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ABSTRACT

An integral transformation which changes a fractional Brownian motion to a process with independent increments
has been given. A representation of a fractional Brownian motion through a standard Brownian motion on a finite
interval has also been given. On the other hand, it is known that the partial sum of the discrete time fractionally
integrated process (I(d) process) weakly converges to a fractional Brownian motion in infinite interval representation.
In this talk we derive the weak convergence of the partial sum of I(d) process to a fractional Brownian motion in finite
interval representation.

1 Introduction

Stochastic analysis for FBM has been developed by Decreusefond and Ustiinel (1997) using Malliavin calculus. Norros
et al. (1999) showed that many basic results can be obtained more directly with rather elementary arguments and
computations. Norros et al. (1999) considered a normalized fractional Brownian motion (FBM) (Z,),5¢ with self-

similarity parameter H € (0, 1) which is characterized by the following properties.
(i) Z has stationary increments.

(ii) Zo =0and E{Z,} = 0 forall r.

(iii) E(zf) = [t>" for all .

(iv) Z, is Gaussian.

(v) Z, has continuous sample paths.

Mandelbrot and Van Ness (1968) defiend the process more constructively as the integral
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where W, is the standard Brownian motion. The normalization E (Zf) = 1 is achieved with the choice

where I" (+) denotes the Gamma function.



1.1 The fundamental martingale M

Norros et al. (1999) considered the following process. Let w (z, s) be the function

c1 st (p— V2H | for s € (0, 1),
w(t,s) =

0, fors ¢ (0,1),

where
c1 =42HB 1—HH+1 h
L )
and B is the beta funtion
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Bu,v) = Fwu+v) "

Then, the centered Gaussian process

!
M, = f w(t,s)dZ
0
has independent increments and variance function
E(M})=c3 2,

where
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Chr = ———~—.
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In particular, M is a martingale.

Note that the process

2H [
w, == | s"12am;
CH Jo
is a standard Brownian motion.
Fotsll 0 < s < t, we have
Cov (Z, M;) = s.

As a consequence, the increment M, — M, is independent of 7.

It is easier to proceed by considering, instead of Z, the process

!
Y[ = f s%_HdZS,
0

It is obvious that we have the inverse relationship Z, = fol st=34 Y,; in paticular Y generates the same filtration (¥;) as
Z.
The process Y has the integral representation

,
Yr = 2Hf (T -2 dm,
0



and we have the prediction formula
!
E[Yr|F]= 2Hf (T — )"12 am,.
0

As we noted, the process

_2H [

CH Jo

W, sT12aMm,

is a standard Brownian motion. We also have the inverse relationship

[
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M, = — dw,.
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Now we have a sequence of simple representation formulae which allow us to proceed from process to process in
the order W - M - Y — Z.

The process Z has the following integral representation in terms of W;

[
Z, = f Z(t,$)dW,,
0

where

1
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For H > % we have also the slightly simple expression

1 !
z(t,8) = (H— E)cHsl/z_Hf uf=12 (y = HH312 gy
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where  F is the Gauss hypergeometric function.
Let

i 1
k=H— -
27

so that the range H € (0, 1) now corresponds to the range k € (—%, %) Consider the interval [0, a] and let s € [0, a].

An integral over [0, s] is called left-sided and one over [s, a] is called right-sided. The right-sided fractional integral
of order @ > 0 on a interval [0, a] of a function f € L' [0, a] is defined by

faf(u)(u—s)i'-l du = L faf(u)(u—s)“_l du, se(0,a).
0 ['(a)

s

1
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Pipiras and Taqqu (2001) showed that the following unversal result. Let a > 0 and B* be a standard FBM with
parameter k € (—% %)
Then
K d ¢ —K K K
{B* D}iero.a1 = {01 (k) f s (Is_u 110, (w)) (5) dB° (S)} ;
0 1€[0,a]
where
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1.2 I(d)model (0 <d < 1/2)

First, we define I(d) process {z;} with 0 < d < 1/2, which is stationary and invertible, as

(1_L)dZ1=8,
@Z’:(I_L)*dg[
BRI SR TR
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where {g,} bid (O, 0-2) and E (ej‘) < co. The coefficients satisfy y; = O ( jd‘l), so that the degree of decresing is quite
slow as j — co. Let

1
Y= O.TdJr% 4
and define the partial sum process {X7 (1)} on [0, 1] as

s

s s 00
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Xr{7)= =— = > N ey and X () = Xp (22 ).
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To describe the FCLT result for I(d) process, we introduce the following Type I fBm By (0 < H < 1):

B = | [ o= - comrano+ [ a- 9"t ane) |
r(H+ 3w 0

where {B (¢) a} is a standard Brownian motion on (—oo, 1]. Then, we have the following FCLT result.
X7 () = Bd% ().

The Type I fBm {By (¢)} is mean 0 Gaussian process. It corresponds to the standard Brownian motion when H = %
On the other hand, when H # %, we have

B t2d+1A (d)
V{Bu (0} = Cd+D)
and
B (t— s)2d+1A(d)
VAiBu () = By (s)} = Tarn
where

A(d) = fm (14w =) du+
0

so that { By (#)} has stationary increments. However, the increments are not independent.

1
2d +1°

1.3 I(d) model (d > 1/2)
Next, we consider I(d) model with (d > 1/2):

(1 - L)dZt =&

oz =(1 —L)id&,



which is non-stationary. In this case we can not define the linear representetion like as (1). Instead, we assume that
gj =0, (j <£0) and define the trancated process:

%
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where

Agr =
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Furthermore, we introduce the following Type I fBm Wy (H > 0):

[
Wy (1) = _ f (t — )% aw(s).
F(H+ %) 0

Then, if {&,} bid. (0, 0'2), E (aj‘) < oo, we have the following FCLT result:

. T
X5 (w) = X;([M—T]) = W, ).
Note that Type II fBm does not have stationary increment. Moreover, we see that the variances o Type I fBm and Type
II fBm are different, namely
P2H

EWL 0} = s

, ~ 29T (2 - 2H)
< E{BH(I)} T 2HT(H+1/2)T(3/2—-H)'

2 The fundamental process

2.1 Uncorrelated increments process

Norros et al. (1999) developed a sequence of simple representation formulae which allow us to proceed from process
to process from the heuristic idea from the discrete-time case. In this paper, we develope the discrete-time formulae

from the same idea.



Let z, = (z1,...,2,) be second order stationary process and 3, = Var (z,). Define the centered process

n

Mn = Z A iZts

=1

which satisfies, form > n
(M,,, M,y := Cov (M,,, M,,) = Cov(M,, M) = {M,, M,).
That is, {M,,} is the uncorrelated increments process. Note that if m > n, i.e., m — 1 > n, we have
My, — My, M,y = 0.
Furthermore, define

DM, :=(1-L)M, =M, - M,,,

a? = (1= L)(M,, M,y = (M;, M}y — (M, 1, M, 1)

and let

Then, we have, form > n
(Wi, W) = n = (W, W,,).

Therefore, {W,} is also (standardized) uncorrelated increments process.
Defining

DW,:=W, - W, 4,

let

=

Then, we have

Vi

where W (¢) is standard Brownian motion. Furthermore, we have, form > n

[nt] 7
1 1
— W= — Y DW =>W(t)=de(S),
[nt] \/ﬁ ; s 0

(Mmy Mn) =(M,, M,) = (Mn, Mn)



2.2 Expression formula

Let
n
Zrl = Zl’
=1
then, for 0 < s < t, we have
Cov (Zy, M,) = s.
Furthermore, let
n
Y, = s,y

and
DY, =(1-LY, =Y, -Y1 =z,

then we have

n
Z o 'DY, = Z,.
=1

Here we consider the process of the form
n
Yn = Z bn’[DM[,
=1

which satisfies
<?m ?n> = (Yn, le>

Moreover, define for 1 < s < n,
_ s
Yn\s = Z bn,lDMla
=1
then we have
(YH - ?nISa Ms) = Os
namely Y, - 1_/,1|S is orthogonal to Mj.

23 Wo-M-—>Y—>Z

Let

~



where

DM[ = (1 - L)M’ = M, _M171 = (Y’DW’,

that is
n n
Y, = by DW, := Z Cn DW,,
=1 t=1
with ¢, := by, and Yy = 0.
Furthermore, let
. n
Z,:= Y a;'Dy,

where
DY, :=(1-0D)Y,=Y,- Y.,

so that, we can rewrite

n n-1 (n-1

a -1 -1

Zn = a’, C”’DW’ + Z (YS+1 (C.‘-+1” - C.Y,I) DW[
=1 =1

s=t

3 Weak convergence of / (d) process

Now, we obtain for I (d) process

[n1] [n]-1 ([nf]-1
T = s > W 2DW ok —— Y Y 6,002 oW
opd+l2 7 T s=1 s T a1 uutl=s¥y 1 s

s=1 s=1 u=s

lef’_dld} .=f[ _
:F(d)‘fos {S(u ) udup dW (s) : 0aVZ(s) Z(1).
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