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Complex data such as non-Euclidean or a mixture of Euclidean and non-
Euclidean data has gained growing attention recently. However, only few
methods are available to do sensitive statistical inferences on these types of
data and only little is known about their asymptotic properties. In the fol-
lowing, we assume that the non-Euclidean data lives on a smooth manifold
and in particular we will focus on directional data, i.e. data on the hyper-
sphere Sd “ tx P Rd`1 : xTx “ 1u and data on polyspheres pS2qd. Examples
of these data types are i.) shape representations including directions such as
skeletal representations that live on Sd1 ˆ pS2qd2 (Hong et al. (2016); Pizer
et al. (2013); Schulz et al. (2016)), ii.) dihedral angles of protein structures
on pS1ˆ S1qd (Eltzner et al. (2017)) or iii.) to analyze temporal sequences of
molecules on Sd (Dryden et al. (2019)). Especially, in examples i.) and ii.)
we have usually a high dimension low sample size setting, i.e. d " n where
n is the sample size and d is the dimension.

A crucial step in the analysis in all these applications is principal nested
spheres (PNS) (Jung et al. (2012)), a method for decomposition and dimen-
sion reduction of directional data on Sd. In opposite to principal component
analysis, PNS is a backward dimension reduction method. In each step,
a submanifold of successively lower dimension, containing the largest total
variance, is fitted to the data. A submanifold can be either a small-sphere
or a great sphere, i.e. a sphere with radius r ă π{2 or r “ π{2. The choice
of a small or a great sphere is a critical question in the PNS procedure. The
fitting of a small sphere to the data might result in an overfitting, e.g. if
the data is concentrated around a point at Sd. We will discuss a new testing
procedure that outperforms alternative testing methods during a simulation
study and the analysis of skeletal 3D models of hippocampi. The proposed
method is based on a measure of multivariate kurtosis for directional data.
Given a suitable decomposition of the data, statistical inference by hypothesis
testing (Schulz et al. (2016)), classification (Hong et al. (2016)) or clustering
(Dryden et al. (2019)) might be performed.

In addition, we will briefly review and discuss some recent works on
asymptotic results within this framework.
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