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Abstract. We give a description of the fundamental group π(�) of the
Sierpiński-gasket �. It turns out that this group is isomorphic to a certain
subgroup of an inverse limit lim←−Gn formed by the fundamental groups Gn

of natural approximations of �. This subgroup, and with it π(�), can be
described in terms of sequences of words contained in an inverse limit of semi-
groups.

1. Introduction

The present paper is devoted to the description of the fundamental group of
the Sierpiński-gasket � (see Figure 1). It turns out that this fundamental group
can be viewed as a subset of an inverse limit of the fundamental groups of certain
natural approximations of �. Before we give more details we would like to state
some definitions and earlier results that are related to our topic.

Figure 1. The Sierpiński-gasket
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One of the possibilities to define the Sierpiński-gasket is to use a so-called iterated
function system. Let

f1(x) :=
x

2
, f2(x) :=

x

2
+

1
2
, f3(x) :=

x

2
+

1 +
√−3
4

.

Then it is well-known that � ⊂ C is the unique non-empty compact subset of C

satisfying the set equation

� =
3⋃

j=1

fj(�)

(see for instance Hutchinson [21]). Since f1, f2, and f3 are similarities, � is a self-
similar set. Topological properties of self-similar sets have been studied extensively
in the literature. For instance Hata [18, 19] proves that a connected self-similar
set is a locally connected continuum. Moreover, he establishes criteria for the
connectivity of a self-similar set, deals with their cut points and proves a criterion
for a self-similar set to be homeomorphic to an arc. Cut points play a role also in
Winkler [27]. Related questions are addressed by Bandt and Keller [2], where the
authors get information on the topological properties of self-similar sets by studying
their dynamics. More recently, topological properties of self-similar sets with non-
empty interior attracted interest. We mention the survey paper by Akiyama and
Thuswaldner [1], where many results are stated. Some results on the structure of
the fundamental group of self-similar sets are shown in Luo and Thuswaldner [22].

In describing the fundamental group π(�), the main difficulty consists in the
fact that � is not semilocally simply connected. This makes it impossible to apply
the classical methods like van Kampen’s theorem and the theory of covering spaces
in order to compute the fundamental group of �.

Spaces that are not semilocally simply connected have been studied for a long
time. We want to review some of the known results on such spaces. The standard
example of a non-semilocally simply connected space is the so-called Hawaiian Ear-
ring (see Figure 2) which is defined by

H :=
⋃
n≥1

{
z ∈ C :

∣∣∣∣z − 1
n

∣∣∣∣ =
1
n

}
.

It is not semilocally simply connected in the origin. Properties of the fundamental

Figure 2. The Hawaiian Earring

group of H were studied implicitly by Higman [20] introducing the notion of an
unrestricted free product of groups. Morgan and Morrisson [24] determine π(H) as
a subgroup of an inverse limit of finite free products of cyclic groups. Their proof
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was simplified by de Smit [11] who also showed that π(H) is uncountable and not
free. Zastrow [29] gives a description of π(H) in terms of a subset of a projective
limit of groups that is related to our approach (see in particular [29, Definition 2.3]).

Also in the more general context of one dimensional spaces results on funda-
mental groups have been proved. We mention [17] where it is shown that a one-
dimensional locally connected continuum has a trivial fundamental group if and
only if it is a dendrite. Moreover, Curtis and Fort [8] showed that higher homo-
topy groups of one-dimensional separable metric spaces are always trivial. More
recently, in a big project consisting of three papers, Cannon and Conner [3, 4, 5]
thoroughly study fundamental groups (and so-called big fundamental groups) of
one-dimensional spaces. In particular, [3] is devoted to the fundamental group of
the Hawaiian Earring. The authors give a combinatorial description of this group
in terms of “big” words. In [5] they prove some important properties of the fun-
damental groups of one-dimensional spaces. For instance, generalizing a result by
Curtis and Fort [9] they show that for a one-dimensional space X the following
assertions are equivalent: π(X) is free, π(X) is countable, X has a universal cover,
X is locally simply connected. Conner and Lamoreaux [7] generalize some of the
results of [5] to larger classes of subsets of the plane.

In the present paper we embed the fundamental group of � into an inverse
limit of groups which is easily seen to be equal to the Čech homotopy group π̌(�)
of �. The fact that the fundamental group of a one-dimensional space is always
isomorphic to a subgroup of its Čech homotopy group is proved by Eda and Kawa-
mura [13] and independently by Cannon and Conner [5]. For the Menger sponge
this was already shown by use of a more explicit construction by Curtis and Fort
[10, Section 3]. Related results for subsets of closed surfaces can be found in Fischer
and Zastrow [16]. In Eda [12] criteria for the isomorphy of the fundamental group
of two non-locally semisimply connected spaces are studied. More recently, Conner
and Eda [6] proved that certain spaces can be recovered from their fundamental
groups, the Sierpiński-gasket is among these spaces. Finally, we mention that ho-
mology groups of non-locally semisimply connected spaces are studied by Eda and
Kawamura [14, 15].

The starting point of the present paper is a remark contained in [5, Section 2]. In
an example the authors describe the implications of their results for the fundamental
groups of Sierpiński and Menger curves. Among other things, they showed that
these spaces have uncountable fundamental groups which are not free and that
they do not have an universal cover. On the other hand, the authors mention that
these groups have no known combinatorial (word) structure. In the present paper
we want to describe the fundamental group of the Sierpiński-gasket � by some
word structure. Our description differs from the combinatorial word description of
the Hawaiian Earring group by Cannon and Conner [3] in several respects. The
main difference is that in [3] letters correspond to loops in H based in a single base
point whereas in our description of π(�) each letter is related to a local cut point
(later called dyadic point) of �. For the definition of a local cut point we refer
to Whyburn and Duda [26, Appendix 2]. As a consequence we have restrictions
on the admissible finite words in our representation. Moreover, we do not obtain
a representation of π(�) as a subgroup of an unrestricted free product of groups
in the sense of Higman [20] since certain finiteness conditions on the occurrence of
letters are not fulfilled (cf. Remark 1.2).

In what follows we want to give a short overview of the content of the present
paper. It is an evident idea to consider for a loop f in � the sequence of homo-
topy classes [f ]n of f in the approximating spaces �n that arise when the usual
construction process of recursively removing the open middle triangle is stopped
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at level n. Applying the result of Eda and Kawamura [13] mentioned above we
can show that the sequence ([f ]n)n≥0 characterizes f exactly up to homotopy. The
natural ambient space for the sequences ([f ]n)n≥0 is the inverse limit lim←−Gn of the
fundamental groups Gn of �n. We will show that lim←−Gn is canonically isomorphic

to π̌(�) (see Proposition 2.8). Thus in view of the above mentioned result of Eda
and Kawamura there is an injective mapping

ϕ : π(�) ↪→ lim←−Gn.

With an easy example (see Example 2.11) it becomes clear that lim←−Gn contains
elements which do not represent homotopy classes for loops in �. So the objective
arises to describe the subgroup of lim←−Gn that corresponds to the fundamental group
of �.

Our approach to this task pursues the following strategy: Instead of investigating
the problem directly in lim←−Gn we consider an intermediate semigroup structure

lim←− Sn in which the set S(�) of all (based) loops in � is described up to re-

parametrization (see Figure 3).

S(�) σ→ lim←− Sn

↓ [ . ] Red ↓

π(�)
ϕ
↪→ lim←−Gn

∼= π̌(�)

Figure 3.

To this end at every approximation level n we represent a loop f by a (finite)
word σn(f) ∈ Sn consisting of the sequence of transition points of order n (later
called dyadic points) between the subtriangles of �n that the loop passes. We will
define the bonding mappings γn : Sn → Sn−1 (n ≥ 1) in a way that we just omit
the transition points of order n (see (2.3)) and γnk : Sn → Sk (n > k) denotes the
composition γk+1 ◦ . . . ◦ γn. An appropriate reduction process on σn(f) leads then
to a canonical representative Redn(σn(f)) of the homotopy class [f ]n which as a
byproduct gives rise to an adequate representation of the elements in π̌(�). We
mention here that in Zastrow [28] another combinatorial representations of loops
based on edges is used.

We finally succeed in characterizing the elements of the fundamental group of
� by a, after all, surprisingly simple stabilizing condition in the inverse semigroup
limit lim←− Sn. Our main theorem reads as follows.

Theorem 1.1. An element (ωn)n≥0 of lim←−Gn is in ϕ(π(�)) if and only if for all

k ≥ 0 the sequence (γnk(ωn))n≥k is eventually constant.

Remark 1.2. (a) Essentially this condition means that exactly those (ωn)n≥0 ∈
lim←−Gn correspond to elements of the fundamental group of � for which, for any
order k, the number of alterations between distinct transition points of order k in
ωn is bounded in n. Note that this does not imply that the number of occurrences
of a single transition point in ωn is bounded in n.

(b) Let ω = (ωn)n≥0 ∈ lim←−Gn be an element of ϕ(π(�)). In view of Theorem 1.1

there exists a “stabilized sequence” ω̄ = (ω̄n)n≥0 with ω̄n = γ�n(ω�) which is well
defined for � > �n large enough. We will show that

(i) (ω̄n)n≥0 ∈ lim←− Sn and
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(ii) Red(ω̄n)n≥0 = (ωn)n≥0.
Thus the sequence (ω̄n)n≥0 can be regarded as the canonical representation of ω in
lim←− Sn. The group operation in π(�) in terms of stabilized sequences then reads as

follows: for ω, ω′ ∈ ϕ(π(�)) we have

ω̄ ∗ ω̄′ = Red(ω̄ · ω̄′),
i.e., the product of two stabilized sequences is formed by concatenation and reduc-
tion at every level, followed by stabilization.

The crucial step towards Theorem 1.1 is the fact that though σ is not surjective,
restricting the domain of the reduction map Red : lim←− Sn → lim←−Gn to the range of

σ does not affect its image, i.e., ran(Red ◦ σ) = ran(Red) where ran(g) denotes the
range of a map g (cf. Proposition 3.4).

Moreover, we employ considerable effort to completely describe the kernel and
the range of σ to enlighten the relevance of lim←− Sn independently of its expedience
with respect to the description of the fundamental group of �: The elements in
the range of σ are characterized by a completeness condition and they precisely
describe the set of all loops in � up to re-parametrization.

The organization of the two forthcoming chapters is as follows: In Section 2.1
we introduce a digital representation for the points of the Sierpiński-gasket � by
retracing the usual construction process of recursively removing the open middle
triangle. Thereby we obtain two sequences of approximating spaces to �, and the
points in � naturally split into the two classes of dyadic and generic points. In
Section 2.2 it is explicated how a loop in � can be represented by a finite word
over the alphabet of dyadic points of order ≤ n at every approximation level n. In
Section 2.3 we introduce the inverse limit of semigroups lim←− Sn and show that the

groupoid S(�) of all loops in � can be mapped by a homomorphism into lim←− Sn

by means of the sequence of representations of a loop attained in Section 2.2.
In Section 2.4 we introduce the set of reduced words Gn which turns out to be
isomorphic to the fundamental group of �n. The (Gn)n≥0 give rise to an inverse
limit of groups lim←−Gn and an appropriate reduction map on elements of lim←− Sn is
defined such that the diagram in Figure 3 commutes. Employing a result of Eda
and Kawamura [13] we see that ϕ is injective and thus the fundamental group of �
is a subgroup of lim←−Gn. Example 2.11 demonstrates that ϕ is not surjective. This
provided the initial motivation for considering lim←− Sn.

In Section 3.1 we develop the machinery to study the range and the kernel of σ
which is accomplished in Propositions 3.3–3.5 in full detail. In Section 3.2 we finally
prove the characterization of the elements in lim←−Gn representing a homotopy class

in π(�) given in Theorem 1.1.

2. Preliminaries

2.1. Digital representations of the Sierpiński-gasket �. For our purposes we
need a digital representation of the points of the Sierpiński-gasket �. To this end
we follow the construction process of � that recursively removes the open middle
triangle at each stage. We start with a triangle (including its inside) �0 in the
plane. Just to have a concrete metric at hand we assume that �0 is equilateral
with side length 1. The vertices of �0 are denoted by 0, 1 and 2. By joining the
midpoints of the sides�0 is subdivided in four smaller triangles 〈0〉, 〈1〉, 〈2〉 and the
middle triangle, where 〈i〉 is the subtriangle that contains the vertex i. Removing
the interior of the middle triangle from �0 we obtain the first approximation �1,
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i.e.,
�1 = 〈0〉 ∪ 〈1〉 ∪ 〈2〉.

With the remaining triangles 〈i〉, i = 0, 1, 2, we proceed in the same way: 〈i〉 is
divided into the four subtriangles 〈i0〉, 〈i1〉, 〈i2〉, and the middle triangle the interior
of which is cut out in the next step. Thus we get the second approximation

�2 =
⋃

i,j∈{0,1,2}
〈ij〉,

and so on and so forth. We obtain a decreasing sequence �0 ⊃ �1 ⊃ �2 . . . of
compact spaces and hence the intersection � =

⋂
n∈N

�n, the Sierpiński-gasket, is a

compact space as well. � consists of two types of points which we call dyadic and
generic:

Dyadic points : these are points P which lie in two different subtriangles at some
stage (and consequently in all the following stages) in the construction process
described before. The smallest level at which P appears as a vertex of two different
subtriangles is called the order of P . For instance {P} = 〈01〉 ∩ 〈02〉 = 〈012〉 ∩
〈021〉 = . . . defines a point P of order 2. We represent P by (0, 1/2) or (0, 2/1)
(see Figue 4). In general a dyadic point of order n has a finite representation of the
form

P = (a1, a2, . . . , an−1, a/b) = (a1, a2, . . . , an−1, b/a)
with ai, a, b ∈ {0, 1, 2} and a �= b, and this means {P} = 〈a1a2 . . . an−1a〉 ∩
〈a1a2 . . . an−1b〉. We consider the vertices 0, 1, 2 of �0 as dyadic points of order
0. Let in the following Dn denote the set of all dyadic points of order ≤ n. In Dn

there is a natural relation ∼n describing the neighborhood of dyadic points at level
n: for P, Q ∈ Dn we have P ∼n Q if and only if P �= Q and there is a subtriangle
〈a1 . . . an〉 of�n to which P and Q belong. At every stage n a dyadic point P ∈ Dn,
P �= 0, 1, 2 has exactly four neighbors, and the points 0, 1 and 2 have exactly two
neighbors each.
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(1/2)
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Figure 4

Generic points : these are points P of � such that at every stage
n there is a unique subtriangle of �n to which the point P belongs.
If P ∈ 〈a1a2 . . . an〉, n ∈ N, then P has the infinite representation
P = (a1, a2, . . .) with ai ∈ {0, 1, 2}, where the sequence (an)n∈N is not ultimately
constant.

Formally� can be obtained as the quotient space of the compact space X of one-
sided infinite sequences over the three letter alphabet {0, 1, 2}, i.e., X = {0, 1, 2}N
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with the discrete topology on the factors, where a pair of sequences (an)n∈N and
(bn)n∈N is identified if there is an n0 such that an = bn for n < n0 and an =
bn0 �= an0 = bn for n > n0. In the approach described before this means that
P = (a1, a2, . . . , an0−1, an0/bn0) is a dyadic point of order n0.

The spaces �n, n ≥ 0, provide an encasing approximation to the Sierpiński-
gasket. In the following we will also consider an approximation from inside. Let
�n denote the boundary of �n considered as a subspace of the plane. Then � =⋃
n∈N

�n where the bar means the closure operator in the plane:
⋃

n∈N

�n contains

exactly those points P = (an) such that eventually the digits an are out of a two-
element subset of {0, 1, 2}, in particular this set contains all dyadic points. On the
other hand every generic point of � is the limit of a sequence of dyadic points.

Concerning homotopy the spaces �n and �n−1, n ≥ 1, provide the same level
of approximation to the Sierpiński-gasket �. There exists a deformation pn that
retracts �n to �n−1: For every subtriangle T = 〈a1a2 . . . an−1〉 of �n−1 the map
pn projects the points of �n ∩T from the center of T to the boundary of T . Hence
the fundamental groups π(�n) and π(�n−1) are isomorphic (cf. [25, Theorem 1.22
and Theorem 3.10]).

2.2. Representation of loops in �. To describe the fundamental group π(�)
we have to consider continuous loops f : [0, 1] → �. Since � is path connected
throughout we may assume f(0) = f(1) = 0. Our next aim is to represent loops
based at 0 in �n and � by a finite word over the alphabet Dn for every n ≥ 0.

Let us fix n and assume that f : [0, 1] → �n is a continuous loop in �n with
f(0) = f(1) = 0. The pre-images {f−1(P )|P ∈ Dn} form a finite family of disjoint
compact subsets of the interval [0, 1]. Therefore this family is separated, i.e., there
is m ∈ N such that for all i = 1, 2, . . . , m the set f−1(P ) ∩ [ i−1

m , i
m ] is non-empty

for at most one P . We list these points P as i increases and in the arising sequence
we cancel out consecutive repetitions. Thus we obtain a finite word P1P2 . . . Pk =:
σn(f) over Dn which is independent of the chosen m. Obviously σn(f) has the
following properties:

P1 = Pk = 0,(2.1)
Pi ∼n Pi+1 for all i = 1, . . . k − 1.(2.2)

In the following we will also consider the loop that emerges from σn(f) by connect-
ing the listed points straight-lined in the order they appear and call it the piecewise
linear loop corresponding to σn(f). In order to disburden the notation we will not
distinguish between the string σn(f) and the associated loop as long as no confusion
can arise.

Now let f : [0, 1] → � be a loop in � based at 0. Since � ⊂ �n, the image
σn(f) is well defined for each n ∈ N and represents f at approximation level n.

Proposition 2.1. In �n the loop f and the piecewise linear loop σn(f) are homo-
topic.

Proof. Let σn(f) = P1 . . . Pk. For every i = 1, . . . , k there is a maximal interval
[si, ti] such that f(si) = f(ti) = Pi, f([si, ti]) ∩Dn = {Pi} and 0 = s1 ≤ t1 < s2 ≤
t2 < . . . < sk ≤ tk = 1. This means that f([si, ti]) is contained in the interior – as
a subset of �n – of the union of the (at most) two subtriangles of �n that intersect
in Pi. Since this set is simply connected f � [si, ti] is homotopic to the constant loop
at Pi.

Moreover, the conditions on si and ti imply that f([ti, si+1]) is a subset of the
subtriangle of �n that contains Pi and Pi+1 and hence f � [ti, si+1] is homotopic to
the straight line between Pi and Pi+1.

Putting the pieces together we obtain the assertion. �
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In order to describe the fundamental group of �, Proposition 2.1 suggests to rep-
resent a loop f , as a first step, by the sequence (σn(f))n≥0. In the next section we
will elaborate an appropriate ambient space for the sequences (σn(f))n≥0.

2.3. The inverse system (Sn, γn)n≥0 of semigroups. The semigroups Sn, n ≥
0, are defined in the following way: The elements of Sn are finite words ωn =
P1 . . . Pk over the alphabet Dn such that (2.1) and (2.2) are satisfied. These words
ωn are called admissible and they are supposed to represent paths in �n. (2.1)
means that we consider only cyclic paths with base point 0, and (2.2) reflects that
with respect to homotopy constant parts of paths do not matter and that in a
continuous path a dyadic point can only be followed by a neighboring dyadic point.

The semigroup operation · on Sn is defined by concatenation of words and can-
cellation of one of the adjacent letters 0 at the interface:

P1 . . . Pk ·Q1 . . .Ql = P1 . . . PkQ2 . . . Ql.

The bonding mapping

(2.3) γn : Sn → Sn−1, n ≥ 1,

eliminates from an element of Sn all points of order n, and then cancels consecutive
repetitions of points of order < n arising in this process. Obviously the result is
an admissible word in Sn−1 and γn is a semigroup epimorphism. Thus we may
consider the inverse semigroup-limit

lim←− Sn = {(ωn)n≥0 | γk(ωk) = ωk−1 for all k ≥ 1}

corresponding to the sequence (Sn, γn)n≥0.
Let (S(�), ·) denote the groupoid of continuous loops f : [0, 1] → � (based at

0), where multiplication · is just the usual concatenation of loops. As a general
principle we denote the operations in the groupoid S(�) and in the semigroups Sn

and lim←− Sn by · (or omit the operation symbol), whereas for the group operations,

for instance in the fundamental group π(�), we use the notation ∗.
Next we will provide a digital description of loops at the semigroup level.

Proposition 2.2. The map

σ :

{
S(�) → lim←− Sn

f �→ (σn(f))n≥0

is a homomorphism from the groupoid (S(�), ·) into the semigroup (lim←− Sn, ·).

Proof. Firstly we show that σ is well defined: Let f be an element of S(�). Then
the word σn(f) contains the dyadic points of Dn which are passed by the loop f
in the order they appear in f without consecutive repetitions. When we apply γn

to σn(f), obviously we end up with the same word in Sn−1 we obtain when we
list the dyadic points f passes at level n − 1, i.e., γn(σn(f)) = σn−1(f), and thus
σ(f) ∈ lim←− Sn.

σ is a homomorphism since concatenation of loops in S(�) correlates exactly to
the concatenation of words in the components Sn, n ≥ 0. To put it more formally,
for f, g ∈ S(�) we have:

σ(f · g) = (σn(f · g))n≥0 = (σn(f) · σn(g))n≥0 =

(σn(f))n≥0 · (σn(g))n≥0 = σ(f) · σ(g).

�
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2.4. The inverse system (Gn, δn)n≥0 of groups. In order to describe the ho-
motopy of loops in � we have to consider an appropriate reduction process for
the semigroup words in lim←− Sn. In the following for f ∈ S(�) let [f ] denote the

homotopy class of f in �, and let [f ]n denote the homotopy class of f in �n, i.e.,
in the latter case f is considered as a map with range �n.

In a first step we will describe the elements of the fundamental group of �n.
Very briefly we recall here the standard approach to the fundamental group of a
simplicial complex (cf. [25, chapter 7]): One considers edge paths in �n which start
and end in the same vertex, say in 0. In principle an edge path is the same as an
admissible word over Dn, i.e., an element of Sn, except that also constant edges are
allowed. Two edge paths are defined to be equivalent if one can be obtained from
the other by a finite number of elementary moves. In our setting an elementary
move is a substitution on subwords consisting of consecutive letters of the form

(2.4) PQP ←→ P or PQR ←→ PR

where P, Q, R are the distinct vertices of a simplex in the simplicial complex which
in our case means that P, Q, R form a subtriangle of �n. As the arrows indi-
cate these transformations may be performed in both directions. The equivalence
classes of edge paths then constitute the elements of the fundamental group with
concatenation as the group operation (cf. [25, Theorem 7.36]).

In our attempt we proceed slightly different: We call an element ωn ∈ Sn reduced
if ωn cannot be shortened by an elementary move as described in (2.4). A reduced
word in Sn can be identified with a sequence of subtriangles of �n such that any
three consecutive subtriangles are pairwise different. Let Gn denote the set of all
reduced words of Sn and Redn : Sn → Gn the mapping that performs elementary
moves until the word is reduced.

Proposition 2.3. Redn is well defined and for ωn ∈ Sn the loop corresponding
to Redn(ωn) forms a canonical representative of the homotopy class of the loop
corresponding to ωn in �n.

Proof. Obviously, by performing an elementary move on an element of Sn we stay
in the same homotopy class for the corresponding loops. All we have to show is that
two different reduced words correspond to non-homotopic loops. Here we use the
fact that �n and �n−1 have isomorphic homotopy groups (�n−1 is a deformation
retract of �n).

Since �n−1 is a connected 1-complex its homotopy group is a free group, freely
generated by the edges not contained in a fixed spanning tree T (cf. [25, Corol-
lary 7.35]). Starting with two different reduced words ωn �= ω̄n in Gn by retracting
the loops corresponding to ωn and ω̄n to �n−1, we end up with two different words
ωn−1 �= ω̄n−1 over the alphabet Dn−1 such that any three consecutive letters of
these words are pairwise different elements of Dn−1 (a reduced word in Gn corre-
lates to a sequence of subtriangles in �n; every subtriangle in �n contains exactly
one vertex in Dn−1; the sequence of these vertices is exactly what we obtain by the
retraction).

Suppose the two emerging loops corresponding to ωn−1 and ω̄n−1 are homotopic
in �n−1, then due to the fact that the homotopy group of �n−1 is a free group
the two words must contain the same edges not contained in the tree T in the
corresponding order. Moreover, there is a unique path in T connecting these edges.
Since ωn−1 and ω̄n−1 do not contain subwords of the form PQP , ωn−1 and ω̄n−1

must be identical in the parts connecting the edges not in T , and hence they must
coincide on the whole, which is a contradiction. �
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Now it is obvious how to define the group operation for ωn, ω̄n ∈ Gn:

ωn ∗ ω̄n = Redn(ωn · ω̄n),

where ωn · ω̄n is the product in Sn. Together with the results in [25, chapter 7] we
obtain:

Proposition 2.4. The fundamental group (π(�n), ∗) is isomorphic to (Gn, ∗) by
means of the isomorphism ϕn : [f ]n �→ Redn(σn(f)) where f is a continuous loop in
�n. Furthermore, the reduction map Redn : Sn → Gn, associating to every admis-
sible word its reduced form, is a semigroup epimorphism, i.e., (Gn, ∗) is isomorphic
to (Sn/ ker(Redn), ·).
Now we elaborate a bonding between the groups Gn.

Lemma 2.5. For n ≥ 1 the map

δn :
{

Gn → Gn−1

ωn �→ Redn−1(γn(ωn))

is a group epimorphism.

Proof. Let ωn, ω̄n ∈ Gn. We have

δn(ωn ∗ ω̄n) = Redn−1(γn(Redn(ωn · ω̄n))).

On the other hand we get

δn(ωn) ∗ δn(ω̄n) = Redn−1(Redn−1(γn(ωn)) · Redn−1(γn(ω̄n))) =

Redn−1(γn(ωn) · γn(ω̄n)) = Redn−1(γn(ωn · ω̄n)).

Due to Proposition 2.3 it is thus sufficient to show that the loops γn(Redn(ωn · ω̄n))
and γn(ωn · ω̄n) are homotopic in �n−1. It is obvious by the definition of γn that
[αn]n−1 = [γn(αn)]n−1 for every αn ∈ Sn. Further we have [αn]n = [Redn(αn)]n
and hence also [αn]n−1 = [Redn(αn)]n−1. Altogether we obtain

[γn(ωnω̄n)]n−1 = [ωnω̄n]n−1 = [Redn(ωnω̄n)]n−1 = [γn(Redn(ωnω̄n))]n−1

and we are done.
δn is surjective: Suppose ωn−1 = P1P2 . . . Pk in Gn−1 is given. Put ωn =

P1Q1P2Q2 . . .Qk−1Pk, where Qi is the (unique) element of Dn with Pi ∼n Qi ∼n

Pi+1. One can check easily that ωn is reduced and δn(ωn) = ωn−1. �

As a consequence of the last lemma we can consider the inverse group-limit

lim←−Gn = {(ωn)n≥0 | δk(ωk) = ωk−1 for all k ≥ 1}.
Next we show that the reduction maps Redn : Sn → Gn can be lifted to a map on
the inverse limits.

Lemma 2.6. For every n ≥ 1 the following diagram commutes:

Sn
γn−→ Sn−1

↓ Redn Redn−1 ↓
Gn

δn−→ Gn−1

Proof. Let ωn be in Sn. We have to show that δn(Redn(ωn)) = Redn−1(γn(ωn)).
Since δn(Redn(ωn)) = Redn−1(γn(Redn(ωn))) it suffices to prove that γn(ωn) and
γn(Redn(ωn)) are homotopic in �n−1. However, this was already accomplished in
the proof of Lemma 2.5. �
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Proposition 2.7. The map

Red :

{
lim←− Sn → lim←−Gn

(ωn)n≥0 �→ (Redn(ωn))n≥0

is a well defined semigroup homomorphism.

Proof. If (ωn)n≥0 ∈ lim←− Sn then γn(ωn) = ωn−1 for every n ≥ 1. Thus Lemma 2.6

yields δn(Redn(ωn)) = Redn−1(ωn−1). This shows that Red is well defined. The
fact that Red is a homomorphism follows because Redn is a homomorphism by
Proposition 2.4. �

Now we figure out that the fundamental group (π(�), ∗) can be embedded into
the group-limit (lim←−Gn, ∗). To this matter we need a lemma on the Čech homoptopy

group π̌(�) of � (see e.g. [23, p. 130]1 or [13, Appendix A] for a definition of π̌).

Proposition 2.8. The Čech homoptopy group π̌(�) is isomorphic to lim←−Gn.

Proof. Since � =
⋂

n≥0�n and �0 ⊃ �1 ⊃ �2 . . . is a nested sequence of compact
polyhedra we have that

(2.5) π̌(�) = lim←− π(�n)

where for each n ∈ N the bonding mapping jn : π(�n) → π(�n−1) is induced by
the inclusion �n ↪→ �n−1 (see [23, Chapter II, §3]).

According to Proposition 2.4 we have that π(�n) ∼= Gn. Let ϕn : π(�n)→ Gn

be the canonical isomorphism between these groups. It is now easy to see that the
diagram

π(�n)
jn−→ π(�n−1)

∼= ↓ ϕn ∼= ↓ ϕn−1

Gn
δn−→ Gn−1

is commutative. Indeed, for each n ≥ 1 and each continuous loop f in �n ⊂ �n−1

we have [σn(f)]n = [f ]n by Proposition 2.1. In particular, [σn(f)]n−1 = [f ]n−1

and [σn−1(f)]n−1 = [f ]n−1 hold. Also we observed in the proof of Lemma 2.5 that
[γn(ωn)]n−1 = [ωn]n−1 holds for ωn ∈ Sn. Hence,

[γn(σn(f))]n−1 = [σn(f)]n−1 = [f ]n−1 = [σn−1(f)]n−1.

Combining this with Lemma 2.6 we get

δn(ϕn([f ]n)) = δn(Redn(σn(f))) = Redn−1(γn(σn(f))

= Redn−1(σn−1(f)) = ϕn−1([f ]n−1)

= ϕn−1(jn([f ]n))

which proves the commutativity of the above diagram. Together with 2.5 the
diagram implies the assertion of the lemma. �

We are now in a position to prove the following result.

Proposition 2.9. The map

ϕ :

{
π(�) → lim←−Gn

[f ] �→ Red(σ(f))

is a well defined group monomorphism.

1Note that the Čech homotopy group is called shape group in this text.
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Proof. Because � is a one-dimensional continuum, [13, Corollary 1.2] implies that
the canonical homomorphism from π(�) to π̌(�) is a monomorphism. Since ϕ is
the composition of this monomorphism with the isomorphism between π̌(�) and
lim←−Gn established in Proposition 2.8 we get the result. �

The next theorem gives an interim survey of what we have established up to this
point.

Theorem 2.10. The fundamental group (π(�), ∗) of the Sierpiński-gasket is iso-
morphic to a subgroup of (lim←−Gn, ∗). Moreover, the following diagram commutes:

S(�) σ→ lim←− Sn

↓ [ . ] Red ↓

π(�)
ϕ
↪→ lim←−Gn

However, the next example shows that ϕ is not surjective:

Example 2.11. Let C0 be the (piecewise linear) loop that starting at 0 passes
around the boundary of �0 in positive direction (i.e. passing from 0 to 1, then 2
and back to 0). By C−1

0 we mean the same cycle passed in the opposite direction.
C1 denotes the loop around the subtriangle 〈0〉 in �1 (i.e. passing through 0, (0/1),
(0/2) and 0), C2 the loop around 〈00〉 in �2, and so on. Now we consider the
following sequence of words:

ω0 = ω1 = 0

ω2 = Red2(σ2(C0C1C
−1
0 ))

ω3 = Red3(σ3(C0C1C
−1
0 C2))

ω4 = Red4(σ4(C0C1C
−1
0 C2C0C3C

−1
0 ))

ω5 = Red5(σ5(C0C1C
−1
0 C2C0C3C

−1
0 C4))

. . .

It can be checked easily that (ωn)n≥0 is an element of lim←−Gn. For instance, if
we apply δ4 to ω4, the loop C3 disappears since it is null-homotopic in �3, and
consequently also the C0 and C−1

0 neighboring C3 cancel out and we arrive at ω3.
Suppose there exists f in S(�) such that ϕ([f ]) = (ωn)n≥0. Then due to the

construction of ωn = [f ]n the loop f has to traverse the circle C0 infinitely many
times, which is not possible.

Maybe it is instructive to see here that (ωn)n≥0 is even not in
Red(lim←− Sn). Suppose there is (αn)n≥0 in lim←− Sn with Red((αn)n≥0) = (ωn)n≥0.
If we consider only the dyadic points of order 1 that appear in ω2n, we see that
the sequence (0/1) (1/2) (0/2) (1/2) (0/1) repeats n times. This means that at least
this sequence of 5n points of order 1 also appears in α2n (maybe some more which
cancel out by performing Red2n). However, when projecting down from S2n to S1

in lim←− Sn no cancelation in between these 5n points can occur. As a consequence
α1 would contain infinitely many points which is a contradiction.

We aim at describing the fundamental group of the Sierpiński-gasket. Retro-
spectively, Theorem 2.10 provides the motivation for investigating the semigroup
limit lim←− Sn: π(�) ∼= ϕ(π(�)) = Red(σ(S(�))). Therefore we have to study the
range of σ in lim←− Sn and the range of Red in lim←−Gn. This will be accomplished in
the next section.



ON THE FUNDAMENTAL GROUP OF THE SIERPIŃSKI-GASKET 13

3. A characterization of the elements in ϕ(π(�))

3.1. The range and the kernel of σ. We associate to a fixed element (ωn)n≥0 =
(Pn1Pn2 . . . Pnkn)n≥0 in lim←− Sn a graph G = (V, E) with vertices V and directed
edges E. We think of the graph G as organized in rows: in the nth row, n ≥ 0,
we have for every letter appearing in the word ωn a corresponding vertex, i.e.
V = {(n, j) | n ≥ 0, 1 ≤ j ≤ kn}. Edges connect certain vertices from row n to
vertices in row n+1, namely, ((n, i), (n+1, j)) ∈ E if and only if Pni = Pn+1,j and
in the course of γn+1 that maps ωn+1 to ωn the point Pn+1,j is projected to Pni.
Consequently any vertex (n, i) in row n has at least one successor up to a finite
number of successors (not bounded from above for growing n) in row n + 1, and
(n, i) has exactly one predecessor in row n−1 if and only if the order of Pni is < n.

Example 3.1. We consider the following element in lim←− Sn one can think of as

a “pseudo-path” that passes from 0 on the baseline of �0 arbitrarily near to 1
without touching 1 and then goes the same way back to 0. A phenomenon arising
in this example will turn out to be important in the further investigation:

ω0 = 0, ω1 = 0(0/1)0, ω2 = 0(0, 0/1)(0/1)(1, 0/1)(0/1)(0, 0/1)0, . . . .

Figure 5 shows the graph associated to (ωn)n≥0 where we denote the vertices by
the corresponding dyadic points Pni instead of the index (n, i) we usually use.

0

0 (0/1) 0

0 (0, 0/1) (0/1) (1, 0/1) (0/1) (0, 0/1) 0
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Figure 5

By a branch B we mean a directed path in G which cannot be extended. As
description for B we use the sequence of vertices contained in B, i.e. B = (n, in)n≥n0

where P = Pn,in for all n ≥ n0, is a point of order n0. We say that the branch B
corresponds to the dyadic point P .

The set B of all branches in G carries a natural total order ≤: Let B1 =
(n, in)n≥n1 , B2 = (n, jn)n≥n2 be two branches then we define B1 < B2 if and
only if there exists n ≥ max{n1, n2} such that in < jn. Consequently we then have
im < jm for all m ≥ n, and im ≤ jm for all m with max{n1, n2} ≤ m < n which
reflects the property that branches do not cross in G if we display the vertices in
every row n in the order they appear in ωn. It is straightforward to check that ≤
is a total order on B. For instance, B1 ≤ B2 and B2 ≤ B1 implies B1 = B2 since
branches are maximal with respect to extension.

The order ≤ on B is dense: Let B1 < B2 be defined as before with in < jn.
Then jn+1 − in+1 ≥ 2 since the points corresponding to B1 and B2 are of order
≤ n and thus Pn+1,in+1 �∼n+1 Pn+1,jn+1 . Hence any branch B starting at vertex
(n + 1, in+1 + 1) satisfies B1 < B < B2.
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In the following we will consider Dedekind cuts in (B,≤): A cut (B1,B2) is a
partition of B into two (nonempty) subsets B1 and B2 such that B ∈ B1, B̄ < B
implies B̄ ∈ B1, and B ∈ B2, B̄ > B implies B̄ ∈ B2.

Rational and irrational cuts: The cut (B1,B2) is called rational if either B1 has
a largest element or B2 has a least element. In the remaining case (B1,B2) is called
irrational.

Every cut (B1,B2) converges to a uniquely defined element of � in the following
sense: For all n ≥ 0 put

ln = max{i | ∃B ∈ B1 : B contains (n, i)}
rn = min{j | ∃B ∈ B2 : B contains (n, j)}

Obviously we have 1 ≤ ln ≤ rn ≤ kn for all n ≥ 0.

Lemma 3.2. For the cut (B1,B2) we have lim
n→∞Pn,ln = lim

n→∞Pn,rn .

Proof. By construction of ln and rn we have either ln = rn and thus Pn,ln = Pn,rn

or rn = ln + 1 and thus Pn,ln ∼n Pn,rn . Hence it is sufficient to prove the existence
of lim

n→∞Pn,ln .
We prove now for all n ≥ 0 that Pn+1,ln+1 lies in the same subtriangle Tn of

�n as Pn,ln : We suppose Pn,ln ∼n Pn,rn , the other case Pn,ln = Pn,rn is proved
similarly. Let B1 = (. . . , (n, ln), (n + 1, i), . . .) be a branch in B1 such that i is a
large as possible. Further, let B2 = (. . . , (n, rn), (n + 1, j), . . .) be a branch in B2

such that j is a small as possible. Note that Pn+1,i = Pn,ln , Pn+1,j = Pn,rn and
ln+1 ≥ i. Evidently, all points Pn+1,k with i < k < j are of order n + 1 and lie in
the same subtriangle Tn of �n as Pn,ln and Pn,rn , and it is clear by construction
that Pn+1,ln+1 is one of the points Pn+1,k or coincides with Pn,ln .

Thus we obtain a sequence of subtriangles (Tn)n≥0 with Tn ⊃ Tn+1, diam(Tn) =
2−n, Pn,ln ∈ Tn, and hence lim

n→∞Pn,ln exists. �

The limit of the cut (B1,B2) is defined to be the point lim
n→∞Pn,ln = lim

n→∞Pn,rn

in �. As the proof of Lemma 3.2 shows, a rational cut has a dyadic limit point,
namely the point corresponding to the largest branch in B1 or the smallest branch
in B2, respectively. An irrational cut may converge to a dyadic or to a generic
point.

Complete elements: We call (ωn)n≥0 ∈ lim←− Sn complete if every irrational cut in

the set of branches B associated to (ωn)n≥0 converges to a generic point.
Coming back to Example 3.1 we see that (ωn)n≥0 defined there is not complete:

Let B1 consist of all branches which turn left when following them downwards, B2

all that turn right. Then obviously this cut is irrational and converges to the dyadic
point 1.

Next we prove that completeness is a necessary condition for (ωn)n≥0 to be an
element of σ(S(�)).

Proposition 3.3. For all f ∈ S(�) the representation σ(f) in lim←− Sn is complete.

Proof. Put (ωn)n≥0 = (Pn1Pn2 . . . Pn,kn)n≥0 = (σn(f))n≥0 and let B = (n, in)n≥n0

be a branch in the graph G which is associated to (ωn)n≥0.
We will assign to B an interval [sB, tB] ⊆ [0, 1]: Firstly, as we already explicated

in the beginning of the proof of Proposition 2.1, for every n ≥ n0 we can associate
to Pn,in the interval [sn, tn] such that f([sn, tn]) ∩Dn = {Pn,in}. The definition of
the edges in the graph G yields [sn+1, tn+1] ⊆ [sn, tn], and so we obtain a nonempty
interval [sB, tB] =

⋂
n≥0

[sn, tn] such that f is constant on [sB , tB] with the dyadic

point corresponding to B as the constant value.
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We list some properties of this relationship between branches and intervals.
The order on the branches is preserved by this construction, i.e., if B1 =
(n, i

(1)
n )n≥n1 , B2 = (n, i

(2)
n )n≥n2 are two branches then B1 < B2 implies tB1 < sB2 :

B1 < B2 means that there is an n such that i
(1)
n < i

(2)
n and thus for the in-

tervals [snk, tnk] associated to P
n,i

(k)
n

, k = 1, 2, we have tn1 < sn2. Hence
tB1 = infn≥n1 tn1 < supn≥n2

sn2 = sB2 .
As a consequence different branches lead to disjoint intervals. Further, it is

evident that for every u ∈ [0, 1] such that f(u) is a dyadic point there exists a
unique branch B with u ∈ [sB, tB].

To sum up, the family {[sB, tB] | B ∈ B} forms a partition of f−1(
⋃

n≥0

Dn) which

inherits the order on the set of all branches B in the sense explained above.
Now we are in position to prove that every irrational cut (B1,B2) in B converges

to a generic point in �: The irrational cut (B1,B2) corresponds to an irrational
cut in {[sB, tB] | B ∈ B}. Put s = supB∈B1

sB and t = infB∈B2 sB. Since the cut
is irrational it is irrelevant whether we take sB or tB when forming the inf and the
sup, and moreover we have s > sB1 and t < tB2 for all B1 ∈ B1, B2 ∈ B2.

Obviously s ≤ t and we claim that f is constant in the interval [s, t] with a generic
point as constant value: Suppose there exists u ∈ [s, t] such that f(u) is a dyadic
point. Then there is a branch B̄ with u ∈ [sB̄, tB̄]. However, due to the definition
of s = supB∈B1

sB all intervals corresponding to branches of B1 are strictly below
s and thus cannot contain u. The same applies to all branches of B2 since their
intervals lie above t. Hence B̄ is not in B1 ∪ B2 = B which is a contradiction. So
f does not attain a dyadic point as value on the interval [s, t]. Suppose f is not
constant on [s, t]. Then f([s, t]) is a connected subset of � containing at least two
points and therefore also contains a dyadic point.

Finally we show that the cut (B1,B2) converges to the generic point f(s). Put
ln = max{i | ∃B ∈ B1 : B contains (n, i)}. Thus for every n ≥ 0 there exists
a branch Bn = (m, i

(n)
m )m≥mn ∈ B1 such that (n, ln) = (n, i

(n)
n ) and thus Pn,ln =

P
n,i

(n)
n

. As a consequence f(sBn) = Pn,ln where as usual [sBn , tBn ] is the interval
corresponding to Bn.

Since B1 has no largest element for every B = (n, in)n≥n0 ∈ B1 there exists B̄ =
(n, jn)n≥n̄0 ∈ B1 with B̄ > B, i.e. there is an n ∈ N such that in < jn ≤ ln = i

(n)
n .

This means that for all B ∈ B1 there is an n ∈ N such that sB < sBn . So we infer
lim

n→∞ sBn = s, and using the continuity of f we obtain

lim
n→∞Pn,ln = lim

n→∞ f(sBn) = f(s)

and we are done. �

We have already seen that non-complete elements in lim←− Sn exist (see Exam-

ple 3.1). Proposition 3.3 thus shows that σ : S(�)→ lim←− Sn is not surjective.

The next proposition aims at finding f in S(�) such that σ(f) approximates a
given (ωn)n≥0 ∈ lim←− Sn best possible.

Proposition 3.4. For every (ωn)n≥0 ∈ lim←− Sn there exists f ∈ S(�) such that

Red(σ(f)) = Red((ωn)n≥0), i.e., ran(Red ◦ σ) = ran(Red). Moreover, if (ωn)n≥0

is complete then even σ(f) = (ωn)n≥0 holds for some f ∈ S(�).

Proof. Let (ωn)n≥0 = (Pn1Pn2 . . . Pn,kn)n≥0 be a fixed element of lim←− Sn. We will

define a sequence of functions (fn)n≥0 by induction on n such that fn is piecewise
linear with range in �n and σk(fn) = ωk for all k ≤ n.
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We start with n = 0, ω0 = P01P02 . . . P0,k0 , and divide [0, 1] into 2k0 − 1 subin-
tervals of equal length by the points

0 = u01 < v01 < u02 < v02 < . . . < u0,k0 < v0,k0 = 1.

Define f0(t) = P0i for t ∈ [u0i, v0i], 1 ≤ i ≤ k0, and f0 to be the linear connection
of P0i and P0,i+1 in the interval [v0i, u0,i+1], 1 ≤ i < k0. Obviously σ0(f0) = ω0.

Suppose fn is already defined: fn(t) = Pni for t ∈ [uni, vni], 1 ≤ i ≤ kn, fn

is the linear connection of Pni and Pn,i+1 in the interval [vni, un,i+1], 1 ≤ i < kn,
and thus σk(fn) = ωk for all k ≤ n. We explain in detail how to define fn+1(t) for
t ∈ [un1, vn1] and t ∈ [vn1, un2]. In the equality γn+1(ωn+1) = ωn we analyze the
action of γn+1 on the individual letters of ωn+1: Figure 6 is part of the graph G

Pn1 Pn2 . . .
↙ ↘ ↙ ↘ . . .

Pn+1,1 . . . Pn+1,i1 Pn+1,i1+1 . . . Pn+1,i2 Pn+1,i2+1 . . . Pn+1,i3 . . .

Figure 6

we associated to (ωn)n≥0 in the beginning of this section and should be interpreted
as follows: Pn+1,1 respectively Pn+1,i1 is the first respectively last letter in ωn+1

that is projected to Pn1 by γn+1; Pn+1,i1+1 up to Pn+1,i2 are all of order n + 1 and
disappear by applying γn+1, and so on.

Now we define fn+1(t) for t ∈ [un1, vn1] analogously to f0 in [0, 1]: divide
[un1, vn1] into 2i1−1 subintervals of equal length and define fn+1 in these subinter-
vals alternately to be constant with value Pn+1,i, 1 ≤ i ≤ i1, and to connect Pn+1,i

with Pn+1,i+1 linearly, 1 ≤ i ≤ i1 − 1.
Next, the interval [vn1, un2] is divided into 2(i2− i1)+1 subintervals. Here fn+1

alternately connects Pn+1,i with Pn+1,i+1 linearly, i1 ≤ i ≤ i2, and is constant with
value Pn+1,i, i1 + 1 ≤ i ≤ i2.

In the same manner we proceed with the rest of the intervals and obtain fn+1

satisfying our requirements.
We compare fn with fn+1 (see Figure 7). For 1 ≤ i ≤ kn:

t ∈ [uni, vni] :

⎧⎪⎨
⎪⎩

fn(t) . . . constant Pni

fn+1(t) . . . stays in the two subtriangles T1 and
T2 of �n that intersect in Pni,

and for 1 ≤ i ≤ kn − 1:

t ∈ [vni, un,i+1] :

⎧⎪⎨
⎪⎩

fn(t) . . . connects Pni and Pn,i+1 linearly

fn+1(t) . . . stays in the subtriangle T2 of �n to
which Pni and Pn,i+1 belong.

Summing up we obtain ‖fn − fn+1‖∞ ≤ 2−n where ‖.‖∞ denotes the maximum
norm for t ∈ [0, 1]. Consequently fn converges for n→∞ uniformly to a continuous
f : [0, 1]→�.

By construction we have fm(uni) = Pni, 1 ≤ i ≤ kn, for all m ≥ n and thus
also f(uni) = Pni, 1 ≤ i ≤ kn. This means that σn(f) contains at least all letters
appearing in the word ωn in the proper order, but it may happen that σn(f) in
between the Pni contains further dyadic points of order ≤ n and some of the Pni

appear in multiplied form. To illustrate this we consider the interval [uni, un,i+1]:
fn+1 and all fm with m ≥ n + 1 stay for t ∈ (uni, un,i+1) in the interior of

the union of the two subtriangles int(T1 ∪ T2) of �n (interior as a subset of �n).
This implies that f = lim

m→∞ fm stays in the union of the (closed) subtriangles
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T1 ∪ T2. Hence σn(f � [uni, un,i+1]) = PniQ1Q2 . . . QlPn,i+1, l ≥ 0, where Qi ∈
{R1, R2, R3, Pni, Pn,i+1}. However, since f([uni, un,i+1]) ∩ (T3 \ {R3, Pn,i+1}) =
∅, the two letters R3 and Pn,i+1 can never occur in immediate succession in
PniQ1Q2 . . . QlPn,i+1. This implies that Redn(σn(f � [uni, un,i+1])) = PniPn,i+1

and hence on the whole Redn(σn(f)) = Redn(ωn).
Of course, configurations for Pni and Pn,i+1 different to the one displayed in Fig-

ure 7 are possible. However, as can be checked easily the consequences concerning
the respective subtriangles T1, T2 and T3 are always the same.

The first part of the proposition is proved. Now we show that σn(f) = ωn for
all n ≥ 0 if (ωn)n≥0 is complete.

We have two sets of branches: The set Bf corresponding to σ(f) and Bω corre-
sponding to (ωn)n≥0. As pointed out above the vertices of the graph Gω associated
to (ωn)n≥0 form a subset of the vertices of the graph Gf associated to σ(f). In
order to distinguish between these two graphs we use the following notation: Put
σn(f) = (Qn1 . . . Qn,k̄n

), n ≥ 0, and let Vf = {(n, j)(f) | n ≥ 0, 1 ≤ j ≤ k̄n} be the
vertices in Gf .

Next it will be outlined that in a canonical way to every branch B = (n, in)n≥n0

in Bω a branch in Bf is associated. Two cases may occur:

(1) The interval [u, v] =
⋂

n≥n0

[un,in , vn,in ] corresponding to B is a singleton.

Recall that when constructing fn we assigned to every Pni the interval
[uni, vni] on which fn has constant value Pni. Thus the property u = v is
equivalent to the feature that in Gω for an infinite number of n the vertex
(n, in) has more than one successor: if there is more than one successor of
(n, in) then [un+1,in+1 , vn+1,in+1 ] has length less than 1/3 of [un,in , vn,in ].
Let P be the point corresponding to the branch B then in this case f(u) = P
and in every neighborhood of u, f has infinitely many different dyadic
values. Anyway, turning to the graph Gf we see that there is a unique
branch B̄ = (n, jn)(f)

n≥n0
in Bf such that Qn,jn = P corresponds to the

interval [sn,jn , tn,jn ] in the sense utilized in the proof of Proposition 2.1
with u ∈ [sn,jn , tn,jn ] for all n ≥ n0.

(2) The interval [u, v] corresponding to B satisfies u < v. This means that there
exists an index n1 such that for all n ≥ n1 the interval [un,in , vn,in ] = [u, v].
In this case fn has constant value P on [u, v] for all n ≥ n1 and hence f

satisfies this, as well. Again, there exists a unique branch B̄ = (n, jn)(f)
n≥n0

in Bf such that Qn,jn = P corresponds to the interval [sn,jn , tn,jn ] with
[u, v] ⊆ [sn,jn , tn,jn ].

In the following we will identify B ∈ Bω with the respective B̄ ∈ Bf from (1) or (2)
and thus we may consider Bω as a subset of Bf .
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We have already proved in Proposition 3.3 that Bf is complete. Now we show
that Bω is dense in Bf , i.e. for all B1, B2 ∈ Bf with B1 < B2 there exists B ∈ Bω

such that B1 < B < B2: First of all, it is sufficient to prove this for B1, B2 ∈ Bf\Bω:

– if B1, B2 ∈ Bω then there exists an according B since ≤ is a dense order on
Bω,

– if B1 ∈ Bω, B2 ∈ Bf \ Bω, then, since Bf is dense, there exists B3 ∈ Bf

with B1 < B3 < B2; if B3 ∈ Bω we are done and if B3 ∈ Bf \ Bω then the
problem is reduced to B3 < B2, the case we will deal with.

Let Bi correspond to the interval [si, ti], f(si) = Qi, i = 1, 2. As B1 < B2 we
have t1 < s2. Since Bf is dense there exist B3 ∈ Bf with B1 < B3 < B2 and
since f cannot be constant on [t1, s2] we can choose B3 such that the point Q3

corresponding to B3 satisfies Q1 �= Q3 �= Q2. Consequently there is s3 ∈ (t1, s2)
with f(s3) = Q3. We fix some k ≥ 0 such that the distance d(Q3, Qi) is larger than
2−k+2, i = 1, 2. Since (fm)m≥0 converges uniformly to f we have ‖f−fm‖∞ < 2−k

for all m ≥ mk with appropriate mk. So for m ≥ mk we have

d(Q1, fm(t1)) < 2−k, d(Q3, fm(s3)) < 2−k.

Hence fm(t) must pass from the 2−k-neighborhood of Q1 for t = t1 to the 2−k-
neighborhood of Q3 for t = s3 and since fm is alternately constant/linear fm

assumes a dyadic point P (of order ≤ m) as constant value for some interval in
(t1, s3). Since σm(fm) = ωm there is a branch B ∈ Bω containing this P which by
construction satisfies B1 < B < B3 < B2.

Finally we show σ(f) �= (ωn)n≥0 (which is equivalent to Bf \ Bω �= ∅) implies
that (ωn)n≥0 is not complete: Let B̄ = (n, in)(f)

n≥n0
∈ Bf \ Bω such that for all

n ≥ n1 the vertices (n, in)(f) in B̄ have smallest possible in. For instance this is
possible if (n1 − 1, in1−1)(f) is a vertex in Gf \Gω . We consider the following cut
in Bω:

B1 = {B ∈ Bω | B < B̄}, B2 = {B ∈ Bω | B > B̄}.
First we show that (B1,B2) is irrational: for B1 ∈ B1 we have B1 < B̄ and since
Bω is dense in Bf there is B ∈ Bω such that B1 < B < B̄ showing that B1 has no
largest element. Analogously one learns that B2 has no least element.

Now we prove that (B1,B2) converges to the point Q̄ corresponding to B̄. Let
(Bf

1 ,Bf
2 ) be the cut in Bf with smallest element B̄ in Bf

2 and

lfn = max{j | ∃B1 ∈ Bf
1 : B1 contains (n, j)f},

ln = max{j | ∃B1 ∈ B1 : B1 contains (n, j)f}.
Due to our choice of B̄ we have for all n ≥ n1 that lfn = in − 1 and Qn,lfn

∼n Q̄.
Further let Bf

n ∈ Bf be the largest branch containing (n, lfn)(f) (starting from Qn,lfn
taking always the rightmost vertex as successor). As a consequence all branches
B with Bf

n < B < B̄ correspond to a dyadic point in the subtriangle Tn of �n

that contains Q̄ and Qn,lfn
. Since Bω is dense in Bf there exists Bn ∈ Bω such

that Bf
n < Bn < B̄. Hence the points Pn corresponding to Bn must lie in the

subtriangle Tn and if Pn is of order rn then also Qk,lk lies in Tn for all k ≥ rn. So
we have proved

lim
n→∞Qn,lfn

= lim
k→∞

Qk,lk = Q̄.

Summing up this means that the irrational cut (B1,B2) in Bω converges to the
dyadic point Q̄ and hence (ωn)n≥0 is not complete, in contrast to our assumption.
Thus Bω = Bf , i.e., σ(f) = (ωn)n≥0, and we are done. �
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We now have precise information on the range of σ. In order to get an idea
what the sub-semigroup σ(S(�)) ∼= S(�)/ ker(σ) of lim←− Sn describes we have to
investigate the kernel of σ.

A first observation in this direction is that ker(σ) is a sub-relation of the homo-
topy relation of elements f, g ∈ S(�): σ(f) = σ(g) implies

ϕ([f ]) = Red(σ(f)) = Red(σ(g)) = ϕ([g]),

and since ϕ is injective we obtain [f ] = [g].
It is palpable that ker(σ) will be related with the re-parameterization of loops.

Therefore, following Curtis and Fort [9] we say that two loops f, g ∈ S(�) are
Fréchet equivalent, f ≈ g for short, if and only if there exist functions α, β : [0, 1]→
[0, 1] which are monotonously increasing and surjective (and hence continuous) such
that f ◦ α = g ◦ β. In Curtis and Fort [9, Appendix] it is shown that this is an
equivalence relation.

Proposition 3.5. If f ≈ g then σ(f) = σ(g).

Proof. First we show that σn(f) = σn(f ◦ α) for all n ≥ 0 where f ◦ α = g ◦ β
with properties as defined above. We recall that σn(f) is the sequence of points in
Dn that arises when we raster the separated set f−1(Dn) with appropriate small
intervals and list the corresponding points. For a letter P appearing in σn(f) let
again [s, t] be the maximal interval such that f(s) = f(t) = P and f([s, t]) ∩Dn =
{P}. Since α is surjective P appears also in σn(f ◦ α) and the monotonicity of α
preserves the order of points in σn(f), in particular [minα−1({s}), maxα−1({t})]
is the interval corresponding to letter P with respect to the loop f ◦ α.

The rest is obvious: σn(f) = σn(f ◦ α) = σn(g ◦ β) = σn(g). �

The converse of Proposition 3.5 is established in the following.

Proposition 3.6. If σ(f) = σ(g) then f ≈ g.

Proof. For n ≥ 0 let ωn = σn(f) = σn(g) = Pn1Pn2 . . . Pn,kn . As usual we assign to
(ωn)n≥0 the graph G with vertices (n, i), n ≥ 0, 1 ≤ i ≤ kn, and an edge connecting
(n, i) to (n + 1, j) if the letter Pn+1,j in ωn+1 is projected to Pni when performing
γn+1(ωn+1) = ωn.

In the first step we will show that the parametrization fn : [0, 1] → � of the
piecewise linear loop corresponding to σn(f) from Proposition 2.1, yields a sequence
(fn(t))n≥0 which converges uniformly to f(t) for t ∈ [0, 1].

Let n be fixed. As in Proposition 2.1 we associate to every (n, i) the maximal
interval [sni, tni] such that f(sni) = f(tni) = Pni, Dn ∩ f([sni, tni]) = {Pni} and
0 = sn1 ≤ tn1 < sn2 ≤ tn2 < . . . < sn,kn ≤ tn,kn = 1. We parameterize the
piecewise linear loop corresponding to σn(f) by fn such that fn is constant with
value Pni in the interval [sni, tni], 1 ≤ i ≤ kn, and connects Pni and Pn,i+1 linearly
in the interval [tni, sn,i+1], 1 ≤ i ≤ kn−1. For t ∈ [sni, tni] the loop f(t) is contained
in one of the (at most) two subtriangles of �n to which Pni belongs, and for t ∈
[tni, sn,i+1] the loop f(t) is contained in the subtriangle T of �n to which Pni and
Pn,i+1 belong. Thus we infer that the maximum norm ‖fn−f‖∞ ≤ diam(T ) = 2−n

and (fn) converges uniformly to f .
What was done for f can be realized mutatis mutandis with g where the piecewise

linear approximations will be denoted by gn, and [uni, vni] is the generic notation
for the interval corresponding to the vertex (n, i) with respect to g.

In the following we will need another correlation, namely we associate to the
vertex (n, i) also the interval

[ani, bni] = [(sni + uni)/2, (tni + vni)/2].
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With this concept we now consider αn, βn : [0, 1]→ [0, 1] such that

αn(ani) = sni, αn(bni) = tni,

βn(ani) = uni, βn(bni) = vni,

and αn, βn are piecewise linear between these points. Evidently, we then have

fn ◦ αn = gn ◦ βn.

We recall what was accomplished in Proposition 3.4: Starting from an arbitrary
(ωn)n≥0 ∈ lim←− Sn a sequence fn of loops was constructed converging uniformly to

some f ∈ S(�). Moreover, it was shown that σ(f) = (ωn)n≥0 provided (ωn)n≥0 is
complete. Now we perform the same starting with (ωn)n≥0 = σ(f) = σ(g) which
is complete by Proposition 3.3. Instead of using subintervals of equal length as
in the proof of Proposition 3.4, we here employ the given family [ani, bni], n ≥ 0,
1 ≤ i ≤ kn which creates appropriate subdivisions. However, this difference does
not influence the validity of the rest of the proof at all. What we obtain is the
sequence hn = fn◦αn = gn◦βn converging uniformly to some h ∈ S(�) with σ(h) =
σ(f) = σ(g). Moreover, we will show that the interval [xni, yni] associated to the
vertex (n, i) with respect to h in the usual way, i.e., [xni, yni] is the maximal interval
with the properties h(xni) = h(yni) = Pni, h([xni, yni])∩Dn = {Pni}, must coincide
with [ani, bni]. Indeed, since αm([ani, bni]) = [sni, tni] and thus hm([ani, bni]) =
fm([sni, tni]) for all m ≥ n, and since the sequence (fm) converges uniformly to f
and f([sni, tni]) ∩Dn = {Pni}, we conclude that h([ani, bni]) ∩Dn = {Pni}. This
shows [ani, bni] ⊆ [xni, yni]. Now suppose xni < ani. We have

(3.1) Pni = h(xni) = lim
m→∞ fm(αm(xni))

and αm(xni) ∈ (tn,i−1, sni) for m ≥ n since xni > bn,i−1. From f((tn,i−1, sni)) ∩
Dn = ∅ and (3.1) we infer that there exists a subsequence (mk) with
limk→∞ αmk

(xni) = sni. Next, in any proper interval [t, sni] the path f assumes
dyadic points of arbitrary high order near to Pni. Therefore in the graph G cor-
responding to σ(f) = σ(g) there exists a sequence (mk, ik) with smkik

< sni and
limk→∞ smkik

= sni, and with the same argument for g we obtain umkik
< uni

and limk→∞ umkik
= uni. This implies amkik

< ani and limk→∞ amkik
= ani

and hence there exists k̃ such that xni < amk̃ik̃
. Now, for all k ≥ k̃ we have

αmk
(xni) ≤ αmk

(amk̃ik̃
) = smk̃ik̃

< sni. We conclude that

sni = lim
k→∞

αmk
(xni) ≤ smk̃ik̃

< sni,

a contradiction, and hence xni = ani. Similarly it is shown that yni > bni is
impossible and hence [xni, yni] = [ani, bni].

Let again B denote the set of branches in G. To every branch B = (n, in)n≥n0

we assign the interval [sB, tB] =
⋂

n≥n0

[sn,in , tn,in ] and the intervals [uB, vB], [aB, bB]

accordingly.
In the next step we will elaborate that the sequences (αn(x))n≥0 and (βn(x))n≥0

converge pointwise for a good deal of x. First we consider x ∈ [0, 1] such that
there exists B = (n, in)n≥n0 ∈ B with x ∈ [aB, bB] =

⋂
n≥n0

[an,in , bn,in ]. (In the

following we will refer to this case by (I).) This implies x ∈ [an,in , bn,in ] = [(sn,in +
un,in)/2, (tn,in + vn,in)/2] for all n ≥ n0. Recall that

lim
n→∞ sn,in = sB, lim

n→∞ tn,in = tB, lim
n→∞un,in = uB, lim

n→∞ vn,in = vB ,

and that
αn(x) = sn,in +

tn,in − sn,in

bn,in − an,in

(x− an,in)
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if bn,in > an,in , and αn(x) = sn,in = tn,in otherwise. In general we have αn(x) ∈
[sn,in , tn,in ]. Therefore, if tB = sB we infer lim

n→∞αn(x) = sB, and if tB > sB

we obtain lim
n→∞αn(x) = sB + tB−sB

bB−aB
(x − aB). In any case the limit exists and

we define α(x) = lim
n→∞αn(x). Analogously we can proceed with βn(x) and define

β(x) = lim
n→∞βn(x).

Now we deal with the case that x /∈ [aB, bB] for all B ∈ B (case (II)). Then x
defines a cut (B1,B2) in B by putting B1 = {B ∈ B | x > bB} and B2 = {B ∈
B | x < aB}. We recapitulate what was shown in the proof of Proposition 3.3:
The cut (B1,B2) is irrational and if we define a = supB∈B1

aB = supB∈B1
bB and

b = infB∈B2 aB = infB∈B2 bB then x ∈ [a, b] and h is constant in the interval [a, b]
with a generic point Q which is the limit of the cut (B1,B2) as constant value. With
s, t and u, v defined accordingly, a = (s + u)/2, b = (t + v)/2, we further obtain
f([s, t]) = g([u, v]) = {Q}. For x̃ ∈ [a, b] we define

α(x̃) =
{

s = t if a = b,
s + t−s

b−a (x̃− a) otherwise,

β(x̃) =
{

u = v if a = b,
u + v−u

b−a (x̃ − a) otherwise.

In order to justify this definition some warning is indicated here. One can easily
construct an example of a loop f such that lim

n→∞αn(x) does not exist for some

x. However, one always has s ≤ lim inf αn(x) ≤ lim sup αn(x) ≤ t and since f is
constant in [s, t] this causes no problem.

Now we have to show that α and β comply with the intention they were con-
structed with.

(f ◦ α)(x) = (g ◦ β)(x) for all x ∈ [0, 1]: In case (I) x ∈ [aB, bB] for some branch
B ∈ B and we have

‖f(α(x)) − fn(αn(x))‖ ≤ ‖f(α(x))− f(αn(x))‖ + ‖f(αn(x)) − fn(αn(x))‖.
The first part on the right hand side can be made arbitrarily small since f is
continuous and αn(x) converges to α(x) and the second part does so since fn

converges to f uniformly. The same applies to g and β. So we arrive at

f(α(x)) = lim
n→∞ fn(αn(x)) = lim

n→∞ gn(βn(x)) = g(β(x)).

In case (II) x /∈ [aB, bB] for any branch B we have with notations as before α(x) ∈
[s, t] and β(x) ∈ [u, v] and hence f(α(x)) = Q = g(β(x)). Just as a further remark
we mention here that h = f ◦ α.

α and β are monotonously increasing functions: Let x1 < x2. Depending on
whether case (I) or (II) apply to x1 and x2 four cases occur. We only work out one
of the mixed cases in detail, the others can be treated similarly. So let x1 ∈ [aB, bB]
for some branch B and let x2 ∈ [a, b] where [a, b] is the interval corresponding to
an irrational cut (B1,B2) with respect to h. The relation x1 < x2 just means that
B ∈ B1 and so we deduce

α(x1) ≤ tB < sup
B1∈B1

tB1 = s = α(a) ≤ α(x2).

The proof for the monotonicity of β works analogously.
α and β are surjective and thus continuous: From case (I) we see that

ran(α) ⊇
⋃

B∈B
[sB , tB] = f−1(

⋃
n≥0

Dn) = Df ,
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and for all components [s, t] of the complement of Df which correspond to an irra-
tional cut (B1,B2) in B, in (II) we tailored α such that the interval [a, b] correspond-
ing to (B1,B2) with respect to h satisfies α([a, b]) = [s, t]. Hence α is surjective,
and with the respective proof for g, β is surjective, as well. �

We summarize the last results in a separate statement.

Theorem 3.7. (i) For f and g in S(�) we have σ(f) = σ(g) if and only if f
and g have a common re-parametrization, i.e. there exist α, β : [0, 1]→ [0, 1]
monotonously increasing and surjective such that f ◦ α = g ◦ β.

(ii) An element (ωn)n≥0 in lim←− Sn is a representation for a loop f in S(�), i.e.

(ωn)n≥0 = σ(f), if and only if (ωn)n≥0 is complete.
In other words, the complete elements of lim←− Sn represent the elements of S(�)

modulo re-parametrization.

3.2. A description of the elements in the fundamental group π(�). We
have proved in Theorem 2.10 that ϕ([f ]) = Red(σ(f)) for all continuous loops f
in �. Since ϕ is an injection the fundamental group π(�) can be considered as
a subgroup of lim←−Gn. In this subsection we will prove the characterization of the
elements of this subgroup given in Theorem 1.1.

In the following denote by γnk the projection γk+1 ◦ γk+2 ◦ . . . ◦ γn : Sn → Sk,
and analogously δnk denotes the composition of the corresponding δi’s.

Before we prove the main result we need some preliminaries. Let P1P2 . . . Pm,
Q1Q2 . . .Qk be two words over some alphabet. We define P1P2 . . . Pm �
Q1Q2 . . .Qk if and only if there exists α : {1, . . . , m} → {1, . . . , k}, α injective
and order preserving, such that Pi = Qα(i) for all i ∈ {1, . . . , m}. This means that
the first word is a subsequence of the second which differs from the notion subword
we have used before (cf. elementary moves (2.4)).

Lemma 3.8. Let ωn, ω̃n ∈ Sn. Then
(i) Redn(ωn) � ωn,
(ii) ωn � ω̃n implies γnk(ωn) � γnk(ω̃n) for all k ≤ n,
(iii) if (ωk)k≥0 ∈ lim←−Gn then γnk(ωn) � γn+1,k(ωn+1) for all k ≤ n.

Proof. (i) is evident since Redn eliminates just some letters from the word.
(ii) It is enough to prove that γn(ωn) � γn(ω̃n). The bonding map γn first

eliminates all points of order n from ωn and ω̃n, resulting in words ω′n and ω̃′n,
respectively, and then cancels in each of these words all arising consecutive rep-
etitions of letters of order < n, before arriving at γn(ωn) and γn(ω̃n). Clearly,
ω′n � ω̃′n, as testified by some order preserving injection α. Choose α in a way
that α(i) is minimal for each i. Then α, restricted to the indices of the remaining
letters, testifies γn(ωn) � γn(ω̃n).

(iii) We have γnk(ωn) = γnk(δn+1(ωn+1)) = γnk(Redn(γn+1(ωn+1))) �
γnk(γn+1(ωn+1)) = γn+1,k(ωn+1), where we used (i) and (ii) as � came in. �

We are now in the position to give a proof of our main result.

Proof of Theorem 1.1. We fix the element (ωn)n≥0 in lim←−Gn and want to show

that (ωn)n≥0 is in ϕ(π(�)) if and only if for all k ≥ 0 the sequence (γnk(ωn))n≥k

is eventually constant.
First we prove the necessity of the condition. Suppose (ωn)n≥0 ∈ ran(ϕ). Since

ran(ϕ) = ran(Red ◦ σ) there exists f ∈ S(�) with Red(σ(f)) = (ωn)n≥0. Then for
all k ≥ 0 and all n ≥ k we have

σk(f) = γnk(σn(f)) � γnk(Redn(σn(f))) = γnk(ωn),
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where we used (i) and (ii) of Lemma 3.8. By (iii) of Lemma 3.8 we get

γnk(ωn) � γn+1,k(ωn+1) � . . . � σk(f),

hence (γnk(ωn))n≥k is eventually constant.
Now we prove the sufficiency of the condition. Put ω̄k = γnk(ωn) which is well

defined for n ≥ nk, k ≥ 0. We show that

(i) (ω̄k)k≥0 ∈ lim←− Sn and

(ii) Red(ω̄k)k≥0 = (ωn)n≥0.

For k ≥ 1 and n ≥ max{nk, nk−1} we obtain γk(ω̄k) = γk(γnk(ωn)) =
γn,k−1(ωn) = ω̄k−1. This shows (i).

Before we come to (ii) we prove δnk = Redk ◦ γnk: In Lemma 2.6 we showed
Redi−1 ◦ γi ◦ Redi = Redi−1 ◦ γi for all i ≥ 1. Obeying δi = Redi−1 ◦ γi, iterated
application of this identity leads immediately to the claimed relation.

Now, for k ≥ 0 and n ≥ nk we infer Redk(ω̄k) = Redk(γnk(ωn)) = δnk(ωn) = ωk,
which proves (ii).

Finally, (i) and (ii) imply that (ωn)n≥0 ∈ ran(Red). Due to Proposition 3.4 we
have ran(Red) = ran(Red ◦ σ), thus we can find f ∈ S(�) such that Red(σ(f)) =
Red(ω̄k)k≥0 = (ωn)n≥0, i.e. (ωn)n≥0 = ϕ([f ]). This completes the proof. �
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