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Abstract. For r = (r1, . . . , rd) ∈ Rd the map τr : Zd → Zd given by

τr(a1, . . . , ad) = (a2, . . . , ad,−br1a1 + · · ·+ rdadc)
is called a shift radix system if for each a ∈ Zd there exists an integer k > 0 with τk

r (a) = 0. As
shown in the first two parts of this series of papers shift radix systems are intimately related to
certain well-known notions of number systems like β-expansions and canonical number systems.

In the present paper further structural relationships between shift radix systems and canon-
ical number systems are investigated. Among other results we show that canonical number
systems related to polynomials

P (X) :=
d∑

i=0

piX
i ∈ Z[X]

of degree d with a large but fixed constant term p0 approximate the set of (d− 1)-dimensional
shift radix systems. The proofs make extensive use of the following tools: Firstly, vectors r ∈ Rd

which define shift radix systems are strongly connected to monic real polynomials all of whose
roots lie inside the unit circle. Secondly, geometric considerations which were established in Part
I of this series of papers are exploited. The main results establish two conjectures mentioned in
Part II of this series of papers.

1. Introduction

Let d ≥ 1 be an integer and r = (r1, . . . , rd) ∈ Rd. To r we associate the mapping τr : Zd → Zd

in the following way: For a = (a1, . . . , ad) ∈ Zd let1

τr(a) = (a2, . . . , ad,−brac),
where ra = r1a1 + · · · + rdad, i.e., the inner product of the vectors r and a. We call τr a shift
radix system (SRS for short) if for each a ∈ Zd we can find some k > 0 such that the k-th iterate
of τr satisfies τk

r (a) = 0.
For d ∈ N, d ≥ 1 let

(1.1)
Dd :=

{
r ∈ Rd : ∀a ∈ Zd the sequence (τk

r (a))k≥0 is ultimately periodic
}

and

D0
d :=

{
r ∈ Rd : ∀a ∈ Zd ∃k > 0 : τk

r (a) = 0
}

.

Dd is strongly related to the set of contracting polynomials. In particular, let

Ed = Ed(1) :=
{
(r1, . . . , rd) ∈ Rd : Xd + rdX

d−1 + · · ·+ r1 has only roots y ∈ C with |y| < 1
}

.
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In [2, Lemmas 4.1, 4.2 and 4.3] we proved that

(1.2) int (Dd) = Ed.

D0
d is the set of all parameters r ∈ Rd that give rise to an SRS. The structure of D0

d is related
to the characterization of bases of well known notions of number systems as β-expansions with a
certain finiteness property (F) (cf. [5, 7, 11]) and canonical number systems (cf. [6, 8] and see
[2, 4] for the link to SRS). In the present paper we dwell mainly on relations between SRS and
canonical number systems.

Let P (X) = pdX
d + · · · + p0 ∈ Z[X] with p0 ≥ 2 and pd = 1, and set N = {0, 1, . . . , p0 −

1}. Furthermore, denote the image of X under the canonical epimorphism from Z[X] to R :=
Z[X]/P (X)Z[X] by x. Since pd = 1 it is clear that each coset of R has a unique element of degree
at most d− 1, say

A(X) = Ad−1X
d−1 + · · ·+ A1X + A0 (A0, . . . , Ad−1 ∈ Z).

Let G := {A(X) ∈ Z[X] : deg A < d} and

TP (A) =
d−1∑

i=0

(Ai+1 − qpi+1)Xi,

where Ad = 0 and q = bA0/p0c. Then TP : G → G and

A(x) = (A0 − qp0) + xTP (A), where A0 − qp0 ∈ N .

If for each A ∈ G there is a k ∈ N such that T k
P (A) = 0 we call P a canonical number system

polynomial (CNS polynomial for short).
Associated to the notion of CNS we define for each d ∈ N, d ≥ 1 the sets

Cd := {(p0, . . . , pd−1) ∈ Zd : |p0| ≥ 2 and TXd+pd−1Xd−1+···+p0 has only finite orbits} and

C0
d := {(p0, . . . , pd−1) ∈ Zd : |p0| ≥ 2 and ∀A ∈ G ∃` ∈ N : T `

Xd+pd−1Xd−1+···+p0
(A) = 0}.

For M ∈ N>0 we set

(1.3) Cd(M) :=
{(pd−1

M
, . . . ,

p1

M

)
∈ Rd−1 : (M, p1, . . . , pd−1) ∈ Cd

}

and

(1.4) C0
d(M) :=

{(pd−1

M
, . . . ,

p1

M

)
∈ Rd−1 : (M,p1, . . . , pd−1) ∈ C0

d

}
.

Finally, for x ∈ R we need the following “cuts” of Dd and D0
d.

(1.5)
Dd(x) :=

{
(r2, . . . , rd) ∈ Rd−1 : (x, r2, . . . , rd) ∈ Dd

}
,

D0
d(x) :=

{
(r2, . . . , rd) ∈ Rd−1 : (x, r2, . . . , rd) ∈ D0

d

}
.

In Part I of this series of papers (see [2, Section 3]) we studied the relation between SRS and
CNS. In particular, we proved that

(1.6) (p0, p1, . . . , pd−1) ∈ Cd (resp. C0
d) if and only if

(
1
p0

,
pd−1

p0
, . . . ,

p1

p0

)
∈ Dd (resp. D0

d).

In the present paper we investigate a further relationship between the sets Cd and Dd as well
as C0

d and D0
d. First we show that the elements of Cd having a large fixed first coordinate p0 give

a very good approximation of Dd−1. We will even prove that the appropriately scaled limit for
p0 → ∞ is equal to Dd−1. We will also prove that the Lebesgue measure of Dd−1 is the limit of
the frequency of Cd(M), i.e., of

(1.7)
|{(p1, . . . , pd−1) ∈ Zd−1 : (M, p1, . . . , pd−1) ∈ Cd}|

Md−1

for M →∞.
The sets C0

d and D0
d have a considerably more complicated structure than Cd and Dd. However,

from Figures 1 and 2 of [2] we see that the elements of C0
d with fixed first coordinate p0 seem to

give a very good approximation for D0
d−1. In this paper we make this precise in showing that the
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appropriately scaled limit of C0
d(M) for M → ∞ is equal to D0

d−1. Furthermore, we prove that
the Lebesgue measure of D0

d−1 is the limit of the frequency of C0
d(M), i.e., of

(1.8)
|{(p1, . . . , pd−1) ∈ Zd−1 : (M, p1, . . . , pd−1) ∈ C0

d}|
Md−1

for M →∞.
These results enable us to gain precise information about the structure of Cd as well as C0

d by
studying Dd−1 as well as D0

d−1 and vice versa. Specifically, we show that the number of CNS
polynomials of a given constant term is estimated by SRS.

The paper is organized as follows. In Section 2 we prove results on the sets D0
d which are needed

in the sequel. They contain very general facts about D0
d and are of interest in their own right. In

Section 3 we review different notions of limits of sets which we will need. Sections 4 and 5 contain
our results on Dd while Sections 6 and 7 are devoted to the results on D0

d.

2. General properties of the sets D0
d

In order to prove our main results we need the following theorem which is of interest also in its
own right. It is well known that (p0, . . . , pd−1) ∈ C0

d implies that p0 ≥ 2 (cf. e.g. [6, Proposition 6]).
Thus the first coordinate of a vector r ∈ D0

d associated to an element of C0
d is non-negative. We

show that this is true for all elements of D0
d.

Theorem 2.1. If (r1, . . . , rd) ∈ D0
d then r1 ≥ 0.

Proof. Assume that r := (r1, . . . , rd) ∈ Dd has r1 < 0. We will prove that in this case there exists
some z ∈ Zd with

(2.1) τk
r (z) 6= 0 for all k ∈ N.

This implies that r 6∈ D0
d and we are done.

Let R(r) be the matrix associated to the mapping τr (see [2, Section 4]). Its characteristic
polynomial is given by

χ(X) := Xd + rdX
d−1 + · · ·+ r2X + r1.

Factorize this polynomial in R:

χ(X) =
u∏

i=1

(X2 − ξiX − ηi)mi

v∏

j=1

(X − αj)nj

where ξi, ηi, αj ∈ R and mi, nj are positive integers with 2
∑

i mi +
∑

j nj = d. Since r1 < 0 the
polynomial χ has at least one positive real zero. Assume w.l.o.g. that αv > 0. By the structure
theorem of finitely generated modules over principal ideal domains, there exists a real regular
matrix S = (slm) which gives a real Jordan block decomposition

R(r) = S−1diag(B1, . . . , Bu+v)S.

Here Bi (1 ≤ i ≤ u + v) are the real Jordan blocks

Bi :=




ξi 1
ηi 0 1

ξi 1
ηi 0 1

. . .
ξi 1
ηi 0




of size 2mi × 2mi for i = 1, . . . , u and

Bu+j :=




αj 1
. . . . . .

. . . 1
αj



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of size nj×nj for j = 1, . . . , v. Now suppose that for a given y ∈ Zd there exists a k ∈ N such that
τk
r (y) = 0. Then (see [2, equation (4.2)]) there exist vectors vi = (0, . . . , 0, ci)t with ci ∈ [0, 1)

such that

y = −
k∑

i=1

R(r)−ivi = −S−1
k∑

i=1

diag(B1, . . . , Bu+v)−i(Svi).

Let (v)l be the l-th coordinate of a vector v. Then it is easy to see that the d-th coordinate of
−Sy satisfies

(−Sy)d =
k∑

i=1

α−i
v sddci.

Suppose that sdd ≥ 0. Then (−Sy)d is always non-negative. Thus if we select z ∈ Zd with
(−Sz)d < 0 then z satisfies (2.1) and we are done (note that we can select z in this way since S
is regular). If sdd < 0 we can argue in a similar way. This finishes the proof. ¤

Note that the same proof shows that (0, . . . , 0, ri, . . . , rd) ∈ D0
d implies ri ≥ 0. The follow-

ing corollaries follow immediately from Theorem 2.1 by using the correspondence results in [2,
Theorems 2.1 and 3.1], respectively.

Corollary 2.2. Let β be a Pisot number with minimal polynomial Xd−a1X
d−1−· · ·−ad−1X−ad.

If β has property (F) then ad > 0.

Corollary 2.3. If P (X) = Xd + pd−1X
d−1 + · · · + p1X + p0 ∈ Z[X] is a CNS polynomial then

p0 ≥ 2.

The following statement is not used in the sequel, but seems to fit into these surroundings.

Theorem 2.4. Let q, m ∈ N,m > 0, q > 1, s ∈ Rm and

r = (s1, 0, . . . , 0︸ ︷︷ ︸
q

, . . . , sm, 0, . . . , 0︸ ︷︷ ︸
q

) ∈ Rmq.

Then we have
r ∈ D0

mq ⇐⇒ s ∈ D0
m.

Proof. This can easily be checked from the definitions. ¤

3. Review of several notions of convergence of sets

We first summarize three different kinds of convergence of compact sets. We start with the
topological limit of a collection (An) (n ∈ N) of sets in a topological space (cf. [9, p.25] or [10,
§29]).

• A point z belongs to the (topological) lower limit Limn→∞An if every neighborhood of z
intersects all the An for n sufficiently large.

• A point z belongs to the (topological) upper limit Limn→∞An if every neighborhood of z
intersects An for infinitely many values of n.

• The set A is said to be the (topological) limit of (An), for short A = Limn→∞, if A =
Limn→∞An = Limn→∞An.

If (An) is compact, then Lim An is compact, too.
An analogous notion of limit can be defined also for an uncountable collection (Ax)x∈I for some

interval I ⊂ R. In particular, we have:
• A point z belongs to the (topological) lower limit Limx→x0

Ax if every neighborhood of z
intersects all the Ax for |x− x0| sufficiently small.

• A point z belongs to the (topological) upper limit Limx→x0 Ax if every neighborhood of z
intersects Axn for a sequence (xn)n≥1 with lim xn = x0.

• The set A is said to be the (topological) limit of (Ax), for short A = Limx→x0 , if A =
Limx→x0

Ax = Limx→x0 Ax.
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Assume that F is metrizable and let p be its compatible metric. For the collection of compact
sets in F , the Hausdorff metric associated to p is defined by

pH(A, B) := max
(

max
x∈A

min
y∈B

p(x, y), max
x∈B

min
y∈A

p(x, y)
)

for two non-empty compact sets A and B. For ε ∈ R≥0 let

(3.1) A[ε] := {x ∈ F : ∃y ∈ A, p(x, y) ≤ ε}
be the ε-body of a subset A of F . Note that the ε-body of A can be written as

A[ε] =
⋃

x∈A

Bε(x)

where we set
Bρ(x) := {x′ ∈ F : p(x, x′) < ρ}.

Then one has

pH(A,B) = max
(

min
A[ε]⊃B

ε, min
B[ε]⊃A

ε

)
.

We say that a sequence (An) converges to A by the Hausdorff metric if

lim
n

pH(An, A) = 0

and write An
H−→ A. It is easily seen from the definition that if An

H−→ A then Limn An = A.
However the converse is not true. For instance, consider the case F = R, p(x, y) = |x − y| and

An = {0, n}: Then Limn An = {0}, but An

H

6→ {0}. If there exists a compact set K in F such that
An ⊂ K for all n, then Lim An = A implies that An

H−→ A (cf. [9, p.26]).
The third kind of convergence is defined when (F, p) is equipped with a measure. Let ν be an

outer measure of F . Assume that ν is a metric outer measure, i.e., ν(A∪B) = ν(A)+ ν(B) holds
for any two subsets A and B with p(A,B) = infx∈A,y∈B p(x, y) > 0. Then ν gives rise to a Borel
measure which is written by the same symbol ν.

We say that a sequence (An) of sets converges to a set A by the measure ν if

lim
n

ν(An4A) = 0

where
A4B = (A \B) ∪ (B \A)

is the symmetric difference of A and B. We denote this convergence by An
ν−→ A. If An

H→ A,
then for any positive ε we have

An4A ⊂ (An[ε] \An) ∪ (A[ε] \A).

As A[ε] is measurable and A[ε] \A is decreasing as ε → 0, we have

lim
ε→0

ν(A[ε] \A) = ν(A[0] \A) = 0.

Therefore An
H−→ A implies An

ν−→ A. Let us summarize these results.

Proposition 3.1. Let (F, p) be a metric space and (An) be a sequence of compact subsets of F .
Then An

H−→ A implies Limn An = A. If there exists a compact set K ⊆ F such that An ⊂ K

for all n, then Limn An = A implies An
H−→ A. Assume that ν is a metric outer measure on F .

Then An
H−→ A implies An

ν−→ A.

The convergence in the Hausdorff metric as well as the convergence with respect to a measure
can be defined also for uncountable classes (Ax) of sets in an obvious way.

Let us come back to the Euclidean space. We denote by || · ||2 (resp. || · ||∞) the Euclidean
norm (resp. L∞ norm) and define the metric by p(x, y) = ||x − y||2. Define, for a non-negative
real number ε,

(3.2) A[−ε] := {x ∈ A : p(x, ∂A) ≥ ε}.
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4. Convergence properties of the set Dd

The main result of this section is Theorem 4.11 where we prove that the sets Cd(M) defined in
(1.3) yield a good approximation to the closure of Dd−1 for M → ∞. In view of (1.2) we use a
characterization of the sets Ed given by Schur [12]. Therefore we need certain determinants which
we define now.

For ρ ∈ R, ν ∈ {0, . . . , d − 1} and r = (r1, . . . , rd) ∈ Rd we denote by δν(r, ρ) the determinant
of the ν-th Schur-Cohn matrix of the monic polynomial Xd + rdX

d−1 + · · · + r2X + r1 ∈ R[X]
whose roots are bounded by ρ (cf. [12]), i.e.,

δν(r, ρ) = det




ρd 0 . . . 0 r1 ρr2 . . . ρνrν+1

ρd−1rd ρd . . . 0 0 r1 . . . ρν−1rν

...
. . .

...
. . .

...
ρd−νrd−ν+1 ρd−ν+1rd−ν+2 · · · ρd 0 0 · · · r1

r1 0 . . . 0 ρd ρd−1rd . . . ρd−νrd−ν+1

ρr2 r1 . . . 0 0 ρd . . . ρd−ν+1rd−ν+2

...
. . .

...
. . .

...
ρνrν+1 ρν−1rν · · · r1 0 0 · · · ρd




.

To distinguish values and variables, we introduce indeterminants R1, . . . , Rd.

Lemma 4.1. For each ν ∈ {0, . . . , d− 1} and ρ ∈ (0, 1]

R1 - δν((R1, . . . , Rd), ρ)

holds.

Proof. We prove this assertion by induction on ν. Clearly, the assertion holds for ν = 0 because

δ0((R1, . . . , Rd), ρ) = det
(

ρd R1

R1 ρd

)
= ρ2d −R2

1.

Now assume that R1 - δν((R1, . . . , Rk), ρ), i.e., δν((0, R2, . . . , Rk), ρ) 6= 0 holds for all 0 ≤ ν ≤
k < d− 1. Consider δν+1((0, R2, . . . , Rd), ρ). By the construction of δν(r, ρ) the (ν +1)-st and the
(ν + 2)-nd column contain only zeros up to one single ρd in the (ν + 1)-st and the (ν + 2)-nd row,
respectively. Applying the Laplace expansion of determinants,

δν+1((0, R2, . . . , Rd), ρ) = ρ2dδν((R2, . . . , Rd), ρ).

As the polynomial on the right hand side is nonzero by the induction hypothesis we get

δν+1((0, R2, . . . , Rd), ρ) 6= 0, i.e., R1 - δν+1((R1, R2, . . . , Rd), ρ)

and we are done. ¤
An algebraic set in Rd is the locus of real roots of non-zero polynomials of R[R1, . . . , Rd]. It

is obvious from Fubini’s theorem that the d-dimensional Lebesgue measure of an algebraic set is
zero. In what follows we need the projection

proj : Rd → Rd−1,

(r1, . . . , rd) 7→ (r2, . . . , rd),

and for x ∈ R and f ∈ R[R1, . . . , Rd] we set

(4.1) Af (x) := {(x, r2, . . . , rd) ∈ Rd : f(x, r2, . . . , rd) > 0}.
Lemma 4.2. Let d ≥ 2 and f ∈ R[R1, . . . , Rd] such that

R1 - f(R1, . . . , Rd).

Then for any compact set W in Rd−1,

lim
x→0

λd−1((proj(Af (x))4proj(Af (0))) ∩W ) = 0.
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Remark 4.3. The lemma obviously remains true if we replace “>” in the definition of Af (x) by
“≥”, “<” or “≤”.

Proof. By the assumption, there exist g ∈ R[R1, . . . , Rd] and 0 6= h ∈ R[R2, . . . , Rd] such that
f = R1g + h. Since

proj(Af (x)) \ proj(Af (0)) = {(r2, . . . , rd) : f(x, r2, . . . , rd) > 0 and f(0, r2 . . . , rd) ≤ 0}
= {(r2, . . . , rd) : −xg(x, r2, . . . , rd) < h(r2, . . . , rd) ≤ 0}

and

proj(Af (0)) \ proj(Af (x)) = {(r2, . . . , rd) : f(0, r2, . . . , rd) > 0 and f(x, r2 . . . , rd) ≤ 0}
= {(r2, . . . , rd) : 0 < h(r2, . . . , rd) ≤ −xg(x, r2, . . . , rd)}(4.2)

we get

(proj(Af (0))4proj(Af (x))) ∩W ⊂ {(r2, . . . , rd) ∈ W : |h(r2, . . . , rd)| ≤ |xg(x, r2, . . . , rd)|}.
As W is compact, |xg(x, r2, . . . , rd)| → 0 uniformly as x → 0. Noting

{(r2, . . . , rd) ∈ W : |h(r2, . . . , rd)| ≤ ε}
is measurable and decreasing as ε → 0, we have

lim
ε→0

λd−1({(r2, . . . , rd) ∈ W : |h(r2, . . . , rd)| ≤ ε}) = λd−1({(r2, . . . , rd) ∈ W : h(r2, . . . , rd) = 0}).
The last measure is 0 since {(r2, . . . , rd) : h(r2, . . . , rd) = 0} is an algebraic set defined by
0 6= h ∈ R[R2, . . . , Rd]. ¤
Lemma 4.4. Let I ⊆ R be an interval, x0 ∈ I and {Mi(x) ⊂ Rd : x ∈ I, i = 1, . . . , m} be a family
of Lebesgue measurable sets with λd(Mi(x)) finite (x ∈ I, i = 1, . . . , m). Furthermore, assume that

lim
x→x0

λd(Mi(x)4Mi(x0)) = 0 (i = 1, . . . , m).

Then the following assertions hold.

(i) lim
x→x0

λd

(
m⋂

i=1

Mi(x)4
m⋂

i=1

Mi(x0)

)
= 0,

(ii) lim
x→x0

λd

(
m⋃

i=1

Mi(x)4
m⋃

i=1

Mi(x0)

)
= 0,

(iii) lim
x→x0

λd ((M1(x) \M2(x))4 (M1(x0) \M2(x0))) = 0.

Proof. We clearly may assume m = 2. Moreover, we only prove the first assertion. The other ones
follow similarly. Let ε ∈ R>0. By our assumptions we can find some δ ∈ R>0 with

λd(M1(x)4M1(x′)) <
ε

2
and λd(M2(x)4M2(x′)) <

ε

2
for all x, x′ ∈ I with |x− x′| < δ. Therefore using

(M1(x) ∩M2(x))4(M1(x′) ∩M2(x′)) ⊆ (M1(x)4M1(x′)) ∪ (M2(x)∆M2(x′))

we find

λd ((M1(x) ∩M2(x))4(M1(x′) ∩M2(x′))) ≤ λd ((M1(x)4M1(x′)) ∪ (M2(x)∆M2(x′)))
≤ λd(M1(x)4M1(x′)) + λd(M2(x)∆M2(x′))

<
ε

2
+

ε

2
= ε.

¤
Lemma 4.5. Let d ≥ 2 and f ∈ R[R1, . . . , Rd] such that

R1 - f(R1, . . . , Rd).

Then for any compact set W in Rd−1,

Lim
x→0

proj(Af (x)) ∩W = proj(Af (0)) ∩W.
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Proof. We prove two opposite inclusions.
• proj(Af (0)) ∩W ⊆ Limx→0 proj(Af (x)) ∩W .

Suppose that y = (s2, . . . , sd) ∈ proj(Af (0))∩W . Then, using the notation of the proof
of Lemma 4.2 we have h(y) = c > 0 for some fixed constant c. This implies that there
exists an x0 > 0 such that −xg(x, s2, . . . , sd) < c holds for |x| < x0. Equation (4.2) now
implies that y ∈ proj(Af (x)) ∩W holds for all these x and then clearly

proj(Af (0)) ∩W ⊆ Lim
x→0

proj(Af (x)) ∩W.

• proj(Af (0)) ∩W ⊇ Limx→0 proj(Af (x)) ∩W .
Suppose that y ∈ Limx→0 proj(Af (x)) ∩W . Then for each neighborhood U of y there

is (xn) with xn → 0 and proj(Af (xn)) ∩ U 6= ∅. We have to prove that

y ∈ {(r2, . . . , rd) : f(0, r2, . . . , rd) ≥ 0}.
Suppose at the contrary that

y ∈ {(r2, . . . , rd) : f(0, r2, . . . , rd) < 0}.
By the continuity of f this implies that

y ∈ {(r2, . . . , rd) : f(x, r2, . . . , rd) < 0}
also holds for x small enough. Thus there is a neighborhood U0 of y such that

U0 ⊂ {(r2, . . . , rd) : f(x, r2, . . . , rd) < 0}
for all x that are small enough. This is a contradiction because it implies that

proj(Af (xn)) ∩ U0 = ∅
for n large enough.

¤

Remark 4.6. Let Bi(x) (i ∈ {1, . . . , n}) be finite unions of finite intersections of Af (x) for some
finite family of f ’s. Then

Lim
⋃

i

Bi(x) =
⋃

i

Lim Bi(x),

Lim
⋂

i

Bi(x) =
⋂

i

Lim Bi(x).

The first assertion follows from a general property of Lim (see [10, §29, VI]). The second assertion
can be proved by slightly modifying the proof of Lemma 4.5 (instead of a set

{(r2, . . . , rd) : f(0, r2, . . . , rd) < 0}
restricted by one strict inequality we get unions of sets restricted by several strict inequalities).

Note that in the previous lemma as well as in this remark we need strict inequalities in the
definition of Af (x). Otherwise the results do not hold.

In the following we denote by ρ(r) the maximum of the absolute values of the roots of the
polynomial Xd + rdX

d−1 + · · ·+ r1 ∈ R[X] for r ∈ Rd, and for x, ε ∈ R we let

(4.3)
Dd,ε := {r ∈ Dd : ρ(r) < 1− ε} , Dd,ε(x) := Dd,ε ∩W (x),

D0
d,ε :=

{
r ∈ D0

d : ρ(r) < 1− ε
}

, D0
d,ε(x) := D0

d,ε ∩W (x),

where we fixed some positive M ∈ R with

(4.4) Ed ⊆ [−M, M ]d

and let

(4.5) W (x) = {x} × [−M, M ]d−1.
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Note that by [2, Section 4] we have for ε ∈ (0, 1)

(4.6)

Dd,ε =
{
r ∈ Rd : ρ(r) < 1− ε

}

=
d−1⋂
ν=0

{
r ∈ Rd : δν(r, 1− ε) > 0

}
.

Lemma 4.7. The following two assertions hold.

(i) For all δ ∈ (0, 1) there is a ε ∈ R>0 such that

λd(Dd \ Dd,ε) < δ.

(ii) We have
lim
ε→0

λd(D0
d,ε) = λd(D0

d).

Proof. (i) Observe that for ε1, ε2 ∈ [0, 1) with ε1 ≥ ε2 we have
{
r ∈ Rd : δν(r, 1− ε1) > 0

} ⊆ {
r ∈ Rd : δν(r, 1− ε2) > 0

}

and use the fact that ∂Ed is a union of algebraic sets and therefore λd(∂Ed) = 0.
(ii) Because of

λd(D0
d,ε) ≤ λd(D0

d) ≤ λd(D0
d,ε ∪ (Dd \ Dd,ε)) ≤ λd(D0

d,ε) + λd(Dd \ Dd,ε)

the assertion follows from (i). ¤

Lemma 4.8. Let ε ≥ 0 be arbitrary. Then

lim
x→0

λd−1

(
proj(Dd,ε(x))4Dd−1,ε

)
= 0.

Proof. Using the notation defined in (4.1) let

Dν(x) := Aδν((R1,...,Rd),1−ε)(x) ∩ [−M,M ]d (ν = 0, . . . , d− 1).

Then in view of (4.3) we have

(4.7) Dd,ε(x) =
d−1⋂
ν=0

Dν(x).

From Lemma 4.1 we know that R1 - δν((R1, . . . , Rd), 1 − ε). Thus we may apply Lemma 4.2 to
conclude that

(4.8) lim
x→0

λd−1 (proj(Dν(x))4proj(Dν(0))) = 0.

Now we combine (4.7) and (4.8) to derive from Lemma 4.4 (i) that

lim
x→0

λd−1 (proj(Dd,ε(x))4proj(Dd,ε(0))) = 0.

Since proj(Dd,ε(0)) = Dd−1,ε the lemma is proved. ¤

Theorem 4.9. For each d ≥ 2 we have

lim
x→0

λd−1 (Dd(x)4Dd−1) = 0.

Proof. This is an easy consequence of Lemmas 4.7 and 4.8 since ε can be chosen arbitrarily
small. ¤

Theorem 4.10. Let Dd(x) and Dd be defined as in Section 1. Then

Lim
x→0

Dd(x) = Dd−1.
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Proof. Using the notation defined in (4.1) let

Dν(x) := Aδν((R1,...,Rd),1)(x) ∩ [−M, M ]d (ν = 0, . . . , d− 1).

Then we have

int (Dd(x)) =
d−1⋂
ν=0

Dν(x).

From Lemma 4.1 we know that R1 - δν((R1, . . . , Rd), 1− ε). Thus we may apply Lemma 4.5 and
Remark 4.6 to obtain the result. ¤
Theorem 4.11. Let Cd(M) and Dd−1 be given as in (1.3) and (1.1), respectively. Then

Lim
M→∞

Cd(M) = Dd−1

holds for all d ≥ 2.

Proof. We first show that Dd−1 ⊆ LimM→∞ Cd(M). Since Dd−1 is the closure of its interior2 and
LimM→∞ Cd(M) is closed it suffices to show that int (Dd−1) ⊆ LimM→∞ Cd(M).

Let

(4.9) y := (r2, . . . , rd) ∈ int (Dd−1).

We have to show that each neighborhood of y intersects all but finitely many of the sets Cd(M).
Choose an arbitrary neighborhood U of y. Using [2, Lemmas 4.1 and 4.3] we see that (4.9) implies
that the polynomial

Xd−1 + rdX
d−2 + · · ·+ r2

is contractive. Since the roots of a polynomial vary continuously with respect to its coefficients,
there exists a positive constant ε with the following properties:

• The polynomial

(4.10) Xd + tdX
d−1 + · · ·+ t2X + t1

is contractive if |ti − ri| < ε (i = 2, . . . , d) and |t1| < ε.
• Bε(y) ⊂ U ∩ int (Dd−1).

Thus for each M > 1
ε we can choose ti of the form

t1 = t1(M) =
1
M

and ti = ti(M) =
p
(M)
i

M
(i = 2, . . . , d)

with integers p
(M)
i . By the choice of ε, yM := (t1(M), . . . , td(M)) ∈ U for each M > 1

ε . On
the other hand, since the polynomial (4.10) associated to yM is contractive, [2, Lemma 4.2 (1)]
implies that yM ∈ Dd for M > 1

ε . Now (1.3) and (1.6) imply that yM ∈ Cd(M) for M > 1
ε .

Thus U intersects all but finitely many of the sets Cd(M). Since U was arbitrary this proves
int (Dd−1) ⊆ LimM→∞ Cd(M).

It remains to establish the inclusion Dd−1 ⊇ LimM→∞ Cd(M). We argue in a similar way as in
the proof of [2, Theorem 3.1] and obtain

Cd(M) =
{(pd−1

M
, . . . ,

p1

M

)
: (M, p1, . . . , pd−1) ∈ Cd

}

=
{(pd−1

M
, . . . ,

p1

M

)
:

(
1
M

,
pd−1

M
, . . . ,

p1

M

)
∈ Dd

}

⊂
{

(r2, . . . , rd) :
(

1
M

, r2, . . . , rd

)
∈ Dd

}
= Dd

(
1
M

)
.

Thus, using Theorem 4.10 we gain

Lim
M→∞

Cd(M) ⊆ Lim
M→∞

Dd

(
1
M

)
= Dd−1

2This is an easy consequence of the following fact: Suppose that p(x) is a polynomial all of whose roots are
contained in the closed unit circle. Then by arbitrarily small modifications of its coefficients we can obtain a
polynomial all of whose roots are contained in the open unit circle.
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and we are done. ¤

5. Relations between Dd−1 and Cd

In the next theorem we prove that the (d − 1)-dimensional Lebesgue measure of Dd−1 is the
limit of the quotient (1.7) for M → ∞. Note that the Lebesgue measurability of Dd is proved in
[2, Theorem 4.10].

We need the following notations. Let

(5.1) W (x, s) :=
{
x′ ∈ Rd−1 : ||x′ − x||∞ ≤ s

2

}
(x ∈ Rd−1, s ∈ R)

and
Wd(M) :=

⋃

x∈Cd(M)

W (x,M−1).

Theorem 5.1. Let d ≥ 2, M a positive integer and set

N(d,M) := |{(p1, . . . , pd−1) ∈ Zd−1 : (M, p1, . . . , pd−1) ∈ Cd}|.

Then

lim
M→∞

N(d,M)
Md−1

= λd−1 (Dd−1) .

Proof. We obviously have

(5.2)
N(d,M)
Md−1

= λd−1(Wd(M)).

We will compare the latter with the Lebesgue measure of Dd−1.
We first claim

(5.3) Dd−1 \Wd(M) ⊆ Dd−1 \
(

(Dd(M−1)
)
[
−
√

d

M

])
.

To prove the claim we will show

(Dd(M−1)
)
[
−
√

d

M

]
⊂ Wd(M).

By the definition of the norm || · ||∞, if y ∈ Dd(M−1)[−
√

d/M ] then

(5.4) W (y,M−1) ⊂ Dd(M−1).

Thus we can choose p1, . . . , pd−1 ∈ Z with

z =
(pd−1

M
, . . . ,

p1

M

)
∈ W (y,M−1).

Now (1.6) and (5.4) imply that z ∈ Cd(M) ∩W (y,M−1). Thus y ∈ W (z,M−1) for a z ∈ Cd(M)
which yields y ∈ Wd(M) and the claim is proved.

On the other hand Cd(M) ⊂ Dd(M−1) implies

Wd(M) ⊆ (Dd(M−1)
)
[1/M ]

which yields

(5.5) Wd(M) \ Dd−1 ⊆
(Dd(M−1)

)
[1/M ] \ Dd−1.

Now (5.3) and (5.5) yield that

Wd(M)4Dd−1 ⊆
(
Dd−1 \

(
(Dd(M−1)

)
[
−
√

d

M

]))
∪ ((Dd(M−1)

)
[1/M ] \ Dd−1

)

⊆ (Dd−14Dd(M−1)
) ∪

(
(∂Dd(M−1))[

√
d/M ]

)
.
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Note that the second inclusion is an immediate consequence of the definitions (3.1) and (3.2),
respectively. From this chain of inclusions we gain

∫ ∣∣∣1Wd(M) − 1Dd−1

∣∣∣ dλd−1 =
∫

1Wd(M)4Dd−1
dλd−1

≤
∫

1Dd−14Dd(M−1)dλd−1 +
∫

1(∂Dd(M−1))[
√

d/M ]dλd−1.

Now we let M →∞. Then ∫
1Dd−14Dd(M−1)dλd−1 → 0

by Theorem 4.9. Furthermore,
∫

1(∂Dd(M−1))[
√

d/M ]dλd−1 → 0

since ∂Dd−1(M−1) is defined by finitely many polynomial equations. Thus
∫ ∣∣∣1Wd(M) − 1Dd−1

∣∣∣ dλd−1 → 0

and the theorem is proved. ¤

It is worth mentioning the following result which we get as a byproduct of the proof of Theo-
rem 5.1.

Corollary 5.2. For d ≥ 2 we have

λd−1(Wd(M)4Dd−1) → 0

for M →∞.

6. Convergence properties of the set D0
d

The aim of this section is to describe the convergence of the sets D0
d(x) defined in (1.5) to Dd−1

for x → 0. To this matter we need a description of the relation between Dd and D0
d where we

adopt the following notations and results from [2]. Let r ∈ Rd and let a = (a1, . . . , ad) be a non
zero periodic point of period length L for τr, i.e., a = τL

r (a). Suppose this period runs through
the points

τ j
r (a) = (a1+j , . . . , ad+j) (0 ≤ j ≤ L− 1),

where a1+L = a1, . . . , ad+L = ad (note that the structure of the entries follows from the definition
of τr). Then we will say that

a1, . . . , ad, ad+1, . . . , aL

is a period of τr. If a period occurs for some τr with r ∈ Rd, we will call it for short a period of
Dd.

By the definition of τr the set of all r = (r1, . . . , rd) ∈ Rd which admit a given period π is given
by the simultaneous inequalities

(6.1) 0 ≤ r1a1+j + · · ·+ rdad+j + ad+j+1 < 1 (0 ≤ j ≤ L− 1).

As each inequality gives an upper/lower half of hyperplanes in Rd, it is easy to see that (6.1)
defines a (possibly degenerated) convex polyhedron. We call this polyhedron a cutout polyhedron
and denote it by P(π) (cf. [2, Section 4]).

Since r ∈ D0
d if and only if τr has 0 as its only period we conclude that

D0
d = Dd \

⋃

π 6=0

P(π),

where the union is extended over all non-zero periods π of Dd. We call the family of (non-empty)
polyhedra corresponding to this choice the family of cutout polyhedra of D0

d.
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Let now ε ∈ (0, 1). We know from [2, Section 7] that there is a finite family P := {P0, . . . , PL}
of cutout polyhedra such that

D0
d,ε = Dd,ε \

L⋃

l=0

Pl,

because critical points of Dd can only occur on the boundary of Dd (cf. [2, Lemma 7.2]). Because
of (6.1) for every l ∈ {0, . . . , L} we can find pairwise disjoint finite sets Il, Jl ⊂ N and linear
polynomials fl,i ∈ R[R1, . . . , Rd] with

(6.2) Pl =
⋂

i∈Il

{r ∈ [−M,M ]d : fl,i(r) > 0} ∩
⋂

i∈Jl

{r ∈ [−M,M ]d : fl,i(r) ≥ 0}.

Here we choose M in a way that (4.4) is satisfied. We will subdivide the set P of cutout polyhedra
into three parts. Indeed, set

P1 := {Pl ∈ P : R1 - fl,i(R1, . . . , Rd) holds for all i ∈ Il ∪ Jl},
P2 := {Pl ∈ P : R1 | fl,i(R1, . . . , Rd) holds for at least one i ∈ Il},
P3 := {Pl ∈ P : R1 | fl,i(R1, . . . , Rd) holds for at least one i ∈ Jl}.

In what follows we will use the notation Pl(x) := Pl ∩ W (x) (see (4.5) for the definition of
W (x)). We first treat the cutout polyhedra contained in the subfamily P1.

Lemma 6.1. For each Pl ∈ P1 we have

lim
x→0

λd−1(proj(Pl(x))4proj(Pl(0))) = 0.

Proof. Setting

Al,i(x) := {r ∈ [−M, M ]d : fl,i(r) > 0} ∩W (x) (i ∈ Il) and

Bl,i(x) := {r ∈ [−M, M ]d : fl,i(r) ≥ 0} ∩W (x) (i ∈ Jl)

we see from (6.2) that

Pl(x) =
⋂

i∈Il

Al,i(x) ∩
⋂

i∈Jl

Bl,i(x).

Because Pl(x) ∈ P1 the (linear) polynomials fl,i satisfy the conditions of Lemma 4.2, this lemma
together with Remark 4.3 yields

lim
x→0

λd−1(proj(Al,i(x))4proj(Al,i(0))) = 0 and

lim
x→0

λd−1(proj(Bl,i(x))4proj(Bl,i(0))) = 0.

The result now follows from Lemma 4.4 (i). ¤

In order to treat the cutout polyhedra contained in P2 we need the following auxiliary result.

Lemma 6.2. Let d ≥ 2 and r = (r1, . . . , rd) ∈ P (π) be an element of a cutout polyhedron given
by a period π of the form

. . . a0a1 0 . . . 0︸ ︷︷ ︸
d−1

1 . . . .

If r1 > 0 then r2 ≤ −a0
a1

r1, and if r1 < 0 then r2 ≥ −a0
a1

r1.

Proof. By the definition we have the inequalities

0 ≤ a1r1 + 1 < 1,(6.3)
0 ≤ a0r1 + a1r2 < 1.(6.4)

Clearly, r1 > 0 implies a1 < 0 by (6.3) and then r2 ≤ −a0
a1

r1 by (6.4). The second assertion is
derived analogously. ¤

For the elements of P2 we can show the following assertion.
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Lemma 6.3. For all ε > 0 we have

lim
x→0

λd−1

((
proj

(
Dd,ε(x) \

⋃

Pl∈P2

Pl

)
∪ proj

(
Dd,ε(−x) \

⋃

Pl∈P2

Pl

))
4Dd,ε(0)

)
= 0.

Proof. If Pl ∈ P2 then for some i ∈ Il we have R1 | fl,i(R1, . . . , Rd). Because fl,i is a linear
polynomial this implies that there exists a constant cl,i ∈ R\{0} such that fl,i(R1, . . . , Rd) = cl,iR1.
This implies that

Pl ⊂ {(r1, . . . , rd) : cl,ir1 > 0}
which means that either

Pl ⊂ {(r1, . . . , rd) : r1 > 0} or
Pl ⊂ {(r1, . . . , rd) : r1 < 0}.

Applying Lemma 6.2 we even get that there exists b ∈ R such that either

Pl ⊂ {(r1, . . . , rd) : r1 > 0 and r2 ≤ br1} or
Pl ⊂ {(r1, . . . , rd) : r1 < 0 and r2 ≥ br1}.

Thus

Dd,ε(x) \
⋃

Pl∈P2

Pl ⊃ Dd,ε(x) ∩ {(x, r2, . . . , rd) : r2 < bx} (x > 0),

Dd,ε(x) \
⋃

Pl∈P2

Pl ⊃ Dd,ε(x) ∩ {(x, r2, . . . , rd) : r2 > bx} (x < 0).

Combining these two inclusions we obtain that

Dd,ε(x)∩{(x, r2, . . . , rd) : |r2| > b|x|} ⊂
(
Dd,ε(x) \

⋃

Pl∈P2

Pl

)
∪

(
Dd,ε(−x) \

⋃

Pl∈P2

Pl

)
⊂ Dd,ε(x)

holds for all x. Taking projections and letting x tend to zero yield the result. ¤

Lemma 6.4. P3 = ∅.
Proof. If Pl ∈ P3 then Pl contains an inequality

fl,i(r1, . . . , rd) = cr1 ≥ 0

for some i ∈ Jl. To get such an inequality the cycle π which generates Pl must contain d consecutive
zeros. Thus π is the trivial cycle, a contradiction. ¤

We are now in a position to prove the following theorem.

Theorem 6.5. For each d ≥ 2 we have

lim
x→0

λd−1

(D0
d(x)4D0

d−1

)
= 0.

Proof. Let ε > 0 be arbitrary but fixed. Then for x > 0 Theorem 2.1 and Lemma 6.4 yield

D0
d,ε(x) = D0

d,ε(x) ∪ D0
d,ε(−x) (since D0

d,ε(−x) = ∅)
= (Dd,ε(x) ∪ Dd,ε(−x)) \

⋃

Pl∈P
Pl

= (Dd,ε(x) ∪ Dd,ε(−x)) \
⋃

Pl∈P1∪P2

Pl

=

(
(Dd,ε(x) ∪ Dd,ε(−x)) \

⋃

Pl∈P1

Pl

)
∩

(
(Dd,ε(x) ∪ Dd,ε(−x)) \

⋃

Pl∈P2

Pl

)

=
⋂

i=1,2

((
Dd,ε(x) \

⋃

Pl∈Pi

Pl

)
∪

(
Dd,ε(−x) \

⋃

Pl∈Pi

Pl

))
.



RADIX REPRESENTATIONS AND DYNAMICAL SYSTEMS 15

Taking projections this yields
(6.5)

proj(D0
d,ε(x)) =

⋂

i=1,2

((
proj(Dd,ε(x)) \

⋃

Pl∈Pi

proj(Pl)

)
∪

(
proj(Dd,ε(−x)) \

⋃

Pl∈Pi

proj(Pl)

))
.

Lemmas 4.8 and 6.1 imply together with Lemma 4.4 (ii) and (iii) that

lim
x→0

λd−1

((
proj(Dd,ε(x)) \

⋃

Pl∈P1

proj(Pl)

)
4

(
proj(Dd,ε(0)) \

⋃

Pl∈P1

proj(Pl)

))
= 0.(6.6)

Here x may approach zero from the left or from the right. For the second part of (6.5) we apply
Lemma 6.3 to see that

(6.7) lim
x→0

λd−1

((
proj

(
Dd,ε(x) \

⋃

Pl∈P2

Pl

)
∪ proj

(
Dd,ε(−x) \

⋃

Pl∈P2

Pl

))
4Dd,ε(0)

)
= 0.

Using Lemma 4.4 (i) and (ii) we can collect (6.6) and (6.7) to derive

lim
x→0

λd−1

(D0
d,ε(x)4D0

d−1,ε

)
= lim

x→0
λd−1

(D0
d,ε(x)4D0

d,ε(0)
)

= lim
x→0

λd−1

(
D0

d,ε(x)4
(
Dd,ε(0) \

⋃

Pl∈P1

Pl

))

= 0.

Because ε can be chosen arbitrarily small the result follows from Lemma 4.7. ¤

7. Relations between D0
d−1 and C0

d

In the next theorem we prove that the (d − 1)-dimensional Lebesgue measure of D0
d−1 is the

limit of the quotient in (1.8) for M → ∞. Note that the Lebesgue measurability of D0
d is proved

in [2, Theorem 4.10].

Theorem 7.1. Let d ≥ 2 and M be a positive integer and set

N0(d,M) := |{(p1, . . . , pd−1) ∈ Zd−1 : (M,p1, . . . , pd−1) ∈ C0
d}|.

Then

lim
M→∞

N0(d,M)
Md−1

= λd−1

(D0
d−1

)
.

Proof. We will use the following notation. Let W (x, s) be defined as in (5.1). Now set for ε ∈ [0, 1)

C0
d,ε(M) :=

{(pd−1

M
, . . . ,

p1

M

)
∈ Rd−1 : (M, p1, . . . , pd−1) ∈ C0

d , ρ
((pd−1

M
, . . . ,

p1

M

))
< 1− ε

}

and
W0

d,ε(M) :=
⋃

x∈C0
d,ε(M)

W (x, M−1).

Furthermore, let

N0,ε(d,M) := |{(p1, . . . , pd−1) ∈ Zd−1 : (M,p1, . . . , pd−1) ∈ C0
d,ε}|.

Then obviously

(7.1)
N0,ε(d,M)

Md−1
= λd−1(W0

d,ε(M)).

We will compare the latter with the Lebesgue measure of D0
d−1,ε.

We first claim

(7.2) D0
d−1,ε \W0

d,ε(M) ⊆ D0
d−1,ε \

(
(D0

d,ε(M
−1)

)
[
−
√

d

M

])
.
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To prove the claim we will show

(D0
d,ε(M

−1)
)
[
−
√

d

M

]
⊂ W0

d,ε(M).

By the definition of the norm || · ||∞, if y ∈ D0
d,ε(M

−1)[−
√

d/M ] then

(7.3) W (y, M−1) ⊂ D0
d,ε(M

−1).

Thus we can choose p1, . . . , pd−1 ∈ Z with

z =
(pd−1

M
, . . . ,

p1

M

)
∈ W (y,M−1).

Now (1.6) and (7.3) imply that z ∈ C0
d,ε(M)∩W (y,M−1). Thus y ∈ W (z,M−1) for a z ∈ C0

d,ε(M)
which yields y ∈ W0

d,ε(M) and the claim is proved.
On the other hand C0

d,ε(M) ⊂ D0
d,ε(M

−1) implies

W0
d,ε(M) ⊆ (D0

d,ε(M
−1)

)
[1/M ]

which yields

(7.4) W0
d,ε(M) \ D0

d−1,ε ⊆
(D0

d,ε(M
−1)

)
[1/M ] \ D0

d−1,ε.

Now (7.2) and (7.4) yield that

W0
d,ε(M)4D0

d−1,ε ⊆
(
D0

d−1,ε \
(

(D0
d,ε(M

−1)
)
[
−
√

d

M

]))
∪

((D0
d,ε(M

−1)
)
[1/M ] \ D0

d−1,ε

)

⊆
(
D0

d−1,ε4D0
d,ε(M

−1)
)
∪

(
(∂D0

d,ε(M
−1))[

√
d/M ]

)
.

Note that the second inclusion is an immediate consequence of the definitions (3.1) and (3.2),
respectively. From this chain of inclusions we gain∫ ∣∣∣1W0

d,ε(M) − 1D0
d−1,ε

∣∣∣ dλd−1 =
∫

1W0
d,ε(M)4D0

d−1,ε

dλd−1

≤
∫

1D0
d−1,ε4D0

d,ε(M−1)
λd−1 +

∫
1(∂D0

d,ε(M−1))[
√

d/M ]dλd−1.

Now we let M →∞. Then ∫
1D0

d−1,ε4D0
d,ε(M−1)

λd−1 → 0

by Theorem 6.5. Furthermore, ∫
1(∂D0

d,ε(M−1))[
√

d/M ]dλd−1 → 0

since ∂D0
d−1,ε(M

−1) is defined by finitely many polynomial equations. Thus
∫ ∣∣∣1W0

d,ε(M) − 1D0
d−1,ε

∣∣∣ dλd−1 → 0

and the theorem is proved by letting ε → 0 and observing Lemma 4.7. (Note that for fixed ε
the set D0

d−1 \ D0
d−1,ε is bounded by finitely many polynomial equations. So for M large enough

the number of lattice points
(

p1
M , . . . , pd−1

M

)
with p1, . . . , pd−1 ∈ Z contained in it is essentially

Md−1λ(D0
d−1 \ D0

d−1,ε)). ¤

We now give the following result which we get as a byproduct of the proof of Theorem 7.1.

Corollary 7.2. Letting C0
d(M) as in (1.4) and setting

W0
d(M) :=

⋃

x∈C0
d(M)

W (x,M−1)

we have for d ≥ 2
λd−1(W0

d(M)4D0
d−1) → 0
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for M →∞.

This shows that the set of CNS polynomials
d∑

i=0

piX
i ∈ Z[X]

with large but fixed constant term p0 forms a good approximation for the (d−1)-dimensional SRS
region D0

d−1.

Remark 7.3. Figure 13 displays N0(3,M)/M2 for 2 ≤ M ≤ 464. It seems that the quotient
stabilizes after the first few values at about 1.766. Using known results on the number of cubic
CNS polynomials it can easily be seen that for M ≥ 9 we have

1
9
(13M2 − 21M + 51) < N0(3,M) < 2M2 −M − 2.

As these bounds are quite weak we omit the proof here.

Figure 1. The behavior of N0(3,M)/M2 for 2 ≤ M ≤ 464.

8. Open questions

We have shown convergence results with respect to Lebesgue measure in Theorems 4.9 and 6.5.
Can we have stronger convergence in the sense of Proposition 3.1?

Open question 1. Is it true that Limx→0D0
d(x) = D0

d−1?

By Theorem 7.1, the number of CNS polynomials of a given constant term is estimated by SRS.

Open question 2. Can we estimate the number of Pisot polynomials of a given trace having
property (F) by SRS?

This question will be explored in a forthcoming paper.
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[1] S. Akiyama, T. Borbély, H. Brunotte, A. Pethő and J. M. Thuswaldner, On a generalization of the
radix representation – a survey, in “High primes and misdemeanours: lectures in honour of the 60th birthday
of Hugh Cowie Williams”, Fields Inst. Commun., 41 (2004), 19–27.
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