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Abstract

The objective general index is a weighting method for ranking of
multivariate data. We show that the sample objective general index is a
consistent estimator of the population counterpart in high-dimensional
settings if the population is multivariate normal and the covariance
matrix satisfies a condition. The proof is based on the large deviation
theory. Numerical experiments and real data analysis are conducted.

1 Introduction

Rankings are often determined by multivariate data. For example, the world

university ranking provided by [11] is based on five attributes of universities:

teaching, research, citations, industry income and international outlook. For

a happiness index of prefectures in Japan [10], 65 attributes are used to make

a ranking of 47 prefectures. In heptathlon of athletics, the scores of seven

events are unified into an overall score. These rankings are, after some

transformations, based on a weighted sum of variables.

We focus on the weights. In [8], an objective weight is proposed via diag-

onal scaling of the sample covariance matrix. The resultant index called the

objective general index (OGI) has positive correlation with all the variables

and is invariant with respect to scale transformation of the data. A precise

definition is given in Section 2.

In some applications like the happiness ranking mentioned above, the

number of variables is often large and comparable with the sample size. In

other words, we have to deal with high-dimensional data for ranking. If

we use the objective general index for such a data, a reliable estimator will
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be required. The aim of this paper is to study consistency of the weight

determined from a random sample.

A relevant but different method of determining a weight vector is the

principal component analysis (PCA), consistency of which under high-dimensional

settings has been studied in a vast literature (e.g. [2, 3, 4, 6, 7, 13]). Roughly

speaking, PCA finds a majority direction of variables with ignoring minor

variables, whereas OGI puts large weights to the minor variables as fair as

possible. We also point out that PCA is orthogonally invariant whereas OGI

is (coordinate-wise) scale invariant.

This paper is organized as follows. In Section 2, we formulate an estima-

tion problem of OGI and introduce a loss function. In Section 3, we state

the main theorem. Simulation results and application to genomic data are

given in Section 4. We omit the proof of the theorems.

2 Problem setting

The objective general index is one of possible general indices for multivariate

data. We consider a weighted sum w⊤x of an observation x ∈ Rp as a

general index, where w ∈ Rp is a weight vector. Each variate xi is assumed

to have a meaning that “larger is better” without loss of generality. Then

it is natural to suppose that every coordinate of w is positive.

To state the definition of the objective general index, we first recall the di-

agonal scaling theorem established by Marshall and Olkin [5]. A symmetric

matrix A is called strictly copositive if v⊤Av > 0 for any v ∈ [0,∞)p \ {0}.

Lemma 1 ([5]). Let A be a symmetric positive semi-definite and strictly

copositive matrix. Then there exists a unique positive definite diagonal ma-

trix D such that all the row sums (and column sums) of DAD are unity.

The lemma implies that the following equation with respect to v ∈ Rp
>0

has a unique solution:

Av =
1

v
, (1)

where 1 = 1p = (1, . . . , 1)⊤ is the all-one vector and 1/v denotes the

element-wise division. The vector v in (1) is a unique minimizer of a convex
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function

ψ(v) =

p∑
i=1

(− log vi) +
1

2
v⊤Av, v ∈ Rp

>0.

Hence v is numerically obtained by generic optimization packages.

Let n > p and consider a random sample

X =

x⊤
(1)
...

x⊤
(n)

 ∈ Rn×p

according to the multivariate normal distribution N(0,Σ) with covariance

matrixΣ ∈ Rp×p. Denote the sample covariance matrix by S = n−1
∑n

t=1 x(t)x
⊤
(t).

Definition 1 ([8]). The objective weight w is defined by a solution of

Σw =
1

w
, w ∈ Rp

>0. (2)

Similarly, the sample objective weight ŵ is defined by

Sŵ =
1

ŵ
, ŵ ∈ Rp

>0. (3)

The weighted sum w⊤x of an observation x ∈ Rp using the objective weight

w is called the objective general index (OGI).

The OGI is determined by the objective weight w. Therefore we some-

times call w itself the OGI in this paper.

Our problem is to find conditions on which ŵ is a consistent estimator

of w. The loss function we adopt is

l(Σ, ŵ) =

∥∥∥∥ŵw − 1

∥∥∥∥
2

, (4)

where w is determined by (2). The estimator ŵ is said to be consistent if

l(Σ, ŵ) → 0 in probability as n→ ∞.

At first glance, the loss function in (4) seems to be strange. But it is not

unnatural from the viewpoint of invariance with respect to scale transfor-

mation. More specifically, consider a scale transformation x(t) 7→ Dax(t) for

each observation x(t) ∈ Rp, where a is a positive vector and Da is the diag-

onal matrix with diagonal part a. Then the population covariance matrix
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Σ is transformed into DaΣDa. Likewise, S is transformed into DaSDa.

Then the weights w and ŵ determined by (2) and (3) are transformed into

w/a and ŵ/a, respectively. Hence the ratio ŵ/w is scale invariant.

Since the distribution of the loss function is scale invariant, we can as-

sume w = 1, or equivalently,

Σ1 = 1 (5)

without loss of generality. This argument will be used in the next section.

We refer to the equation (5) as the equisum property according to [1].

3 Main result

We consider a high-dimensional setting in that the dimension p grows with

the sample size n and the covariance matrix Σ changes with n while keeping

the equisum property (5). We first state a result on weak consistency.

Theorem 1. Suppose that Σ1 = 1. If

p

n
tr(Σ) → 0 (6)

as n→ ∞, then ŵ is weakly consistent in the sense that ∥ŵ − 1∥2 converges

to 0 in probability.

Now we state the main theorem. Denote the entries of Σ as (σij)
p
i,j=1.

Theorem 2. Suppose that Σ1 = 1. Then there exists a constant C > 0

such that

P(∥ŵ − 1∥ ≥ ε) ≤ 4p exp

(
− nCε2

(maxi σii)p2

)
(7)

for any ε > 0 and any n ≥ n0 with some n0 = n0(ε). In particular, if

max
i
σii = O(1) (8)

and

p2 log p

n
= o(1) (9)

as n→ ∞, then ŵ is strongly consistent in the sense that ∥ŵ−1∥2 converges
to 0 almost surely.
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The condition (8) is satisfied for many cases. For example, if Σ is the

identity matrix, then σii = 1. On the other hand, if Σ is a degenerated

matrix Σ = 11⊤/p, then σii = 1/p. In the latter example, the condition (9)

can be further weakened to (p log p)/n = o(1).

Note that (8) and (9) imply (6) from the fact that

tr(Σ) =

p∑
i=1

σii ≤ pmax
i
σii.

The factor (maxi σii)
−1 on the right hand side of (7) is not arbitrarily large

since the following lemma holds.

Lemma 2. If Σ1 = 1, then σii ≥ 1/p for any i.

Proof. Since 1 is an eigenvalue of Σ, the spectral decomposition of Σ is

Σ =
11⊤

p
+

p∑
j=2

λjvjv
⊤
j ,

where λ2 ≥ . . . ≥ λp > 0 are positive numbers (which are not necessarily less

than one) and v2, . . . ,vp are vectors orthogonal to 1. Denoting vj = (vij)
p
i=1,

we have

pσii − 1 =

p∑
j=2

pλjv
2
ij ≥

p∑
j=2

pλpv
2
ij = (p− 1)λp > 0,

where the last equality follows from
∑p

j=2 vjv
⊤
j = Ip − (11⊤/p).

The proof also shows that σii can be arbitrarily large since λp can take

any positive value.

In Section 4, we conduct numerical experiments to support the main

result.

4 Numerical results

4.1 Simulation

We numerically demonstrate that the OGI is estimated with enough ac-

curacy if (p2 log p)/n is small. Figure 1 shows that the mean L2 norm of
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ŵ−1 against n/(p2 log p), where the true covariance matrix is the first-order

autoregressive model

(σij) = ρ|i−j|.

The covariance matrix is not equisum in the sense of Eq. (5). Therefore, in

advance of the experiments, we applied a diagonal transformation to Σ in

order that Eq. (5) is satisfied. The examined pairs of (p, n) are

p ∈ {22, 23, . . . , 27} and n ∈ {p, 2p, . . . , 210}.

The number of experiments for each pair (p, n) is 103.

From the figure, the mean L2 norm decreases as n/(p2 log p) becomes

large. We also observe that the norm is smaller if ρ is closer to 1. This

is consistent with the factor maxi σii in Theorem 2. Indeed, the equisum

matrix Σ̃ = (σ̃ij) corresponding to Σ is approximately

σ̃ij ≍ (1− ρ)ρ|i−j|

as p → ∞ due to
∑∞

k=0 ρ
k = 1/(1 − ρ), and hence maxi σ̃ii is reduced if ρ

tends to 1.

4.2 Real data

We computed the objective weight of a microarray data provided by [12].

The result suggests a variable selection method for unsupervised data. De-

tails will be provided in the presentation.

5 Discussion

In this research, we obtained a consistency result of objective general index

when a condition p2 log p/n→ 0 is satisfied.

A future work is to confirm whether the rate is the best possible or

not. In [9], inconsistency is numerically observed if p/n tends to a positive

number. In that paper, a limiting form of ŵ is conjectured via the replica

method developed in statistical physics.
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Figure 1: Average of ∥ŵ−1∥ in 103 experiments for AR(1) models with the
autoregression parameter ρ. The horizontal axis denotes n/(p2 log p). The
number and color on each point indicates p.
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