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Abstract. We propose an online parametric estimation method of stochastic differential equa-
tions with discrete observations and misspecified modelling based on online gradient descent.
Our study provides uniform risk bounds for the estimators over a family of stochastic differen-
tial equations. The derivation of the bounds involves three underlying theoretical results: the
analysis of the stochastic mirror descent algorithm based on dependent and biased subgradi-
ents, the simultaneous exponential ergodicity of classes of diffusion processes, and the proposal
of loss functions whose approximated stochastic subgradients are dependent only on the known
model and observations.
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1. Introduction

Let us consider the parametric estimation of the following d-dimensional stochastic differential
equation (SDE):

dXa,b
t = b

(
Xa,b
t

)
dt+ a

(
Xa,b
t

)
dwt, X0 = x ∈ Rd, t ≥ 0.

SDEs describe dynamics with randomness and allow for flexible model structures under mild
conditions. Therefore, they are used to model phenomena in broad disciplines such as finance,
biology, epidemiology, physics, meteorology, and machine learning. In this study, we propose
an online parametric estimation method of b based on discrete observations {Xa,b

ihn
}i=0,...,n with

hn > 0.
Batch estimation of SDEs with discrete observations is a classical and important problem for

statistics of SDEs [see 4, 20, 5, 2, 11, 7, 12, 6]. Notably, some results achieve the asymptotic
efficiency of batch estimators with more efficient computational complexities [19, 10, 8, 9].

Online estimation, where the estimator is updated as data are acquired, is also a typical and
significant concern in time series data analysis because it is quite useful for real-time decision
making. For example, Kalman filtering is one of the most classical online estimation methods
based on time series data. However, most studies on the online parametric estimation of SDEs
depend on the setting of continuous observations {Xa,b

t }t≥0 [17, 1, 16], which is restrictive in
real data analysis. Hence, we aim to propose online estimation methods for SDEs with discrete
observations.

We provide uniform risk bounds for the parametric estimation of both diffusion and drift
coefficients of SDEs with discrete observations and model misspecification via online gradient
descent with convex loss functions and their convex approximations. Those bounds give theor-
etical convergence guarantees of the proposed online estimation method for SDEs with discrete
observations, which are the main contribution of our study. To derive the bounds, we combine
the three theoretical discussions: (i) model-wise non-asymptotic risk bound for the stochastic
mirror descent (SMD) with dependent and biased subgradients; (ii) simultaneous ergodicity
and uniform moment bounds for a class of SDEs; and (iii) the proposal of loss functions for the
online parametric estimation.

Selecting drift estimation as an example in this section, we set the convex and compact
parameter space Θ ⊂ Rp and the triple of measurable functions (bm,M, J) such that bm (x, θ)
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is the possibly misspecified parametric model, M (x) is a positive semi-definite weight function,
and J (θ) is the regularization term. We set the function

ϕ (x, y, θ) :=
1

2
M (x)

[
(y − bm (x, θ))⊗2

]
+ J (θ) .

Assume that ϕ (x, y, θ) is convex in θ for all x, y ∈ Rd and has measurable elements in the
subdifferential for all x, y, and θ. {θi; i = 1, . . . , n+ 1} defined by the following online gradient
descent algorithm

θi+1 := ProjΘ
(
θi −

hn√
i
∂θϕ

(
Xa,b

(i−1)hn
,
1

hn
∆iX

a,b, θi

))
,

with an arbitrary initial value θ1 ∈ Θ and a sequence of discrete observations {Xa,b
ihn

; i =

0, . . . , n}, is then well-defined as a sequence of random variables by choosing measurable sub-
gradients, where ∆iX

a,b = Xa,b
ihn

−Xa,b
(i−1)hn

and hn > 0 is the discretization step. Note that the
learning rate chosen here does not lead to the best convergence but is simple and approximately
the best in our study. Our contributions (i) and (iii) provide the following risk bound for the
estimator θ̄n := 1

n

∑n
i=1 θi with a fixed (a, b): for some c > 0,

sup
θ∈Θ

(
Ea,bx

[
fa,b

(
θ̄n
)]

− fa,b (θ)
)
≤ c

(
lognh2n√
nh2n

+ hβ/2n

)
,

where β ∈ [0, 1] is a parameter controlling the smoothness of b, Ea,bx is the expectation over
{Xa,b

t }t≥0 with Xa,b
0 = x, fa,b (θ) =

∫
M (ξ) [(bm (ξ, θ) − b (ξ))⊗2]Πa,b (dξ) + J (θ) is the loss

function, and Πa,b is the invariant probability measure of Xa,b
t . The contribution (ii) yields the

existence of c such that the inequality holds uniformly in S := {(a, b)}, a class of coefficients
of SDEs satisfying the same regularity conditions; hence, the risk bound is uniform in S. Note
that θ̄n estimates the best θ ∈ Θ (or the quasi-optimal parameter; see [18]) with bm (, θ) closest
to the true b in the L2

(
Πa,b

)
-distance. Moreover, if the model bm correctly specifies b, that is,

for all (a, b) ∈ S there exists θ such that b = bm (·, θ), then we can obtain the following bound:

sup
(a,b)∈S

Ea,bx
[
fa,b

(
θ̄n
)]

≤ c

(
lognh2n√
nh2n

+ hβ/2n

)
.

One simple but significant outcome of the above discussion is a non-asymptotic risk guarantee
of the following online gradient descent for linear models such that an arbitrary initial value
θ1 ∈ Θ,

θi+1 := ProjΘ
(
θi +

1√
i

(
∂θb

m
(
Xa,b

(i−1)hn
, θi

))(
∆iX

a,b − hnb
m
(
Xa,b

(i−1)hn
, θi

)))
,

where bm (x, θ) is the possibly misspecified parametric model whose components are linear in
θ ∈ Θ. Note that it corresponds to the case M (x) = Id, J (θ) = 0. As evident, the uniform risk
bound for the estimator θ̄n := 1

n

∑n
i=1 θi over a certain family S of the coefficients a, b holds:

for some c > 0,

sup
(a,b)∈S

sup
θ∈Θ

(
Ea,bx

[∫ ∥∥bm (ξ, θ̄n)− b (ξ)
∥∥2
2
Πa,b (dξ)

]
−
∫

∥bm (ξ, θ)− b (ξ)∥22Π
a,b (dξ)

)

≤ c

(
lognh2n√
nh2n

+ hβ/2n

)
.

If we assume that bm correctly specifies b, then

sup
(a,b)∈S

Ea,bx
[∫ ∥∥bm (ξ, θ̄n)− b (ξ)

∥∥2
2
Πa,b (dξ)

]
≤ c

(
lognh2n√
nh2n

+ hβ/2n

)
.
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2. Stochastic mirror descent with dependence and bias

Our first result is an extension of that by Duchi et al. [3], which discusses the SMD algorithm
with dependent noises. Specifically, we provide convergence guarantees for the SMD algorithm
based on the approximated subgradients of latent loss functions dependent on ergodic noises,
which is necessary to view the convergence rate of our estimators discussed in Section 4.

We state the problem and propose the SMD algorithm with approximate subgradients.
(Ω,A, P ) denotes the probability space.

(
Ξ,B

(
Rd
)
|Ξ
)

with Ξ ∈ B
(
Rd
)

is the state space of
a latent ergodic process {ξi; i ∈ N} with the invariant probability measure Π on

(
Ξ,B

(
Rd
)
|Ξ
)
.

We set a compact and convex set Θ ∈ B (Rp) as the parameter space.
Let {F (·; ξ) ; ξ ∈ Ξ} be a family of real-valued convex functions defined on NΘ, where NΘ is

an open neighbourhood of Θ. We assume a convex function f such that

f (θ) :=

∫
Ξ
F (θ; ξ)Π (dξ)

is finite-valued for all θ ∈ NΘ. We consider the following minimization problem:

min
θ∈Θ

f (θ) .

We let ∂F (θ; ξ) denote the subdifferential of F with respect to θ and assume that there exists
a
(
B
(
Rd
)
|Ξ
)
⊗ (B (Rp) |NΘ

)-measurable function G (θ; ξ) such that G (θ; ξ) ∈ ∂F (θ; ξ) for all
θ ∈ Θ and ξ ∈ Ξ.

A prox-function ψ is a differentiable 1-strongly convex function on NΘ with respect to the
norm ∥·∥. Dψ is the Bregman divergence generated by ψ such that for all θ, θ′ ∈ Θ,

Dψ

(
θ, θ′

)
:= ψ (θ)− ψ

(
θ′
)
−
〈
∇ψ

(
θ′
)
, θ − θ′

〉
≥ 1

2

∥∥θ − θ′
∥∥2 .

We consider the SMD algorithm based on the gradients of the approximating functions Hi,n (·)
for F (·; ξi). Let {Hi,n (·) ; i = 1, . . . , n} be a sequence of real-valued random convex functions
on NΘ. Assume that there exists an A⊗ (B (Rp) |NΘ

)-measurable random function Ki,n (θ) such
that Ki,n (θ) ∈ ∂Hi,n (θ) almost surely (a.s.) for all θ ∈ Θ. We define the SMD update: for
arbitrary chosen θ1 ∈ Θ,

θi+1 = argmin
θ∈Θ

{
⟨Ki,n (θ) , θ⟩+

1

ηi
Dψ (θ, θi)

}
, (2.1)

where {ηi} is a sequence of non-increasing positive numbers denoting learning rates.
Let Rτ,n with τ ∈ N0 (:= N ∪ {0}) be a random function of a sequence of Θ-valued random

variables {ϑi} such that

Rτ,n ({ϑi}) :=
n−τ∑
i=1

(F (ϑi; ξi+τ )−Hi+τ,n (ϑi)) ; (2.2)

we use the abbreviation Rτ,n (θ
′) := Rτ,n ({θ′}) for non-random θ′ ∈ Θ. Rτ,n measures the

degrees of discrepancy between F (·; ξi) and Hi,n (·).
The following decomposition for τ ∈ N0 is useful:

n∑
i=1

(
f (θi)− f

(
θ′
))

=

n−τ∑
i=1

(
f (θi)− f

(
θ′
)
− F (θi; ξi+τ ) + F

(
θ′; ξi+τ

))
+
n−τ∑
i=1

(Hi+τ,n (θi)−Hi+τ,n (θi+τ )) +
n∑

i=τ+1

(
Hi,n (θi)−Hi,n

(
θ′
))

+

n∑
i=n−τ+1

(
f (θi)− f

(
θ′
))

+Rτ,n ({θi})−Rτ,n

(
θ′
)
, (2.3)

which is a trivial extension to (6.2) by Duchi et al. [3].
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We define the Hellinger distance between two probability measures P and Q defined on the
common measurable space such that

dHel (P,Q) :=

√√√√∫ (√dP
dµ −

√
dQ
dµ

)2

dµ, (2.4)

where µ is a measure such that P and Q are absolutely continuous with respect to µ. Such a µ
exists; for example, P and Q are absolutely continuous with respect to 1

2 (P +Q).
Let us consider that F := {Fi; i ∈ N0} is a filtration such that σ (ξj ; j ≤ i) ⊂ Fi for all

i ∈ N0 and σ (θj ; j ≤ i+ 1) ⊂ Fi for all i = 0, . . . , n. Note that Fi-measurability of θi+1 is
natural because θi+1 depends on ξ1, . . . , ξi if we do not consider the approximation of F (·; ξi)
with Hi,n (·). We do not determine a concrete F because appropriate selection depends on
applications.

We define the mixing time for ξi with respect to the Hellinger distance based on the filtration
F: P[i]|F :=

{
P j[i]|F; j > i

}
, i ∈ N0 which denotes a family of P j[i]|F, the conditional distribution

of ξj given Fi with j > i, and

τ
(
P[i]|F, ϵ

)
:= inf

{
τ ∈ N; d2Hel

(
P i+τ[i]|F ,Π

)
≤ ϵ2

}
. (2.5)

Let us present some assumptions.
(A1) There exists a constant G > 0 such that for all i ∈ N, Fi∧n−1-measurable Θ-valued

random variable ϑi,

E
[
∥G (ϑi; ξi)∥2∗

]
≤ G2.

(A2) There exists a constant Kn > 0 such that for all i = 1, . . . , n, Fi−1-measurable Θ-valued
random variables ϑi,

E
[
∥Ki,n (ϑi)∥2∗

]
≤ K2

n.

(A3) The mixing times of {ξi} are uniform in the sense that there exists a uniform mixing
time in expectation τE

(
P|F, ϵ

)
<∞ such that for all ϵ > 0,

τE
(
P|F, ϵ

)
:= inf

{
τ ∈ N; sup

i∈N0

E
[
d2Hel

(
P i+τ[i]|F ,Π

)]
≤ ϵ2

}
.

For simplicity, we ignore the dependence of τE on P|F and use the notation τE (ϵ).
Furthermore, assume that for the Bregman divergence Dψ, supθ1,θ2∈ΘDψ (θ1, θ2) ≤ R2/2 holds
for some R > 0.

We obtain a version of Theorem 3.1 by Duchi et al. [3].

Theorem 2.1. Under (A1)–(A3), for any ϵ > 0 and θ′ ∈ Θ,

E
[

n∑
i=1

(
f (θi)− f

(
θ′
))]

≤ 2
√
2GRnϵ+

√
2 (τE (ϵ)− 1)K2

n

n∑
i=1

ηi +
R2

2ηn
+
K2
n

2

n∑
i=1

ηi

+ (τE (ϵ)− 1)GR+ E
[
RτE(ϵ)−1,n ({θi})−RτE(ϵ)−1,n

(
θ′
)]
.

This upper bound is the same as that in Theorem 3.1 by Duchi et al. [3] except for the
residuals, which immediately disappear if F (·; ξi) = Hi,n (·), and the constant factor

√
2 of the

second term on the right hand side. Assumptions (A1) and (A2) on the subgradients are weaker
than Assumption A in their study; therefore, this result includes a generalization of that by
Duchi et al. [3] in the sense of achieving the same bound except for the constant factor with a
weaker condition.
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3. Simultaneous ergodicity of classes of diffusion processes

We discuss the simultaneous ergodicity of a family of diffusion processes Xa,b
t (x), defined by

the following SDE:

dXa,b
t (x) = b

(
Xa,b
t (x)

)
dt+ a

(
Xa,b
t (x)

)
dwt, Xa,b

0 (x) = x, (3.1)

where b : Rd → Rd and a : Rd → Rd ⊗ Rd are non-random functions, x ∈ Rd is a non-
random vector, and wt is a d-dimensional Wiener process. The transition kernel is denoted
as P a,bt : Rd × B

(
Rd
)
→ [0, 1] for all t > 0. For simplicity, we occasionally use the notation

Xa,b
t = Xa,b

t (x) when no confusion can arise.
In this section, we illustrate the simultaneous ergodicity and of a family of diffusion processes.

The simultaneous ergodicity of a family of diffusion processes refers to the ergodicity such that
the rate of convergence is uniform in the family. They enable us to validate that the risk bounds
by Theorem 2.1 hold uniformly in families with such properties.

3.1. Local Dobrushin condition. For the local Dobrushin condition, we set the following
time-homogeneous versions of the conditions in Menozzi et al. [15].

(Ha
α) There exist constants κ0 ≥ 1 and α ∈ (0, 1] such that for all x, y, ξ ∈ Rd

κ−1
0 ∥ξ∥22 ≤ ⟨a⊗2 (x) ξ, ξ⟩ ≤ κ0 ∥ξ∥22 ,

and
∥a (x)− a (y)∥F ≤ κ0 ∥x− y∥α2 .

(Hb
β) b is measurable, and there exist constants κ1 > 0 and β ∈ [0, 1] such that for all x, y ∈ Rd,

∥b (0)∥2 ≤ κ1, ∥b (x)− b (y)∥2 ≤ κ1

(
∥x− y∥β2 ∨ ∥x− y∥2

)
.

Under (Ha
α) and (Hb

β), the SDE has a unique weak solution.
Let ρ be a nonnegative smooth function with support in the unit ball of

(
Rd, ∥·∥2

)
and∫

Rd ρ (x) dx = 1. Define ρϵ (x) := ϵ−dρ
(
ϵ−1x

)
for ϵ ∈ (0, 1] and bϵ (x) := b ∗ ρϵ (x) =∫

Rd b (y) ρϵ (x− y) dy. The following then holds:
∥∥∇xb1∥2∥∞ := sup

x∈Rd

∥∇n
xb1 (x)∥2 ≤ κ1vol (B1 (0)) sup

x:∥x∥2≤1
∥∇n

xρ (x)∥2 (3.2)

[see (1.9) of 15]. Let φ(ϵ)
t (x), t ≥ 0 be a deterministic flow φ̇

(ϵ)
t (x) := bϵ(φ

(ϵ)
t (x)), φ0 (x) = x.

The following Aronson-type estimates for the transition density function of Xt hold.

Theorem 3.1 (a corollary of Theorem 1.2 by [15]). Under (Ha
α) and (Hb

β), for any T > 0,
t ∈ (0, T ) and x ∈ Rd, the unique weak solution Xa,b

t (x) admits a density pa,bt (x, y), which is
continuous in x, y ∈ Rd. Moreover, pa,bt has the following properties:

(i) (Two-sided density bounds) there exist constants λ0 ∈ (0, 1] and C0 ≥ 1 depending only
on (T, α, β, κ0, κ1, d) such that for all t ∈ (0, T ) and x, y ∈ Rd,

1

C0td/2
exp

−

∥∥∥y − φ
(1)
t (x)

∥∥∥2
2

λ0t

 ≤ pa,bt (x, y) ≤ C0

td/2
exp

−
λ0

∥∥∥y − φ
(1)
t (x)

∥∥∥2
2

t

 ;

(ii) (Gradient estimate in x) there exist constants λ1 ∈ (0, 1] and C1 ≥ 1 depending only on
(T, α, β, κ0, κ1, d) such that for all t ∈ (0, T ) and x, y ∈ Rd,

∥∥∥∇xp
a,b
t (x, y)

∥∥∥
2
≤ C1

t(d+1)/2
exp

−
λ1

∥∥∥y − φ
(1)
t (x)

∥∥∥2
2

t

 .

Cj and λj are completely determined by (T, α, β, κ0, κ1, d); hence, for SDEs satisfying (Ha
α)

and Hb
β for the same parameters, the density estimates are uniform across those models.
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Lemma 3.2. Under (Hb
β), the following holds:∥∥∥φ(1)

t (x)− x
∥∥∥
2
≤ κ1t

(
2 + ∥x∥β2 ∨ ∥x∥2

)
exp

(
∥∥∇xb1∥2∥∞ t

)
.

We verify the local Dobrushin condition using Theorem 3.1 and Lemma 3.2. Note that we
omit the explicit dependence of coefficients on ρ in the statements because we only need consider
a fixed ρ.

Proposition 3.3. For fixed T1, T2 > 0 with T1 < T2 and compact and convex K ⊂ Rd, there
exists a constant δ > 0 dependent only on (T1, T2, α, β, κ0, κ1, d,K) such that for all t ∈ (T1, T2),

sup
x,y∈K

∥∥∥P a,b2t (x, ·)− P a,b2t (y, ·)
∥∥∥

TV
≤ 2− δ.

3.2. Lyapunov-type condition. In addition to (Hb
β) and (Ha

α), we also set the following drift
condition for exponential ergodicity:

(Lbγ) There exist constants γ ≥ 0 and κ1 > 0 such that for all x ∈ Rd,

⟨b (x) , x⟩ ≤ −κ−1
1 ∥x∥1+γ2 + κ1.

We define the operator La,b such that for all f ∈ C2
(
Rd
)
,

La,bf (x) := ⟨b (x) , ∂xf (x)⟩+
1

2
tr
(
a⊗2 (x) ∂2xf (x)

)
. (3.3)

Let Ea,bx denote the expectation with respect to the weak solution for fixed a, b, and x.

Proposition 3.4. Under (Ha
α), (Hb

β), and (Lbγ), for all (γ, ν) ∈ R2
+ such that γ = 0 and

ν ∈
(
0, 2κ−1

1 /κ0
)

or arbitrary γ > 0 and ν > 0, there exist positive constants E1, E2 > 0

dependent only on (γ, ν, κ0,κ1, d) such that for any h > 0 and x ∈ Rd,

Ea,bx
[
V
(
Xa,b
h

)]
− V (x) ≤ −

(
1− e−E1h

)
V (x) +

E2

(
1− e−E1h

)
E1

,

where V := exp
(
ν
√
1 + ∥x∥22

)
.

The next corollary follows immediately.

Corollary 3.5. Under the same assumptions as Proposition 3.4, we have

sup
t≥0

Ea,bx

[
exp

(
ν

√
1 +

∥∥∥Xa,b
t

∥∥∥2
2

)]
≤ exp

(
ν

√
1 + ∥x∥22

)
+
E2

E1
.

For any m ≥ 0, we also have

sup
t≥0

Ea,bx
[∥∥∥Xa,b

t

∥∥∥m
2

]
≤ m!

νm

(
exp

(
ν

√
1 + ∥x∥22

)
+
E2

E1

)
.

3.3. Harris-type theorem. The following exponential ergodicity with uniform constants is
an immediate consequence of Theorems 2.6.1 and 2.6.3 and Corollary 2.8.3 by Kulik [13].

Theorem 3.6. Under the assumptions (Ha
α), (Hb

β), and (Lbγ) with γ ≥ 0, there exists a unique
invariant probability measure Πa,b such that for all t ≥ 0 and x ∈ Rd,∥∥∥P a,bt (x, ·)−Πa,b (·)

∥∥∥
TV

≤ c1 exp (−t/c2) (V (x) + c3) ,

where V (x) := exp
(
ν
√

1 + ∥x∥22
)

, and c1, c2, c3, ν > 0 are positive constants dependent only

on (α, β, γ, κ0, κ1,κ1, d).

Theorem 3.6 leads to the simultaneous exponential ergodicity of the d-dimensional diffu-
sion processes defined by the SDEs satisfying (Ha

α), (Hb
β), and (Lbγ) with the same constants

(α, β, γ, κ0, κ1,κ1).
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4. Estimation of stochastic differential equations

We consider the estimation of the unknown drift coefficient b : Rd → Rd of the following SDE
based on discrete observations of Xt (estimation of the unknown diffusion coefficient is quite
parallel):

dXa,b
t = b

(
Xa,b
t

)
dt+ a

(
Xa,b
t

)
dwt, X0 = x, (4.1)

where x ∈ Rd is a deterministic initial value and wt is a d-dimensional Wiener process. We
do not necessarily aim to estimate the optimal parameters by considering b to be included in
the statistical model; rather, we consider misspecified modelling and estimate the quasi-optimal
parameter [18] to know the model closest to b in the sense of the L2-distances with respect to
invariant probability measures.

We apply the discussion in Section 2 to present model-wise risk bounds for parametric es-
timation via online subgradient descent, which is obtained by setting ψ(·) = ∥ · ∥22/2 and
∥·∥ = ∥·∥∗ = ∥·∥2, and that in Section 3 to render those upper bounds uniform with re-
spect to SDEs in certain classes. The notation for the classes of coefficients are as follows: let
α, γ, κ0, κ1,κ1 > 0, β ≥ 0, ϖ := (α, β, γ, κ0, κ1,κ1), and Sϖ be the class of coefficients such
that

Sϖ :=

{
(a, b)

a satisfies (Ha
α) and b satisfies (Hb

β) and (Lbγ)

with the same constants α, β, γ, κ0, κ1,κ1

}
. (4.2)

We finally obtain the risk bounds that uniformly hold for all (a, b) ∈ Sϖ with fixed ϖ by
combining Theorems 2.1 and 3.6 and Corollary 3.5.

Our estimation is based on discrete observations {Xa,b
ihn

}i=0,...,n for a sample size of n ∈ N and
the discretization step hn ∈ (0, 1]. For abbreviation, we use the notation ∆iX = Xa,b

ihn
−Xa,b

(i−1)hn

for all i = 1, . . . , n. In addition, we write Ea,bx and Xa,b
t simply as E and Xt in cases wherein no

confusion can arise.

4.1. Estimation with general loss functions. Let Ξ = Rd, Θ ∈ B (Rp) be the compact con-
vex parameter space, NΘ be an open neighbourhood of Θ, and R := sup {∥θ − θ′∥2 ; θ, θ′ ∈ Θ}.
The loss function on Θ is defined with unknown b and a known triple (bm,M, J) of functions
with Borel-measurable elements : (1) the parametric model bm : Rd × NΘ → Rd; (2) the
weight function M : Rd → Rd ⊗ Rd, which is positive semi-definite for all ξ ∈ Rd; and (3) the
regularization term J : NΘ → R.

We define a function F : NΘ × Rd → R such that

F (θ; ξ) = F b (θ; ξ) :=
1

2
M (ξ)

[
(bm (ξ, θ)− b (ξ))⊗2

]
+ J (θ) . (4.3)

We consider the minimization problem of the following loss function on Θ:

fa,b (θ) :=

∫
F b (θ; ξ)Πa,b (dξ) , (4.4)

where Πa,b is the invariant probability measure of Xa,b
t .

Clearly, F (θ;x), which depends on the unknown coefficient b, is unknown. Hence, we consider
the approximated loss functions based on discrete observations and observe the performance of
the estimator given by online gradient descents.

The sampled loss functions are given by the hn-skeleton of Xa,b
t :

F (θ; ξi) =
1

2
M (ξi)

[
(bm (ξi, θ)− b (ξi))

⊗2
]
+ J (θ) , (4.5)

where ξi = Xa,b
(i−1)hn

. Hi,n (θ), a random function on Θ, should be sufficiently close to F ; hence,
we set

Hi,n (θ) :=
1

2h2n
M
(
X(i−1)hn

) [(
∆iX − hnb

m (X(i−1)hn , θ
))⊗2 −

(
∆iX − hnb

(
X(i−1)hn

))⊗2
]

+ J (θ) . (4.6)
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A simple computation leads to the equality
Hi,n (θ)− F (θ; ξi)

=
1

hn
M
(
X(i−1)hn

) [
b
(
X(i−1)hn

)
− bm (X(i−1)hn , θ

)
,∆iX − hnb

(
X(i−1)hn

)]
.

Let F = {Fi; i ∈ N0}, where Fi = σ (Xt; t ≤ ihn). We set the following assumptions on F ,
Hi,n, and (bm,M, J).

(D1) For all ξ, ξ′ ∈ Rd,
1

2
M (ξ)

[(
bm (ξ, θ)− ξ′

)⊗2
]
+ J (θ)

is convex with respect to θ ∈ NΘ. Moreover, there exist positive constants G > 0
and Ǩ > 0, a B(Rd) ⊗ (B (Rp) |NΘ

)-measurable function G, and an Fi ⊗ (B (Rp) |NΘ
)-

measurable random function K such that G (θ; ξ) ∈ ∂F (θ; ξ) and Ki,n (θ) ∈ ∂Hi,n (θ) a.s.
for all ξ ∈ Rd, θ ∈ Θ, and i = 1, . . . , n, and

sup
(a,b)∈Sϖ

sup
i∈N

Ea,bx
[
∥G (ϑi; ξi)∥22

]
≤ G, sup

(a,b)∈Sϖ

sup
i=1,...,n

Ea,bx
[
∥Ki,n (ϑi)∥22

]
≤ Ǩ

hn
.

for all n ∈ N and sequence of Fi∧n−1-measurable Θ-valued random variables ϑi.
(D2) There exists a constant ζ > 0 such that for all x ∈ Rd and θ ∈ NΘ,

∥bm (x, θ)∥2 ≤ ζ
(
1 + ∥x∥ζ2

)
, ∥M (x)∥2 ≤ ζ.

The following proposition provides the bound for the residual terms Rτ,n.

Proposition 4.1. Assume that (D2) holds. There exists a constant c > 0 dependent only on
(β, κ0, κ1, ζ, d) such that for any sequence {ϑi; i = 1, . . . , n} of Fi−1-measurable Θ-valued random
variables ϑi, τ ∈ N0, and n ∈ N,∣∣∣∣∣Ea,bx

[
n−τ∑
i=1

(F (ϑi; ξi+τ )−Hi+τ,n (ϑi))

]∣∣∣∣∣ ≤ cnhβ/2n

(
1 + sup

t≥0
Ea,bx

[∥∥∥Xa,b
t

∥∥∥c
2

])
.

We obtain our main result on the drift estimation using learning rates whose optimality is
attributable to Duchi et al. [3]; we ignore the influence of G, Ǩ, and R.

Theorem 4.2. Assume that hn ∈ (0, 1], lognh2n ≥ 1, and (D1)–(D2) hold. Under the update
rule (2.1) with ηi := ηhn/

√
i and fixed η > 0, for any x ∈ Rd, there exists a positive constant

c > 0 dependent only on
(
ϖ, ζ, η,G, Ǩ, R, d, x

)
such that

sup
(a,b)∈Sϖ

sup
θ∈Θ

Ea,bx

[
n∑
i=1

(
fa,b (θi)− fa,b (θ)

)]
≤ c

(√
n

h2n
lognh2n + nhβ/2n

)
.

When we assume a usual identifiability condition of the quasi-optimal parameter, that is, the
optimal point θa,b0 of fa,b, Theorem 4.2 yields the rate of convergence.

Corollary 4.3. Assume that the same assumptions as in Theorem 4.2 hold, the update rule
(2.1) holds with ηi := ηhn/

√
i and η > 0, and for all (a, b) ∈ Sϖ, there exist χa,b > 0 and

θa,b0 ∈ Θ such that
χa,b

2

∥∥∥θ − θa,b0

∥∥∥2
2
≤ fa,b (θ)− fa,b

(
θa,b0

)
.

(i) There exists a positive constant c > 0 dependent only on
(
ϖ, ζ, η,G, Ǩ, R, d, x

)
such

that

sup
(a,b)∈Sϖ

Ea,bx
[
χa,b

2

∥∥∥θ̄n − θa,b0

∥∥∥2
2

]
≤ c

(
lognh2n√
nh2n

+ hβ/2n

)
.

(ii) If nh2n → ∞ and supn∈N nh
2+β
n <∞, then θ̄n − θa,b0 = OP

(
4

√
nh2n

(lognh2n)2
)

.
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(iii) If nh2n → ∞ and supn∈N nh
2+β/4ρ
n < ∞ for some ρ ∈ (0, 1/4), then θ̄n − θa,b0 =

OP

((
nh2n

)ρ).
4.2. Estimation with least-square loss functions. We now consider the least-square-type
loss functions [e.g., see 14] for SDEs with drift coefficients linear in the parameters. The target
loss function is

fa,b (θ) =

∫
1

2
∥bm (ξ, θ)− b (ξ)∥22Π

a,b (dξ) . (4.7)

It corresponds to the case M (x) = Id and J (θ) = 0 for all x ∈ Rd and θ ∈ NΘ. Hence, Hi,n (θ)
is given as

Hi,n (θ) :=
1

2h2n

∥∥∆iX − hnb
m (X(i−1)hn , θ

)∥∥2
2
− 1

2h2n

∥∥∆iX − hnb
(
X(i−1)hn

)∥∥2
2
. (4.8)

We set the following assumption:
(D2’) bm (x, θ) is in C1

(
Rd ×NΘ

)
and each component is linear in θ ∈ NΘ for all x ∈ Rd, and

there exists a constant ζ > 0 such that for all x ∈ Rd and θ ∈ NΘ,

∥bm (x, θ)∥2 ≤ ζ
(
1 + ∥x∥ζ2

)
, ∥∂θbm (x, θ)∥F ≤ ζ

(
1 + ∥x∥ζ2

)
.

Under (D2’), Hi,n (θ) is a.s. convex in θ and its gradient is given as

K := − 1

hn
(∂θb

m)
(
X(i−1)hn , θ

) (
∆iX − hnb

m (X(i−1)hn , θ
))
. (4.9)

By choosing ηi = hn/
√
i, we obtain a simple update rule of the online gradient descent:

θi+1 := ProjΘ
(
θi +

1√
i
(∂θb

m)⊤
(
X(i−1)hn , θi

) (
∆iX − hnb

m (X(i−1)hn , θi
)))

.

Lemma 4.4. Assume that (D2’) holds. There exists a constant c > 0 dependent only on
(ϖ, ζ, d, x) such that for all i = 1, . . . , n, n ∈ N, Fi−1-measurable Θ-valued random variables ϑi,

sup
(a,b)∈Sϖ

Ea,bx

[∥∥∥∥ 1

hn

(
∂θb

m
i−1 (ϑi)

)⊤ (
∆iX − hnb

m
i−1 (ϑi)

)∥∥∥∥2
2

]
≤ c

hn
.

The existence of G dependent only on (ϖ, ζ, d, x) in (D1) is more obvious. Hence, we obtain
the following simple but useful corollary:

Corollary 4.5. Under hn ∈ (0, 1], lognh2n ≥ 1, the update rule (2.1) with ηi = ηhn/
√
i and

η > 0, (D1) and (D2’), θ̄n := 1
n

∑n
i=1 θi has the uniform risk bound such that

sup
(a,b)∈Sϖ

sup
θ∈Θ

Ea,bx
[
fa,b

(
θ̄n
)
− fa,b (θ)

]
≤ c

(
lognh2n√
nh2n

+ hβ/2n

)
,

where c > 0 is a constant dependent only on (ϖ, ζ, η,R, d, x).
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