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1 Introduction

The estimation of conditional average treatment effect (CATE) is a general and funda-

mental problem in observational studies. Such estimation problem is essential for policy

evaluation, personalized medicine, offline or online marketing and advertising. Usually, to

identify CATE, one requires the strong ignorability condition which says that outcomes and

treatment assignment is independent conditional on covariates. In other words, only the

covariates we collect affect both of outcomes and treatment assignment. If we fail to collect

such a covariate, the strong ignorability does not hold. Clearly, a large number of covariates

tends to meet the strong ignorability, although it is uncheckable condition from observa-

tions. With advances of information technology and database system, it would be plausible

to consider the high dimensional covariates.

In this talk, we consider the estimation of CATE in high dimensions. Following the

Neyman–Rubin’s potential outcome framework (Rubin, 1974; Neyman et al., 1990), assume

that there is a potential outcomes (Yi(0), Yi(1)) for each sample i ∈ {1, 2, . . . , n}. Let Ti ∈
{0, 1} be the assignment indicator. Then, Yi(0) ∈ R is the potential outcome when the

sample i is assigned to the control (Ti = 0) and Yi(1) ∈ R is the potential outcome when it

is assigned to the treatment (Ti = 1). Assume that we have n independent and identically

distributed examples {(Xi, Ti, Yi(Ti))}ni=1 where Xi ∈ Rp is the covariates with possibly high

dimensions, that is, p≫ n. Our goal is to estimate the conditional average treatment effect

(CATE) given by

τ ∗(x) = E
{
Yi(1)− Yi(0) |Xi = x

}
.

To identify the CATE, we assume the following strong ignorability condition.

Assumption 1. {Yi(0), Yi(1)}⊥⊥Ti |Xi



Moreover, we assume the linearity for the potential outcomes.

Assumption 2. E
{
Yi(0) |Xi = xi

}
= xT

i β
∗
0 and E

{
Yi(1) |Xi = xi

}
= xT

i β
∗
1.

From Assumption 2, we have τ ∗(x) = xT (β∗
1 − β∗

0) and we can estimate β∗
1 from the

treated examples and can estimate β∗
0 from the control examples under Assumption 1. Since

the covariates Xi is high dimension, a natural approach would be applying the Lasso pro-

posed by Tibshirani (1996) for each treated and control examples, i.e.,

β̂t = argmin
β∈Rp

1

2

∑
Ti=t

(Yi −XT
i β)

2 + λt∥β∥1, t = 0, 1,

where Yi = Yi(Ti). Thus, we obtain the estimator of CATE as τ̂(x) = xT (β̂1−β̂0). However,

such the procedure estimate β∗
0 and β∗

1 separately. The treated (control) outcomes are

predicted by treated (control) covariates. Hence, if x is coming from the distribution of

X |T = 1, then xT β̂1 would be accurate but xT β̂0 be not. Moreover, the non-zero elements

of β̂1 and β̂0 usually do not imply zero elements of β̂1 − β̂0 even when the corresponding

elements of β∗
1 − β∗

0 are zero.

2 Proposed methododology

We construct a direct estimation procedure for θ∗ = β∗
1−β∗

0 via the well-known consequence

of the strong ignorability condition, given by

τ ∗(x) = E
[
Yi

{
Ti

e(x)
− 1− Ti

1− e(x)

} ∣∣∣∣Xi = x

]
,

where e(x) = P(Ti = 1 |Xi = x) is the propensity score function at x. Thus, θ∗ can

be estimated by regressing the appropriately weighted outcomes on the covariates. The

propensity score is unknown in most cases. An approach to estimate it in high dimensions

may be generalized linear regression with sparse regularization (see, e.g., Fan and Li (2001)

and Van de Geer (2008)), but it may lead to an biased estimator for θ∗ when the propensity

score function is misspecified.

In this talk, inspired by Athey et al. (2018), a two-step estimation procedure of θ∗ is

proposed. The first step obtains weightings for outcomes without specifying the propensity

score and then Lasso is applied to the weighted outcomes. Let Y0 (Y1) be the vector of

control (treated) outcomes and Xt (t = 0, 1) be the corresponding covariate matrix. Define



the Lasso for weighted outcomes as

θ̂D = argmin
θ∈Rp

1

2n
∥DY − Xθ∥22 + λ∥θ∥1, (1)

where

Y =

(
Y1

Y0

)
, X =

(
X1

X0

)
, D =

(
D1 O

O −D0

)

with diagonal matrices D0 and D1. Let Σ̂ = XTX/n be the covariance matrix. Roughly

speaking, the score function of ∥DY − Xθ∥22/(2n) at θ∗ is close to zero if

1

n
XT

0D0X0 ≈ Σ̂ and
1

n
XT

1D1X1 ≈ Σ̂,

which means that D0 and D1 work in order to balance the two weighted covariance matrices

of control and treated covariates through Σ̂. We consider computing the weight matrices as

argmin
Dt

∥Dt∥max subject to ∥XT
t DtXt/n− Σ̂∥max ≤ ηt, t = 0, 1, (2)

where ηt > 0 (t = 0, 1) and ∥ · ∥max is the element-wise infinity norm. The minimization of

∥Dt∥max is required to control the variance of the errors in linear models. After obtaining

the weight matrices D0 and D1 from (2), we can compute θ̂D through (1). To compute (2)

efficiently, we apply the alternating direction method of multipliers (ADMM) after smoothing

the objective function by the method in Nesterov (2005). The objective function ∥Dt∥max

in (2) is replaced by

∥Dt∥µt
max = max

∥zt∥1≤1
zT
t wt −

µt

2
∥zt∥22,

where wt is the vector of the diagonal elements of Dt and µt ≥ 0 is the smoothing param-

eter. When µt = 0, ∥Dt∥µt
max = ∥Dt∥max and ∥Dt∥µt

max is differentiable when µt > 0. The

optimization problem (2) with ∥Dt∥µt
max is equivalent to

argmin
Dt,Θt

∥Dt∥µt
max subject to Θt = XT

t DtXt/n− Σ̂ and ∥Θt∥max ≤ ηt

whose Lagrangian function is given by

L(Dt,Θt,Λt) = ∥Dt∥µt
max + trΛt

{
Θt − (XT

t DtXt/n− Σ̂)
}
+

ρt
2
∥Θ− (XT

t DtXt/n− Σ̂)∥2F,



where Λt is the Lagrange multiplier and ρt > 0 is controlling the step size. Them, the

ADMM algorithm iteratively updates each parameter as

D
(k+1)
t ← argmin

Dt

L
(
Dt,Θ

(k),Λ
(k)
t

)
, (3)

Θ
(k+1)
t ← argmin

Θt

L
(
D

(k+1)
t ,Θ,Λ

(k)
t

)
, (4)

Λ
(k+1)
t ← Λ

(k)
t + ρt

{
Θ(k+1) − (XT

t D
(k+1)
t Xt/n− Σ̂)

}
. (5)

The optimization in (3) can be computed by the gradient descent for instance since ∥Dt∥µt
max

is differentiable for µt > 0. The update (4) is given by

Θ
(k+1)
t ← sgn(Θ̄t)min

(
|Θ̄t|, ηt

)
, Θ̄t = XT

t D
(k+1)
t Xt/n− Σ̂−Λ(k)/ρt,

where all of sgn(·), min and | · | are element-wise operator.

References

Athey, S., Imbens, G.W. and Wager, S. (2018). Approximate residual balancing: debiased

inference of average treatment effects in high dimensions. Journal of the Royal Statistical

Society: Series B, 80(4), 597–623.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American statistical Association, 96(456), 1348–1360.

Rubin, D.B. (1974). Estimating causal effects of treatments in randomized and nonrandom-

ized studies. Journal of educational Psychology, 66(5), 688.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical program-

ming, 103(1), 127–152.

Splawa-Neyman, J., Dabrowska, D.M., and Speed, T.P. (1990). On the application of prob-

ability theory to agricultural experiments. Essay on principles. Section 9. Statistical Sci-

ence, 465–472.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B, 58(1), 267–288.

Van de Geer, S.A. (2008). High-dimensional generalized linear models and the lasso. The

Annals of Statistics, 36(2), 614–645.


	Introduction
	Proposed methododology

