The set V is finite.

Remark 3 Transitions in G are defined in such a way that words will be processed most
significant digit first (i.e., from left to right) as in the automata for Zβ and Zβ − Zβ.
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Proposition 5 Let F ⊂ U be a minimal set satisfying Zβ − Zβ ⊂ Zβ + F . Then for
any f ∈ F there is a path from 0 to f whose label belongs to (Lβ − Lβ) × Lβ.

Proof . From Lemma 2, F ⊂ (Zβ − Zβ) − Zβ, so any element f of F can be written as

f =
∑N

i=0(bi−ai)β
i where x =

∑N
i=0 aiβ

i ∈ Zβ with aN · · · a0 ∈ Lβ and y =
∑N

i=0 biβ
i ∈

Zβ − Zβ with bN · · · b0 ∈ Lβ − Lβ.
With such an f is associated a finite sequence

f0 = 0, for 0 6 i 6 N fi+1 = βfi + (bN−i − aN−i).

Note that fN+1 = f .
Let us show that for any f ∈ F , the elements f1, . . . , fN+1 of the sequence associated

with f belong to V . Note that the smallest K such that |x| < K implies |(x−(b−a))/β| <
K is K = 2bβc/(β − 1). Since f is in U , |f | < K, and so for all 0 6 i 6 N , |fi| < K.
Moreover from Lemma 4, when F ⊂ U , for all i, |bi − ai| 6 2bβc, thus for 1 6 i 6 N + 1

and 2 6 j 6 d, the conjugates f
(j)
i of fi satisfy |f (j)

i | 6 2bβc/(1 − |β(j)|) and for
1 6 i 6 N + 1, fi belongs to V .

Finally if f ∈ F then there is in G a path

0 = f0
(bN ,aN )−→ f1

(bN−1 ,aN−1)−→ · · · (b0,a0)−→ fN+1 = f

where the words aN · · · a0 and bN · · · b0 respectively belong to Lβ and Lβ−Lβ, concluding
the proof. �

From Proposition 5 we can take into account in G only the paths whose labels belong
to (Lβ −Lβ)×Lβ . In order to compute such paths, we use the Cartesian product of the
automata AZβ−Zβ

and AZβ
. Recall the definition of the Cartesian product P = A × B

of two automata A and B:

• the set of states of P is QP = QA × QB,

• there is an edge in P from (p, q) to (p′, q′) labelled by (a, b) if and only if there is
an edge from p to p′ labelled by a in A and an edge from q to q ′ labelled by b in B,

• the set of initial (resp. terminal) states of P is the Cartesian product of the sets
of initial (resp. terminal) states of A and B.

Note that in AZβ−Zβ
×AZβ

every state is terminal.
From all vertices f of G which are in U we look for a path from 0 to f in the directed

graph G which is successful in AZβ−Zβ
× AZβ

. We find these paths making use of the
intersection I = A∩ B of two finite automata A and B defined as follows:

• all sets of states of I are defined as the ones of the Cartesian product,

• there is an edge in I from (p, q) to (p′, q′) labelled by a if and only if there is an
edge from p to p′ in A and an edge from q to q′ in B both labelled by a.
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Algorithm of reduction of the size of the sets containing a minimal set F
Input: The set U containing a minimal set F .
Output: A subset U ′ of U containing a minimal set F .

1. Build the automaton GU having as underlying transition graph G with 0 as initial
state and U as set of terminal states.

2. Compute the intersection IU = (AZβ−Zβ
×AZβ

)∩GU . Note that the set of terminal
states of IU is QZβ−Zβ

×QZβ
× U .

3. Prune IU into I ′
U ′ (that is, keep only the states which belong to a path from the

initial state to a terminal state).

4. Return the set U ′ of the third components of terminal states of I ′
U ′ .

Corollary 2 A minimal set F is contained in U ′ ⊂ U .

Remark 4 The number of states of the automaton IU ′ is O
(

Q3 × |V |
)

, where Q is the
number of states of A

Z
+
β

and |V | is the number of vertices of G.

Because of the large number of states of the automaton obtained in this way, we
shall not illustrate the construction with a figure. Nevertheless we give an example of
reductions that can be obtained.

Example 6 When β = (1 +
√

5)/2, we obtain

• For I = [−1/2, 1/2[ and U = {0, β − 2, 2β − 3, 2 − β, 3 − 2β},

U ∩ (Zβ − Zβ) − Zβ = {0, β − 2, 2 − β}.

• For I = [0, 1[ and U = {0,−1 + β,−3 + 2β, 2 − β},

U ∩ (Zβ − Zβ) − Zβ = {0, β − 1, 2 − β}.

A geometrical argument could also be used to prove that 2β−3 = 1
β3 and −2β +3 = − 1

β3

are not in (Zβ − Zβ) − Zβ. Indeed the distance between two consecutive points of Zβ

is equal to 1
β or 1 = 1

β + 1
β2 , so Zβ + { 1

β3 ,− 1
β3 } ∩ Zβ + {0, 1

β ,− 1
β} = ∅. Moreover

Zβ − Zβ ⊂ Zβ + {0, 1
β ,− 1

β} (see Exemple 4), thus Zβ − Zβ ∩ Zβ + { 1
β3 ,− 1

β3 } = ∅ and

± 1
β3 /∈ (Zβ − Zβ) − Zβ.

15



6 Algorithm computing a minimal set F

The finite sets U ′ obtained by the previous construction are not minimal. An element
y ∈ Zβ −Zβ can be close to two distinct points of x and x′ of Zβ, for example such that
x < y < x′, and y = x + f = x′ + f ′ with f, f ′ ∈ U ′.

Theorem 1 A minimal set F ⊂ U ′ can be computed by an algorithm which is exponen-
tial in time and space. It consists in building a transducer which rewrites a representation
of an element of Zβ − Zβ into its representation Zβ + F .

Proof . To find a minimal set F ⊂ U ′ we proceed in two steps.
First we define from the automaton I ′

U ′ a deterministic automaton RU ′ that recog-
nizes the set Lβ − Lβ. Note that the words of Lβ − Lβ appear as the first component
of the labels of the successful paths in I ′

U ′ . The automaton RU ′ is obtained by erasing
the second component of the labels (that belongs to Lβ) of the transitions of I ′

U ′ and
determinizing the automaton defined in this way. The determinization of automata is
based on the so-called subset construction (see [9]), which is exponential in space, and

the automaton RU ′ has O(2
Q

I
′

U′ ) states.
Next we look amongst all subsets of U ′ for the smallest set F such that the automaton

RF , obtained from RU ′ by keeping only as terminal states the terminal states of RU ′ in
which occur an element of F , recognizes Lβ −Lβ. To test the inclusion, we compute the
complement CF of RF by completing the automaton RF (when a transition is missing we
add a transition ending in a new state called the sink) and replacing the set of terminal
states F by its complement (including the sink). Then the automaton RF recognizes
Lβ − Lβ if and only if the intersection of CF and AZβ−Zβ

is empty. Note that the
complexity of the search amongst all subsets of U ′ is exponential in time.

¿From the set F obtained above, we define a transducer that provides, for any b =
bN . . . b0 ∈ Lβ − Lβ and y =

∑N
i=0 biβ

i ∈ Zβ − Zβ, a decomposition (aN . . . a0, f) where

a = aN . . . a0 ∈ Lβ, f ∈ F and y =
∑N

i=0 aiβ
i + f .

Consider IF = (AZβ−Zβ
×AZβ

)∩GF (F is the set of terminal states of GF ). For any
element b = bN . . . b0 ∈ Lβ −Lβ there exists f ∈ F such that b is the first component of
the label of a successful path w ending in (s, f) where s is any state of (AZβ−Zβ

) ×AZβ

(by construction all states are terminal). Consequently we get
∑N

i=0 biβ
i =

∑N
i=0 ai + f

where aN . . . a0 is the second component of the label of the same path w and so belongs
to Lβ.

More generally the first component of the labels of the edges in IF can be interpreted
as the inputs in Zβ −Zβ given by their representation in Lβ −Lβ of the transducer, the
second component as the corresponding outputs in Zβ given by their representation in
Lβ. The associated element of F is given by the second component of the label of the
state where the path ends. �

To conclude, the method used here for determining minimal sets F probably could
be generalized to the following sets. Let G be a strongly connected graph labelled by
numbers taken from a finite alphabet, and let β be the spectral radius of its adjacency
matrix. Let us consider the set XG = {∑k

i=0 xiβ
i | k > 0, xk · · · x0 is the label of a path
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in G}. Under certain conditions on G and β, XG is a Meyer set, and so the question of
minimal F makes sense. The characterization of these Meyer sets and the construction
of associated minimal sets F remain open problems.
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