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1 Introduction

Suppose we take samples, xj = (x1j , . . . , xpj)
T , j = 1, . . . , n, of size n (≥ 4), which are independent

and identically distributed (i.i.d.) as a p (≥ 2)-variate distribution. We assume that xj has an unknown
mean vector µ and unknown (positive-semidefinite) covariance matrix Σ. We have that Σ = HΛHT ,
where Λ = diag(λ1, ..., λp) is a diagonal matrix of eigenvalues of Σ, λ1 ≥ · · · ≥ λp ≥ 0, and H =
(h1, ...,hp) is an orthogonal matrix of the corresponding eigenvectors. Let xj = HΛ1/2zj + µ, where
zj = (z1j , . . . , zpj)

T is considered as a sphered data vector having the zero mean vector and identity
covariance matrix. Let σ = tr(Σ)/p. Let σij be the (i, j) element of Σ for i, j = 1, . . . , p. We assume
that σjj ∈ (0,∞) as p → ∞ for all j. For a function, f(·), “f(p) ∈ (0,∞) as p → ∞” implies that
lim infp→∞ f(p) > 0 and lim supp→∞ f(p) < ∞. Then, it holds that σ ∈ (0,∞) as p → ∞. Let
ρ =

∑p
i ̸=j σij/{σp(p− 1)}. Note that

1TpΣ1p

p
= σ{1 + ρ(p− 1)} (1)

and ρ ∈ [−(p− 1)−1, 1], where 1p = (1, . . . , 1)T . We denote the identity matrix of dimension p by Ip.
In this paper, we consider testing

H0 : Σ = Σ∗ vs. H1 : Σ ̸= Σ∗, (2)

where Σ∗ is a candidate (positive-semidefinite) covariance matrix. For Σ∗ we consider the following co-
variance structures: (i) identity matrix, (ii) scaled identity matrix, (iii) diagonal matrix, and (iv) intraclass
covariance matrix. Let

ΣS = σIp, ΣD = diag(σ11, . . . , σpp) and ΣIC = σ{(1− ρ)Ip + ρ1p1
T
p }.

Ledoit and Wolf (2002) gave test procedures for

H0 : Σ = Ip vs. H1 : Σ ̸= Ip (3)

and

H0 : Σ = ΣS vs. H1 : Σ ̸= ΣS (4)

when p/n → c > 0 and xj is Gaussian. Schott (2005) gave a test procedure for

H0 : Σ = ΣD vs. H1 : Σ ̸= ΣD (5)
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when p/n → c > 0 and xj is Gaussian. Srivastava, Kollo and Rosen (2011) considered test procedures
for (3) to (5) when n/p → 0 under an assumption that is stronger than (A-ii) given in Section 2. On the
other hand, Srivastava and Reid (2012) gave a test procedure for

H0 : Σ = ΣIC vs. H1 : Σ ̸= ΣIC (6)

when n/p → 0 and xj is Gaussian. Meanwhile, Zhong et al. (2017) considered a high-dimensional
regression model and testing (6) for the covariance matrix associated with error vectors when the error
vectors are Gaussian. However, it is known that those test statistics do not give a preferable performance
unless xj is Gaussian. As for a nonparametric approach, Chen, Zhang and Zhong (2010) considered test
statistics based on the U-statistic for (3) and (4). In the current paper, we take a different nonparametric
approach and produce a new test statistic for (2). We utilize the extended cross-data-matrix (ECDM)
method developed by Yata and Aoshima (2013) which is an extension of the cross-data-matrix method-
ology created by Yata and Aoshima (2010). The ECDM method is a nonparametric method to produce
an unbiased estimator for a function of Σ at a low computational cost even for ultra high-dimensional
data. In addition, the ECDM method possesses a high versatility in high-dimensional data analysis. See
Yata and Aoshima (2016) for the details.

In this paper, we consider constructing a new test procedure for (6) by using the ECDM method. In
Section 2, we produce an ECDM test statistic when Σ∗ is known. We show that the ECDM test statistic
is an unbiased estimator of its test parameter even in a high-dimensional setting. In Section 3, we produce
an ECDM test statistic when Σ∗ involves unknown parameters. We propose a new test procedure based
on the test statistic and evaluate its asymptotic size and power theoretically. In Section 4, we apply the
new test procedure to testing (6).

2 Test procedure for (2) when Σ∗ is known

In this section, we propose a test procedure for (2) when Σ∗ is known and evaluate its asymptotic size
and power theoretically. Let

Σ0 = Σ−Σ∗ and ∆ = ∥Σ0∥2F = tr(Σ2
0),

where ∥ · ∥F is the Frobenius norm. Note that ∆ = 0 under H0 and ∆ > 0 under H1. We regard ∆ as a
test parameter and construct a test procedure for (2) by using an estimator of ∆.

2.1 Unbiased estimator of ∆

We first give an unbiased estimator of ∆ by using the ECDM method. Let n(1) = ⌈n/2⌉ and n(2) =
n− n(1), where ⌈x⌉ denotes the smallest integer ≥ x. Let

V n(1)(k) =

{
{⌊k/2⌋ − n(1) + 1, . . . , ⌊k/2⌋} if ⌊k/2⌋ ≥ n(1),

{1, . . . , ⌊k/2⌋} ∪ {⌊k/2⌋+ n(2) + 1, . . . , n} otherwise;

V n(2)(k) =

{
{⌊k/2⌋+ 1, . . . , ⌊k/2⌋+ n(2)} if ⌊k/2⌋ ≤ n(1),

{1, . . . , ⌊k/2⌋ − n(1)} ∪ {⌊k/2⌋+ 1, . . . , n} otherwise

for k = 3, . . . , 2n−1, where ⌊x⌋ denotes the largest integer ≤ x. Let #S denote the number of elements
in a set S. Note that #V n(l)(k) = n(l), l = 1, 2, V n(1)(k) ∩ V n(2)(k) = ∅ and V n(1)(k) ∪ V n(2)(k) =
{1, . . . , n} for k = 3, . . . , 2n − 1. Also, note that i ∈ V n(1)(i+j) and j ∈ V n(2)(i+j) for i < j (≤ n).
Let

x(1)(k) = n−1
(1)

∑
j∈V n(1)(k)

xj and x(2)(k) = n−1
(2)

∑
j∈V n(2)(k)

xj
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for k = 3, . . . , 2n− 1. Let un(l) = n(l)/(n(l) − 1) for l = 1, 2,

yij(1) = xi − x(1)(i+j) and yij(2) = xj − x(2)(i+j)

for all i < j. We note that un(l)E(yij(l)y
T
ij(l)) = Σ for l = 1, 2, and yij(1) and yij(2) are independent

for all i < j. For example, Yata and Aoshima (2013) gave an estimator of tr(Σ2) as

Wn =
2un(1)un(2)

n(n− 1)

n∑
i<j

(yT
ij(1)yij(2))

2 (7)

by the ECDM method. Then, it holds that E(Wn) = tr(Σ2).
Now, we can give an unbiased estimator of ∆ as

∆̂n = 2
n∑

i<j

tr
{
(un(1)yij(1)y

T
ij(1) −Σ∗)(un(2)yij(2)y

T
ij(2) −Σ∗)

}
n(n− 1)

(8)

by the ECDM method. Note that E(∆̂n) = ∆. Here, we write that

∆̂n =Wn + tr(Σ2
∗)− 2

n∑
i<j

(
un(1)y

T
ij(1)Σ∗yij(1) + un(2)y

T
ij(2)Σ∗yij(2)

)
n(n− 1)

. (9)

The computational cost of ∆̂n by (9) is much lower than that by (8) when n = o(p).

2.2 Asymptotic properties of ∆̂n

We assume the following model:
xj = Γwj + µ,

where Γ = (γ1, . . . ,γd) is a p×d matrix for some d > 0 such that ΓΓT = Σ, and wj = (w1j , . . . , wdr)
T , j =

1, . . . , n, are i.i.d. random vectors having E(wj) = 0 and Var(wj) = Id. Let Var(w2
sj) = Ms for

s = 1, . . . , d. We assume that lim supp→∞ Ms < ∞ for all s. Similar to Bai and Saranadasa (1996),
Chen and Qin (2010) and Aoshima and Yata (2015), we assume that

(A-i) E(w2
sjw

2
tj) = E(w2

sj)E(w2
tj) = 1 and E(wsjwtjwujwvj) = 0 for all s ̸= t, u, v.

We assume the following assumption instead of (A-i) as necessary:

(A-ii) E(wα1
s1j

wα2
s2j

· · ·wαv
svj

) = E(wα1
s1j

)E(wα2
s2j

) · · ·E(wαv
svj

) for all s1 ̸= s2 ̸= · · · ̸= sv ∈ [1, d] and
αi ∈ [1, 4], i = 1, . . . , v, where v ≤ 8 and

∑v
i=1 αi ≤ 8.

Note that (A-ii) implies (A-i). When xj is Gaussian and Γ = HΛ1/2, it holds that wj = zj and zj is
distributed as Np(0, Ip), so that (A-ii) is naturally satisfied.

For Σ we assume the following condition as necessary:

(C-i)
tr(Σ4)

tr(Σ2)2
→ 0 as p → ∞.

Note that (C-i) is equivalent to “λ1/tr(Σ2)1/2 → 0 as p → ∞”. Aoshima and Yata (2018) called (C-i)
the “non-strongly spiked eigenvalue (NSSE) model”. When Σ = ΣS or ΣD, (C-i) holds. On the other
hand, when Σ = ΣIC with lim infp→∞ ρ > 0, (C-i) does not hold since it follows that

lim inf
p→∞

{ λ1

tr(Σ2)1/2

}
> 0 (10)
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from the facts that λ1 = σ{1+ (p− 1)ρ} and tr(Σ2) = O(p2). Aoshima and Yata (2018) called (10) the
“strongly spiked eigenvalue (SSE) model”.

Let
m = min{p, n}.

We consider the divergence condition as

p → ∞ and n → ∞,

which is equivalent to m → ∞. Let

K = 4tr(Σ2)2/n2 and K∗ = 4tr(Σ2
∗)

2/n2.

We assume one of the following assumptions as necessary:

(C-ii)
K1/2

∆
→ 0 as m → ∞; (C-iii) lim sup

m→∞

∆

K1/2
< ∞.

Note that (C-iii) holds under H0 in (2).
For ∆̂n in (8), we have the following results.

Lemma 2.1. Assume (A-i). Then, it holds that as m → ∞

Var(∆̂n) =K{1 + o(1)}+O
( tr(Σ4)1/2∆

n
+

tr(Σ4)

n2

)
.

Furthermore, under (C-i) and (C-iii), it holds that as m → ∞

Var(∆̂n) = K{1 + o(1)}.

From Lemma 2.1 we obtain the following result under (C-ii).

Theorem 2.1. Assume (A-i) and (C-ii). Then, it holds that as m → ∞

∆̂n/∆ = 1 + oP (1).

On the other hand, we obtain the following result under (C-iii).

Theorem 2.2. Assume (A-ii), (C-i) and (C-iii). Then, it holds that as m → ∞

∆̂n −∆

K1/2
⇒ N(0, 1),

where “⇒” denotes the convergence in distribution and N(0, 1) denotes a random variable distributed
as the standard normal distribution.

2.3 Test procedure based on ∆̂n

Note that tr(Σ2) = tr(Σ2
∗) under H0 in (2). Let

Tn =
n∆̂n

2tr(Σ2
∗)
. (11)

From Theorem 2.2 we propose a test procedure for (2) by

rejecting H0 ⇐⇒ Tn > zα, (12)

where zα is a constant such that P{N(0, 1) > zα} = α with α ∈ (0, 1/2). Then, we have the following
result.
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Theorem 2.3. Assume (A-ii) and (C-i). For the test procedure (12), we have that

Size = α+ o(1) and Power = Φ

(
∆

K1/2
− zα

K
1/2
∗

K1/2

)
+ o(1) as m → ∞, (13)

where Φ(·) denotes the c.d.f. of N(0, 1).

Corollary 2.1. Assume (A-i). Assume also (C-ii) under H1 in (2). For the test procedure (12), we have
that

Power → 1 as m → ∞. (14)

3 Test procedure for (2) when Σ∗ involves unknown parameters

When Σ∗ = ΣIC, the eigenstructures are identified. Otherwise they involve unknown parameters. In this
section, we construct an unbiased estimator of ∆ through the eigenstructures and propose a test procedure
by using the unbiased estimator.

3.1 Test procedure

Let Aj be a p× p known idempotent matrix with rank rj (≥ 1) for j = 1, . . . , q, such that
∑q

j=1 rj = p

and
∑q

j=1Aj = Ip, where r1 ≤ · · · ≤ rq when q ≥ 2. Note that tr(Aj) = rj , A2
j = Aj and

AjAj′ = O for all j (̸= j′). Let κj (≥ 0) be an unknown scalar such that tr(ΣAj) = rjκj for all j.
Hereafter, we assume that Σ∗ has the following structure:

Σ∗ = κ1A1 + · · ·+ κqAq. (15)

Note that tr(Σ2
∗) =

∑q
j=1 rjκ

2
j and ∆ = tr(Σ2)− tr(Σ2

∗), so that tr(Σ2) ≥ tr(Σ2
∗). As for Σ∗ = ΣIC,

A1 = 1p1
T
p /p,A2 = Ip−1p1

T
p /p, κ1 = σ{1+(p−1)ρ}, κ2 = σ(1−ρ), r1 = 1, r2 = p−1 and q = 2.

We note that tr(ΣAj)
2/rj = rjκ

2
j for all j. Then, we give an estimator of tr(Σ2

∗) as

Un = 2

q∑
s=1

n∑
i<j

un(1)un(2)y
T
ij(1)Asyij(1)y

T
ij(2)Asyij(2)

rsn(n− 1)
(16)

by the ECDM method. Note that E(Un) = tr(Σ2
∗). Let

∆̃n = Wn − Un,

where Wn is given by (7). Then, it holds that E(∆̃n) = ∆. Here, we write that

Un = Bn(1)− tr(Σ2
∗)

+ 2

n∑
i<j

un(1)y
T
ij(1)Σ∗yij(1) + un(2)y

T
ij(2)Σ∗yij(2)

n(n− 1)
, (17)

where

Bn(t) = 2

n∑
i<j

q∑
s=t

(un(1)y
T
ij(1)Asyij(1) − κsrs)(un(2)y

T
ij(2)Asyij(2) − κsrs)

rsn(n− 1)
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for t = 1, . . . , q. By combining (9) and (17), we have that

∆̃n = ∆̂n −Bn(1). (18)

Note that E{Bn(t)} = 0 for all t. Let us consider an asymptotic variance of ∆̃n. Let q⋆ be the maximum
integer such that

r1 = · · · = rq⋆ = 1 < rq⋆+1 ≤ · · · ≤ rq.

If r1 = · · · = rq = 1, we set q⋆ = q. We set Bn(q⋆ + 1) = 0 when q⋆ = q. If rj ≥ 2 for all j, we set
q⋆ = 0. Let

Y ij(l),s = un(l)yij(l)y
T
ij(l)As − κsAs

for all i, j, l, s. Then, from (8), it follows that

∆̃n =



2
n∑

i<j

( q∑
s ̸=s′

tr(Y ij(1),sY ij(2),s′)

n(n− 1)
+

q∑
s=q⋆+1

tr(Y ij(1),sY ij(2),s)

n(n− 1)

)
−Bn(q⋆ + 1) (q⋆ < q),

2
n∑

i<j

q∑
s ̸=s′

tr(Y ij(1),sY ij(2),s′)

n(n− 1)
(q⋆ = q).

We have the following result.

Proposition 3.1. Assume (A-i). Under H0 in (2), it holds that as m → ∞

Var{∆̃n +Bn(q⋆ + 1)} =
4Ψ

n2
{1 + o(1)}+O

( tr(Σ4
∗)

n2

)
,

where Ψ = tr(Σ2
∗)

2 −
∑q⋆

s=1 κ
4
s when q⋆ ≥ 1 and Ψ = tr(Σ2

∗)
2 when q⋆ = 0.

Since Bn(q⋆+1) is a redundant term, we can regard “4Ψ/n2” as an asymptotic variance of ∆̃n under
H0 in (2). We note that

E
(
2

n∑
i<j

un(1)un(2)y
T
ij(1)Asyij(1)y

T
ij(2)Asyij(2)

rsn(n− 1)

)
= rsκ

2
s

in view of (16). We give an estimator of Ψ by

Ψ̃n =

 U2
n −

q⋆∑
s=1

(
2

n∑
i<j

un(1)un(2)y
T
ij(1)Asyij(1)y

T
ij(2)Asyij(2)

n(n− 1)

)2
(q⋆ ≥ 1),

U2
n (q⋆ = 0)

in view of r1 = · · · = rq⋆ = 1 when q⋆ ≥ 1. Note that P (Ψ̃n ≥ 0) = 1. Let

T̃n =
n∆̃n

2Ψ̃
1/2
n

. (19)

Then, for (2) with (15), we propose a test procedure by

rejecting H0 ⇐⇒ T̃n > zα. (20)
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3.2 Test procedure (20) under the SSE model

For the SSE model (10), we focus on the following model:

λ1

tr(Σ2)1/2
→ 1 as p → ∞. (21)

Note that (21) is one of the SSE models. When Σ = ΣIC and lim infp→∞ ρ > 0, (21) is met. We call (21)
the “uni-SSE (USSE) model”. See Ishii, Yata and Aoshima (2016, 2019) for several statistical inferences
under the USSE model.

We consider the test procedure (20) under the USSE model (21). One may suppose r1 = 1. We
assume the following condition:

(C-v)
κ1

tr(Σ2)1/2
→ 1 as p → ∞.

Note that (21) holds under (C-v) from the fact that λ1 ≥ κ1 = tr(ΣA1). Let A(1) = Ip − A1, Ω1 =
A1ΣA(1) and Ω2 = A(1)ΣA(1). Note that (C-v) is equivalent to

tr(Ω2
2)

1/2/κ1 → 0 as p → ∞

from the facts that tr(Σ2) = κ21 + tr(Ω2
2) + 2∥Ω1∥2F and ∥Ω1∥2F ≤ κ1tr(Ω2

2)
1/2. As for Ω2, we assume

the following model:

(C-i’)
tr(Ω4

2)

tr(Ω2
2)

2
→ 0 as p → ∞.

Note that (C-i’) holds when Σ = ΣIC and lim supp→∞ ρ < 1 because Ω2 = σ(1 − ρ)(Ip − 1p1
T
p /p)

and tr(Ω4
2)/tr(Ω2

2)
2 = 1/tr(Ip − 1p1

T
p /p) = 1/(p− 1) when Σ = ΣIC. Here, we write that

∆̃n =2
n∑

i<j

( q∑
s ̸=s′

tr(Y ij(1),sY ij(2),s′)

n(n− 1)
+

q∑
s=2

tr(Y ij(1),sY ij(2),s)

n(n− 1)

)
−Bn(2).

Let
Υ = 2κ21tr(Ω2

2) + tr(Ω2
2)

2 + 2∥Ω1∥4F + 4∥Ω1∥2F tr(Ω2
2) and L = 4Υ/n2.

Note that

Υ = 2κ21

q∑
s=2

rsκ
2
s +

( q∑
s=2

rsκ
2
s

)2

= tr(Σ2
∗)

2 − κ41 (= Ψ1, say)

when Σ = Σ∗. Then, we have the following results.

Lemma 3.1. Assume (A-i). It holds that as m → ∞

Var{∆̃n +Bn(2)} = L{1 + o(1)}+O
(∆tr(Ω4)1/4{tr(Ω4)1/4 + κ1}

n

)
+O

( tr(Ω4
2)

1/2{κ21 + tr(Ω4
2)

1/2}
n2

)
.

Furthermore, under (C-i’) and

(C-iii’) lim sup
m→∞

∆

L1/2
< ∞,

it holds that as m → ∞
Var{∆̃n +Bn(2)} = L{1 + o(1)}.
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Lemma 3.2. Assume (A-ii), (C-i’) and (C-v). Assume also (C-iii’). It holds that as m → ∞

∆̃n +Bn(2)−∆

L1/2
⇒ N(0, 1).

We note that
∑q

j,j′=2(
∑d

s=1 γ
T
s Ajγsγ

T
s Aj′γs)

2 ≤ {
∑d

s=1(γ
T
s A(1)γs)

2}2 ≤ tr{(ΣA(1))
2}2 =

tr(Ω2
2)

2 and
∑q

j,j′=2 tr(ΣAjΣAj′)
2 ≤ tr(Ω2

2)
2. Then, under (A-i) and (C-v), it holds that as m → ∞

Var{Bn(2)} = o(L). (22)

Thus, from Lemma 3.2, we have the following result.

Theorem 3.1. Assume (A-ii), (C-i’), (C-iii’) and (C-v). It holds that as m → ∞

∆̃n −∆

L1/2
⇒ N(0, 1).

Lemma 3.3. Assume (A-i) and (C-v). It holds that Ψ̃n/Ψ1 = 1 + oP (1) as m → ∞.

From Theorem 3.1 and Lemma 3.3, we have the following results.

Theorem 3.2. Assume (A-ii), (C-i’) and (C-v). For the test procedure (20), we have that

Size = α+ o(1) and Power = Φ

(
∆

L1/2
− zα

L
1/2
∗

L1/2

)
+ o(1) as m → ∞, (23)

where L∗ = 4Ψ1/n
2.

Corollary 3.1. Assume (A-i) and (C-v). Assume also

(C-ii’)
L1/2

∆
→ 0 as m → ∞

under H1 in (2). For the test procedure (20), we have (14).
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