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Datasets in economics and wireless communication networks, the leading eigenval-
ues of the population covariance matrices may tend to infinity [26]. Unbounded pop-
ulation covariance matrices have been studied in [3, 28, 26, 38] to cite a few. On the
other hand, the limiting distributions of eigenvalues of sample covariance/correlation
matrices with released independence condition have been studied in [9, 4, 14, 29] with
Marčenko-Pastur distribution [36, 6], Tracy-Widom distribution [20, 34] and so on.
Motivated by [37, 25, 19, 14, 31], we have studied the limiting spectral distribution of
sample correlation matrices formed from equi-correlated normal population, of which
population covariance matrix is unbounded. We discuss our results [2, 1] with large
datasets from molecular biology [31, 33], S&P500 stock returns datasets [25], and
household datasets [27].

1 Significant dimension of dataset

Let [xij] be a p by n data matrix, for a random sample of size n from a certain
p-dimensional population distribution. Let S ∈ Rp×p be the sample covariance matrix
[
∑n

k=1 xikxjk/n] and C ∈ Rp×p be the sample correlation matrix.The empirical spectral
distribution (ESD) of a real symmetric matrix M ∈ Rp×p is, by definition, FM(x) =
1

p
# { 1 ≤ i ≤ p | λi(M) ≤ x } (x ∈ R) where λ1(M) ≥ λ2(M) ≥ · · · ≥ λp(M) are the

eigenvalues of M. In [19], Jiang studied the limiting behaviors of the empirical spectral
distribution of C and the distribution of the extreme eigenvalues of C, assuming that
xij are i.i.d. Hereafter, we suppose

p, n → ∞,
p

n
→ c ∈ (0, ∞). (1)

This limiting regime is common in random matrix theory [5, 7, 19, 8, 6, 36].

Proposition 1 ([19, Theorem 1.2]). E |xij|2 < ∞. Then, almost surely, the empirical
spectral distribution FC weakly converges to a deterministic probability distribution
Fc(x) which is Marčenko-Pastur distribution [36, 6] such that the dimension to sample
size ratio index is c.

An equi-correlation matrix is, by definition,

Σρ = (1− ρ)I+ ρJ ∈ Rp×p (0 ≤ ρ < 1),
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where J is the matrix of 1 of order p and λ1(Σρ) = (p − 1)ρ + 1 ≥ λ2(Σρ) = · · · =
λp(Σρ) = 1 − ρ. We consider a normal population having the population correlation
matrix Σρ, as Engle and Kelly [12] proposed Dynamic Equicorrelation model for a time
series analysis of stock market. Let us call the constant ρ an equi-correlation coefficient.

Proposition 2 (A. and Husnaqilati [2]). Let C be a sample correlation matrix formed
from a p-dimensional normal population with the equi-correlation coefficient 0 ≤ ρ < 1.
Then, almost surely, FC(x) weakly converges to Fc (x/(1− ρ)) .

A default rule to determine the number of significant components [21] (factors [13])
to take, in statistical software SPSS and SAS is Guttman-Kaiser criterion [17, 22, 39],
which suggests us to retain the number of eigenvalues greater than the average of all
eigenvalues of a sample correlation matrix. Nearly four decades ago, for p independent
standard normal random variables, Yeomans-Golder [37] showed that Guttman-Kaiser
criterion suggests at most p/2 variables, by a simulation study. Moreover, for dependent
variables, H. F. Kaiser, an American psychologist who introduced Guttman-Kaiser
criterion, observed a dichotomous behavior of the criterion by reporting the experience
of specialists of factor analysis:

Quotation 3 ([24]). ... Humphreys (personal communication, 1984) asserts that, when
the number p of attributes is large and the “average” intercorrelation is small, the
Kaiser-Guttman rule will overfactor. Tucker (personal communication, 1984) asserts
that, when the number of attributes p is small and the structure of the attributes is
particularly clear, the Kaiser-Guttman rule will underfactor. ...

Here, “overfactor” (“underfactor”, resp.) intends “overestimate” (“underestimate”,
resp.) the number of factors in the factor model. According to Kaiser [23], ‘the
“average” intercorrelation’ corresponds to a positive constant ρ of Σρ.

Yeomans-Golder’s simulation study and Kaiser’s observation are partially explained
by the following:

Theorem 4. Suppose that Z = n−1/2[zij] ∈ Rp×n where zij (1 ≤ i ≤ p, 1 ≤ j ≤ n)
i.i.d.∼

N(0, 1). Then, it holds almost surely that

lim
c→0

lim
n,p→∞
p/n→c

FZZ⊤Σρ

(
1

p
TrZZ⊤Σρ

)
=

{
1
2

(ρ = 0);

1 (ρ > 0).

We will discuss a free probability theoretic approach for this theorem with “N(0, 1)”
replaced.

For a real symmetric matrixM of order p, we define the portion GKM of eigenvalues
ofM that Guttman-Kaiser criterion retains, by p−1# { i ≤ p | λi(M) ≥ Tr(M)/p }. For
GKc,ρ := 1− Fc ((1− ρ)−1), we have the following:

Theorem 5 ([2]). Suppose X1, . . . , Xn
i.i.d.∼ Np(µ, DΣρD) for a deterministic vector

µ ∈ Rp, a deterministic nonsingular diagonal matrix D ∈ Rp×p, and 0 ≤ ρ < 1. Then,
GKS a.s.→ GKc,ρ for µ = 0 and D = σI with σ > 0; and GKC a.s.→ GKc,ρ.

Theorem 6 ([2]).

1. For any c > 0, GKc,ρ is nonincreasing in ρ ∈ [0, 1).

2. If 0 ≤ ρ < 1, then c ≥ (1/
√
1− ρ+ 1)2 ⇐⇒ GKc,ρ = 1/c.



Figure 1: GKc,ρ (thick curves) and CPc,ρ (thin curves). CPM(t) is the portion of
eigenvalues of M that Jolliffe’s rule [21] retains.

2 The largest eigenvalue of sample covariance/correlation matrix

Psychologists have been concerned with the largest eigenvalues of correlation ma-
trices, since Kaiser studied “average” intercorrelation [23] among variables.

Quotation 7 ([15]). ... The first eigenvalue of a correlation matrix indicates the
maximum amount of the variance of the variables which can be accounted for with
a linear model by a single underlying factor. When all correlations are positive, this
first eigenvalue is approximately a linear function of the average correlation among
the variables. While that is not true when not all the correlations are positive, in
the general case the first eigenvalue is approximately equal to a lower bound derived
in the paper. That lower bound is based on the maximum average correlation over
reversals of variables and over subsets of the variables. Regression tests show these
linear approximations are very accurate. The first eigenvalue measures the primary
cluster in the matrix, its number of variables and average correlation. ...

By random matrix theory, we get:

Theorem 8 ([1]). λ1(C)/p
a.s.→ ρ, (λ1(S)− µ)/σ

d→ N(0, 1) (0 < ρ < 1) where

µ :=
((p− 1)ρ+ 1) ((1 + (n− 1)p) ρ+ p− 1)

pnρ
, σ :=

(p− 1)ρ+ 1√
2n

.

By the first assertion, GKp/n,λ1(C)/p estimates GKC.
The first (second, resp.) assertion of Theorem 8 is due to the first (second, resp.)

assertion of the following proposition. A sequence (Fp)p of distribution functions is
called tight [35, p. 8] on R+, if for every ε ∈ (0, 1], supp Fp(M) > 1 − ε for some
M ≥ 0.



Proposition 9 ([28, Proposition 2.1]). Let S = n−1Σ1/2ZZ⊤Σ1/2 ∈ Rp×p with the
entries of Z ∈ Rp×n being independent, standard normal. Suppose Σ ∈ Rp×p is positive
semidefinite and deterministic,

(
FΣ

)
p
of ESDs is tight on R+, and limp→∞ λ1(Σ) = ∞.

Then,

1. λ1(S)/λ1(Σ)
a.s.→ 1.

2. If moreover spectral gap condition on Σ: lim supp,n→∞
p/n→c

λ2(Σ)/λ1(Σ) < 1, then

√
n

(
λ1(S)

λ1(Σ)
− 1− β

)
d→ N

(
0, E |z11|4 − 1

)
for β :=

1

n

p∑
k=2

λk(Σ)

λ1(Σ)− λk(Σ)
.

Our first result λ1(C)/p
a.s.→ ρ agrees with the psychologists’ work (Quotation 7)

and probabilist’s work:

Proposition 10 ([19, Theorem 1.1]). If {xij | i, j ≥ 1 } are i.i.d. and E |x11|4 < ∞,

then λ1(C)
a.s.→ (1 +

√
c)2.

Theorm 8 and the following yield the phase transition of limiting distribution of
the largest eigenvalue, depending on whether ρ > 0 or ρ = 0.

Proposition 11 ([20, 34]). Let {xij | i, j ≥ 1 } be i.i.d. standard normal. Then

λ1(S)−
(√

p+
√
n− 1

)2(√
p+

√
n− 1

) (
1√
n−1

+ 1√
p

)1/3

d→ Tracy-Widom distribution.

It is curious to know whether the limiting distribution of the largest eigenvalue is
still dichotomous even when the equi-correlation coefficient ρ = ρn decays with respect
to n. We are planned to study this when ρn

√
log p → 0, λ, or ∞ in an “ultra-high-

dimensional case” (Fan-Jiang [14]) p = pn → ∞ and log p = o(n1/3) as n → ∞.

3 Empirical Study

Our theoretical study on equi-correlated normal population is unexpectedly related
to psychological datasets, maybe because their datasets have strong correlation struc-
tures. To see the mass effect of the number p of variables and the sample size n, we
examine our theoretical study with datasets from molecular biology and economics.

3.1 Datasets from molecular biology
To design vaccines, Quadeer et al. [31] considered a multiple sequence alignment

(MSA) of a p-residue (site) protein with n sequences where p = 475 and n = 2815.
They represented the MSA with a 0-1 code following [11, 18], and then considered
the correlation matrix C. From this, Quadeer et al. [31, 32] detected nine signal
eigenvectors from C, by clever randomization for the MSA. At the same time, they
introduced an alternative method that employs Marčenko-Pastur distribution. We also
examine our study of Guttman-Kaiser criterion with Marčenko-Pastur distribution, by
using their MSA dataset of Quadeer et al. [31].

Figure 2 (a)( (b), resp.) is the heat map of the binary MSA dataset (the correlation
matrix C, resp.) applied by an hierarchical clustering algorithm on columns and rows.
The binary MSA dataset of Quadeer et al. [31] is sparse. As for the p2 = 225625 entries



(a) (b) (c)

Figure 2: The binary MSA dataset. (a) The data matrix, (b) the correlation matrix
C, and (c) the eigenvalues of C.

of C, the minimum is −.28922, the first quantile is −.00437, the median is −.00174,
the mean is .00682, the third quantile is −.00061, and the maximum is 1.

Figure 2 (c) is the histogram of the eigenvalues of C. The light gray bins are for the
eigenvalues more than 1 and the dark gray bins are for the eigenvalues less than 1. The
black solid curve is the density of Marčenko-Pastur distribution with index p/n = 0.16
and scale 1 − λ1(C)/p = 0.98. The GKC = 0.39 has 10% error from the estimated
value GK0.16,0.02 = 0.44, which is close to the theoretical value 1/2 of Theorem 4.

Next, for 16 microarray datasets from [33], Table 1 lists the name of a microarray
dataset, p/n, λ1(C)/p, GKC, GKp/n,λ1(C)/p, CPC(.7) and p, in the increasing order of
p/n. Here p is the number of features and n is the number of observations.

No. Name p/n λ1(C)/p GKC GKp/n,λ1(C)/p p
1 Sorlie 5.4 .110 .162 .186 456
2 Gravier 17.2 .083 .054 .057 2905
3 Alon 32.2 .450 .030 .031 2000
4 Yeoh 50.9 .145 .020 .020 12625
5 Gordon 69.2 .087 .014 .014 12533
6 Tian 72.9 .089 .014 .014 12625
7 Shipp 92.5 .213 .011 .011 7129
8 Chiaretti 98.6 .181 .01 .01 12625
9 Golub 99.0 .149 .01 .01 7129
10 Pomeroy 118.8 .266 .008 .008 7128
11 West 145.4 .162 .006 .006 7129
12 Burczynski 175.4 .115 .005 .005 22283
13 Chin 188.2 .164 .005 .005 22215
14 Nakayama 212.2 .073 .004 .004 22283
15 Chowdary 214.2 .699 .004 .004 22283
16 Borovecki 718.8 .173 .0013 .0013 22283

Table 1: DNA microarray datasets.

By Table 1, GKC > CPC(.7) and GKC is nonincreasing in p/n as Figure 1 (left).
Moreover, allGKp/n,λ1(C)/p are n/p by Theorem 6 (2), by p/n > (1/

√
1− λ1(C)/p+1)2.



For the correlation matrices of the 15 datasets of Table 1, Figure 3 shows the heat
maps applied by a hierarchical clustering to columns and rows. Despite of the various
structures of C’s, all the empirical values GKC are, remarkably, around n/p.

Figure 3: Heat maps of the correlation matrices of DNA microarray datasets.

3.2 Datasets from economics
For a dataset of returns of p S&P500 stocks (or other major markets) for n trading

days, Laloux et al. [25] fitted the histogram of the eigenvalues of the correlation matrix
C, to the density function of a scaled Marčenko-Pastur distribution.

Table 2 is the list of p/n, λ1(C)/p, GKC, and GKp/n,λ1(C)/p, for p = 212 S&P500
stocks of various periods. The lines of Table 2 are in the increasing order of λ1(C)/p.
GKC is decreasing in λ1(C)/p in Table 2, as Theorem 6 (1). The estimatorsGKp/n,λ1(C)/p

No Period p/n λ1(C)/p GKC GKp/n,λ1(C)/p p
1 1993-01-04-1995-12-29 .280 .110 .330 .37 212
2 1993-01-04-2022-08-01 .028 .313 .103 0 212
3 2012-08-01-2022-08-01 .084 .399 .099 0 212
4 2005-01-04-2022-08-01 .047 .422 .084 0 212
5 2005-01-04-2013-12-30 .093 .450 .084 0 212

Table 2: The returns of S&P500 datasets.

of GKC are mostly 0.
Next, we consider similar but more categorized datasets. Naturally, the return of a

stock is more correlated with the return of a stock of the same industry classification
sector, than with the return of a stock of a different industry classification sector.
Table 3 is the list of global industry classification standard (GICS) sector of S&P500,
p/n, λ1(C)/p, GKC, GKp/n,λ1(C)/p, and p, for the period 2012-2022. Table 3 is ordered



in the increasing order of λ1(C)/p. All the p of Table 3 are less than the p = 212 of
Table 2, but some GICS sectors have larger λ1(C)/p. In Table 3, GKC is decreasing if
we leave out the first line (Communication services, p = 19), the fourth line (Consumer
Staples, p = 23), the seventh line (Material, p = 24), the tenth line (Energy, p = 16)
from all the lines. Theorem 6 (1) for Guttman-Kaiser criterion holds for p ≥ 28.

No GICS p/n λ1(C)/p GKC GKp/n,λ1(C)/p p
1 Communication Services .007 .357 .210 0 19
2 Consumer Discretionary .020 .384 .153 0 52
3 Health Care .018 .394 .149 0 47
4 Consumer Staples .009 .430 .174 0 23
5 Information Technology .025 .465 .097 0 62
6 Industrials .026 .498 .092 0 65
7 Materials .009 .499 .167 0 24
8 Real estate .011 .582 .100 0 30
9 Financials .025 .607 .079 0 63
10 Energy .006 .687 .062 0 16
11 Utilities .011 .689 .071 0 28

Table 3: The returns of S&P500 stocks per GICS.

The estimator GKp/n,λ1(C)/p of GKC in Table 2 and Table 3 are all 0 for λ1(C)/p >
0.110. The estimator GKp/n,λ1(C)/p = 1 − Fp/n (1/(1− λ1(C)/p)) is 0 if p/n < 1 but
λ1(C)/p < 1 is sufficiently large. Figure 4 is the time series of equi-correlations for
the datasets, computed by GJR GARCH [16] with correlation structure being dynamic
equicorrelation [12]. Then, λ1(C)/p is always larger than the time averages ρ of the
time series of the equi-correlation coefficient.

Figure 4: λ1/p = .110, average ρ=.088

For the stock return datasets (Table 2 and Table 3), we computed the heat maps
with hierarchical clustering algorithm for the sample correlation matrices C of the
datasets. The heat maps are very different from the heat map (Figure 2(b)) of the
correlation matrix of the binary MSA dataset. The correlation matrices of the stock
returns have diagonal block structures. Moreover, the sizes of the eleven correlation



matrices of Table 3 are small. Since GKC of the stock returns datasets may be dis-
crepant from our estimator GKp/n,λ1(C)/p, we think that Laloux et al. [25]’s fitting of a
scaled Marčenko-Pastur distribution to the stock returns dataset is too naive.

Finally, we discuss two household datasets in 2019 by area classification, from [27].
One is for the amount of assets per households and the other is for the average yearly
income. These datasets have response variables: the amount of assets and liabilities
per household and the average yearly income from the whole of Japan. Meanwhile, the
explanatory variables are the amount of assets per households and the average yearly
income from each of 66 regions in Japan. The two datasets suffer from multicollinear-
ity [10, 21], in view of variance inflation factors (VIFs) [10, 21] of the explanatory
variables. If all the explanatory variables are uncorrelated, then all the VIFs are
1, but if severe multicollinearities exist, then the VIFs of explanatory variables are
large [10, 21].

Name min VIF R2 λ1(C)/p GKC p p/n
The amount of assets 2019 1×103 1 .98 .03 66 .05

The average yearly income 2019 4×104 1 .99 .01 66 .04

Table 4: The household datasets of 2019.

Table 4 is the list of name, min VIF, the (adjusted) coefficient R2 of determination,
λ1(C)/p, GKC, p = 66 variables, and p/n, in the increasing order of λ1(C)/p. Since
R2 = 1 for both datasets, we can assume that all the explanatory variables have
the equi-correlation coefficient ρ = 1. This corresponds to λ1(C)/p = 1 by the first
assertion of Theorem 8. One of future work is to discuss the multicollinearity and
other correlation structures [4, 9, 12, 14, 29, 30] among variables, with the extreme
eigenvalues and the bulk eigenvalues of the correlation matrices of datasets.

4 Conclusion

For an equi-correlated normal population with the equi-correlation coefficient ρ
(0 ≤ ρ < 1), we have shown that the limiting distribution of eigenvalues of the sample
correlation matrix is Marčenko-Pastur distribution scaled with 1 − ρ. This scaling
of Marčenko-Pastur distribution explains the “phase transitions” of Guttman-Kaiser
criterion depending on whether ρ = 0 or not as n, p → ∞, p/n → c > 0. In high-
dimensional statistics of various fields, when the number of variables are smaller than
the size of a sample, a global correlation among the variables causes a perceptible global
impact, even if the correlation is minute.

A correlation matrix of finance and biology is often the addition of a background
constant correlation and a matrix with block diagonal structure, and the most of block
sizes are unchanged but the number of blocks grows. This would be an combination
of a spiked population model and our block equi-correlation model, and may be next
target of study.
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