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1 Learnability of convolutional neural networks for infinite
dimensional input

Here, we show the learning ability of convolutional neural networks for infinite dimensional
input investigated in Okumoto & Suzuki (2022). First, we prepare the notations and in-
troduce the problem setting. Throughout this section, we use the following notations. Let
R>0 := {s ∈ R : s > 0}, and for a set D, let D∞ := {(s1, . . . , si, . . . ) : si ∈ D} (for example,
R∞ := {(si)∞i=1 : si ∈ R (∀i = 1, 2, . . . )}). For s ∈ R∞, let supp(()s) = {i ∈ N : si 6= 0}. Let
N∞

0 := {l ∈ (N ∪ {0})∞ : supp(l) <∞} and define Z∞
0 and R∞

0 in the same way. Furthermore, for
s ∈ R∞

0 , let 2s := 2
∑∞

i=1 si . For L ∈ N, let [L] = {1, . . . , L}. For a ∈ R, let bac be the largest
integer less than or equal to a.

We consider a regression problem where the predictor (input) is infinite dimensional. Let λ be
the uniform probability measure on ([0, 1],B([0, 1])) where B([0, 1]) is the Borel σ-field on [0, 1], and
let λ∞ be the product measure of λ on ([0, 1]∞,B([0, 1]∞)) where B([0, 1]∞) is the product σ-algebra
generated by the cylindric sets ∩j≤d{x ∈ [0, 1]∞ : xj ∈ Bj} for d = 1, 2, . . . and Bj ∈ B([0, 1]).
Let PX be a probability measure defined on the measurable space ([0, 1]∞,B([0, 1]∞)) that is
absolutely continuous to λ∞ and its Radon-Nikodym derivative satisfies ‖ dPX

dλ∞ ‖L∞([0,1]∞) < ∞.
Then, suppose that there exists a true function fo : [0, 1]∞ → R, and consider the following
nonparametric regression problem with an infinite dimensional input:

Y = fo(X) + ξ, (1.1)

where X is a random variable taking its value on [0, 1]∞ and obeys the distribution PX introduced
above, and ξ is a observation noise generated from N(0, σ2) (a normal distribution with mean 0
and variance σ2 > 0). Let P be the joint distribution of X and Y obeying the regression model.

What we investigate in the following is (i) how efficiently we can approximate the true function
fo by a neural network, and (ii) how accurately deep learning can estimate the true function fo

from n observations Dn = (Xi, yi)
n
i=1 where (Xi, yi)

n
i=1 are i.i.d. observations from the model. As

a performance measure, we employ the mean squared error ‖f − fo‖2PX
:= EP [(f(X)− fo(X))2],

which can be seen as the excess risk of the predictive error E(X,Y )∼P [(f(X) − Y )2] associated
with the squared loss (i.e., ‖f − fo‖2PX

= E(X,Y )∼P [(f(X) − Y )2] − E(X,Y )∼P [(f
o(X) − Y )2] =

E(X,Y )∼P [(f(X)− Y )2]− inff :measurable E(X,Y )∼P [(f(X)− Y )2]).

1.1 Mixed and anisotropic smoothness on infinite dimensional variables

Here, we introduce a function class in which we suppose the true function fo is included. For a

given l ∈ Z∞
0 , define ψli : [0, 1] → R as ψli(x) =


√
2 cos(2π|li|x) (li < 0),√
2 sin(2π|li|x) (li > 0),

1 (li = 0),

for x ∈ [0, 1], and

define ψl(X) :=
∏∞

i=1 ψli(xi) for X = (xi)
∞
i=1 ∈ [0, 1]∞. Let L2([0, 1]∞) := {f : [0, 1]∞ → R :
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∫
[0,1]∞

f2(x)dλ∞(x) < ∞} equipped with the inner product 〈f, g〉 :=
∫
[0,1]∞

f(x)g(x)dλ∞(x) for

f, g ∈ L2([0, 1]∞). Then, (ψl)l∈Z∞
0

forms a complete orthonormal system of L2([0, 1]∞), that is,
f ∈ L2([0, 1]∞) can be expanded as f(X) =

∑
l∈Z∞

0
〈f, ψl〉ψl(X) (see Ingster & Stepanova (2011)

for example). For s ∈ N∞
0 , let δs(f) : R∞ → R be

δs(f)(·) =
∑

l∈Z∞
0 :⌊2si−1⌋≤|li|<2si

〈f, ψl〉ψl(·),

which can be seen as the frequency component of f of frequency |li| ' 2si toward each coordinate.

We also define ‖f‖p :=
(∫

[0,1]∞
|f |pdλ∞

)1/p

for p ≥ 1. Then, we define a function space with a

general smoothness configuration as follows.

Definition 1 (Function class with γ-smoothness). For a given γ : N∞
0 → R>0 which is monoton-

ically non-decreasing with respect to each coordinate. For p ≥ 1, θ ≥ 1, we define the γ-smooth
space as

Fγ
p,θ([0, 1]

∞) :=

{
f =

∑
l∈Z∞

0

〈f, ψl〉ψl :
( ∑

s∈N∞
0

2θγ(s)‖δs(f)‖θp
)1/θ

<∞
}
,

equipped with the norm ‖f‖Fγ
p,θ

:=
(∑

s∈N∞
0
2θγ(s)‖δs(f)‖θp

)1/θ

.

In the following, Fγ
p,θ([0, 1]

∞) is abbreviated to Fγ
p,θ, and its unit ball is denoted by U(Fγ

p,θ).
Remind that δs(f) represents the frequency component associated with the frequency (2si)∞i=1, and
then the norm of the γ-smooth space imposes weight 2θγ(s) on each frequency component associated
with s. In that sense, γ(s) controls the weight of each frequency component and accordingly a
function in the space can have different smoothness toward different coordinates. As a special case
of γ(s), we investigate the following ones. We can see that a finite dimensional analysis can be
easily reduced to a special case of the infinite dimensional analysis. In that sense, our analysis
generalizes existing finite dimensional analyses.

Definition 2 (Mixed smoothness and anisotropic smoothness). Given a monotonically non-
decreasing sequence a = (ai)

∞
i=1 ∈ R∞

>0, we define the mixed smoothness as

(mixed smoothness) γ(s) = 〈a, s〉,

where 〈a, s〉 :=
∑∞

i=1 aisi
1, and define the anisotropic smoothness as

(anisotropic smoothness) γ(s) = max{aisi : i ∈ N}.

Each component ai of a = (ai)
∞
i=1 represents the smoothness of the function with respect

to the variable xi. Since we assumed (ai)
∞
i=1 is monotonically non-decreasing, a function in the

space has higher smoothness toward the coordinate xi with higher index i. In other words, the
function f in the space is less sensitive to the variable xi with a larger index i. For example, in
computer vision tasks, we may suppose xi with a large index i corresponds to a higher frequency
component of the input image, and then the function is less sensitive to such high frequency
components and more sensitive to a low-frequency “global” information. This can be seen as an
infinite dimensional variant of the mixed smooth Besov space (Schmeisser, 1987; Sickel & Ullrich,
2009) and the anisotropic Besov space (Nikol’skii, 1975; Vybiral, 2006; Triebel, 2011). In our
theoretical analysis, we will assume that the true target function fo is included in the γ-smooth
function space.

Assumption 3. The target function satisfies fo ∈ U(Fγ
p,θ) with p ≥ 1 and θ ≥ 1, and ‖fo‖∞ ≤

Bf for a fixed constant Bf > 0, where the smoothness γ is either the mixed smoothness or the
anisotropic smoothness.

1Note that, since the number of nonzero components of s ∈ N∞
0 is finite, the summation always converges. For

the same reason, the maximum in the anisotropic smoothness is also attained by some finite index i.
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1.2 Definition of a dilated convolutional neural network

Here, we introduce the neural network model that we investigate. Let L ∈ N be the depth of
the network and di (i = 1, . . . , L + 1) be the width of the i-th layer in the network where we set
dL+1 = 1. Then, the fully connected neural network (FNN) can be given by (ALη(·) + bL) ◦ · · · ◦
(Aiη(·) + bi) ◦ · · · ◦ (A1x+ b1) where Ai ∈ Rdi+1×di , bi ∈ Rdi+1 and η(x) = max{x, 0} is the ReLU
activation function that is applied element-wise. The set of FNN with depth L ∈ N, maximum
width W ∈ N, norm bound B > 0, and sparsity level S ∈ N is defined by

Φ(L,W,S,B) :=
{
f(x) = (ALη(·) + bL) ◦ · · · ◦ (Aiη(·) + bi) ◦ · · · ◦ (A1x+ b1) :

max
i=1,...,L

‖Ai‖∞ ∨ ‖bi‖∞ ≤ B,

L∑
i=1

‖Ai‖0 + ‖bi‖0 ≤ S, max
i=1,...L

di ≤W
}
,

where ‖ · ‖∞ is the maximum absolute value among the elements of a vector or matrix2, and ‖ · ‖0
is the number of non-zero elements of a vector or matrix.

Next, we define the (dilated) CNNs. Let C ∈ N be the number of channels and RC×∞ :={
(x1, . . . xi, . . . ) : xi ∈ RC

}
. Suppose that w ∈ RC×W ′

is a filter with a width W ′ ∈ N, channel
size C ∈ N and an interval h ∈ N, then define the dilated convolution w ⋆hX

′ ∈ R∞ for an infinite-

sequence of vectors X ′ = (x′i,j)
C,∞
i=1,j=1 ∈ RC×∞ as (w ⋆hX

′)k =
∑C

i=1

∑W ′

j=1 wi,jx
′
i,h(j−1)+k. When

h = 1, it is called a normal convolution. Moreover, given a filter F ∈ RC′×C×W ′
with (C ′)-multiple

channel outputs, we define its corresponding convlution Convh,F : RC×∞ → RC′×∞ as

Convh,F (X
′) =

 F1,:,: ⋆h X
′

...
FC′,:,: ⋆h X

′

.
Then, the dilated CNN can be defined as follows.

Definition 4 (Dilated CNN). For a given L′, W ′ ∈ N, suppose that we are given
filters Fl ∈ RCl+1×Cl×W ′

with the number of channels Cl ∈ N (l ∈ [L′]) with
C1 = 1 and an FNN gFNN ∈ Φ(L,W,B, S), then a neural network given by f(X) =(
gFNN ◦ ConvW ′L′−1,FL′ ◦ · · · ◦ ConvW ′l−1,Fl

◦ · · · ◦ Conv1,F1
◦X

)
1
is called a dilated CNN3, where

gFNN is assumed to be applied in an element-wise manner to the infinite sequence. The set of di-
lated CNNs with the same number of channels Cl = C ′ (2 ≤ ∀l ≤ L′) in all layers but C1 = 1 is
denoted by

P(L′, B′,W ′, C ′, L,W, S,B) =
{(
gFNN ◦ ConvW ′L′−1,FL′ ◦ · · · ◦ Conv1,F1

◦X
)
1
:

Fl ∈ RC′×C′×W ′
(l ≥ 2), F1 ∈ RC′×1×W ′

, ‖Fl‖∞ ≤ B′, gFNN ∈ Φ(L,W,B, S)
}
.

For simplicity, the set of dilated CNNs is abbreviated to P when there is no ambiguity about
the parameter configuration. When L′ = 1, it coincides with a set of regular CNNs. In our
analysis, it is sufficient to consider an dilated CNN with a constant number of channels through-
out all layers (Cl = C (∀l ∈ [L′])). To evaluate the estimation accuracy, it is important to
assume the functions in the set is bounded in terms of the L∞-norm. For that purpose, we con-
sider an dilated CNN clipped by a bound Bf > 0 defined as P̄(Bf , L

′, B′,W ′, C, L,W, S,B) :={
f̄(X) = (−Bf ∨ (Bf ∧ f(X))) : f ∈ P(L′, B′,W ′, C, L,W, S,B)

}
.

1.3 Approximation and estimation errors of deep learning

In this section, we give our main result about the approximation and estimation errors of FNNs
and dilated CNNs when the true function fo is in the γ-smooth function class. For a given T > 0
and the smoothness γ : N∞

0 → R>0, define

I(T, γ) := {i ∈ N : ∃s ∈ N∞
0 , si 6= 0, γ(s) < T},

and then the following quantities play an important role in our approximation error analysis.

2We define a ∨ b := max{a, b} and a ∧ b := min{a, b} for a, b ∈ R.
3Here, we employ h = W ′k−1 for the k-th layer convolution.
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Definition 5 (Axial complexity and frequency direction complexity). The axial complexity is
defined by dmax(T, γ) := |I(T, γ)|. Moreover, the frequency direction complexity is defined by
fmax(T, γ) := maxs∈N∞

0 : γ(s)≤T maxi∈N si.

The axial complexity is used to evaluate how many components need to be extracted from
a given infinite-dimensional sequence X ∈ R∞ to achieve a particular approximation error, and
the frequency complexity characterizes up to which frequency we require to approximate a target
function with a particular error. Let

v :=
(

1
p − 1

2

)
+
, α(γ) := sups∈N∞

0

∑∞
i=1 si
γ(s) , G(T, γ) :=

∑
s∈N∞

0 : γ(s)<T 2s,

where (x)+ := max{x, 0}. Then, a general approximation error theory for FNNs can be obtained
as follows.

Theorem 6 (Approximation error for the γ-smooth space by FNNs). Assume that γ, γ′ : N∞
0 →

R>0 satisfy
γ′(s) < γ(s), vα(γ) < 1, vα(γ′) < 1,

and the target function f ∈ Fγ
p,θ (p ≥ 1, θ ≥ 1) to be approximated satisfies ‖f‖∞ ≤ Bf for a

constant Bf ∈ R>0. For arbitrary T > 0, we let a tuple (dmax, fmax, G) be

(dmax, fmax, G) =

{
(dmax(γ), fmax(γ), G(T, γ)) (1 ≤ θ ≤ 2),

(dmax(γ
′), fmax(γ

′), G(T, γ′)) (2 < θ),

and with some positive constants K, K ′ depending only on Bf , we let

L = 2Kmax
{
d2max, T

2, (logG)2, log fmax

}
, W = 21dmaxG,

S = 1764Kd2max max
{
d2max, T

2, (logG)2, log fmax

}
G, B = (

√
2)dmaxK ′.

Then, there exists an FNN R̂T ∈ Φ(L,W,S,B) with dmax-dimensional input that takes
(xi)i∈I(T,γ) ∈ [0, 1]dmax as an input such that f ′ : [0, 1]∞ → R given by f ′(X) := R̂T

(
(xi)i∈I(T,γ)

)
for X = (xi)

∞
i=1 ∈ [0, 1]∞ satisfies

‖f − f ′‖2 ≲

 2−(1−vα(γ))T ‖f‖Fγ
p,θ

(1 ≤ θ ≤ 2),

2−(1−vα(γ′))T
(∑

T≤γ′(s) 2
2θ

θ−2 (γ
′(s)−γ(s))

)1/2−1/θ

‖f‖Fγ
p,θ

(2 < θ).

According to this theorem, the derived approximation error can be achieved by FNNs if the
required dmax components of the input X is extracted. This theorem clarifies how the decay rate
of the frequency components of the target function affects the approximation accuracy. Since
the approximation accuracy is determined by (dmax, fmax, G), it is not directly affected by the
dimensionality but is characterized merely by the smoothness parameter γ. Intuitively, T > 0
controls the approximation accuracy and simultaneously controls up to which frequency is used for
the approximation. Specifically, the difficulty of the approximation is determined by the number
of bases required that is characterized by the number of s ∈ N∞

0 with γ(s) < T , and the maximum
frequency required for the approximation is also important for the analysis. The bound is proven
by evaluating an approximation error of a trigonometric polynomial approximation of f ∈ Fγ

p,θ

and showing that we can construct a neural network that approximates a trigonometric polynomial
with a certain accuracy.

Here, we derive a concrete convergence rate for CNNs in a setting where γ is mixed or anisotropic
smoothness and the smoothness parameter a = (ai)

∞
i=1 is polynomially increasing. In this setting,

we just need to use only one layer CNN.

Assumption 7. There exists 0 < q <∞ such that the smoothness parameter a = (ai)
∞
i=1 satisfies

ai = Ω(iq). We also assume a1 < a2 for the mixed smoothness setting.

This assumption impose that the target function should be sufficiently smooth with respect
to higher order indices. Under this setting, we show the approximation and estimation errors as
follows. First, the approximation error by the CNNs can be evaluated as follows.
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Theorem 8 (Approximation error bound under smoothness with polynomial order increase).
Suppose that Assumptions 3 and 7 hold, then we have the following approximation error bounds:

1. Mixed smoothness (γ(s) = 〈a, s〉): Suppose that v/a1 < 1. Then, for arbitrary T > 0, there

exists a configuration of the network structure, L′ = 1, B′ = 1, W ′ ∼ T
1
q , C ′ ∼ T

1
q and

L1(T ) ∼ max
{
T

2
q , T 2

}
, W1(T ) ∼

(∏∞
i=2

(
1− 2

−(ai−a1)

a1

)−1
)
T

1
q 2

T
a1 ,

S1(T ) ∼
(∏∞

i=2

(
1− 2

−(ai−a1)

a1

)−1)
T

2
q max

{
T

2
q , T 2

}
2

T
a1 , B1(T ) ∼ (

√
2)T

1
q
,

such that there exists an dilated CNN f ′ ∈ P(L′, B′,W ′, C ′, L1(T ),W1(T ), S1(T ), B1(T )) satisfying
the following approximation error:

‖f ′ − fo‖2 ≲ 2
−
(
1− v

a1

)
T
.

2. Anisotropic smoothness (γ(s) = maxi{aisi}): Let ã := (
∑∞

i=1 a
−1
i )−1 and suppose 0 < ã and

v < ã, then there exists a network structure setting L′ = 1, B′ = 1, W ′ ∼ T
1
q , C ′ ∼ T

1
q and

L2(T )∼max
{
T

2
q , T 2

}
, W2(T )∼T

1
q 2T/ã, S2(T )∼T

2
q max

{
T

2
q , T 2

}
2T/ã, B2(T )∼(

√
2)T

1
q
,

such that there exists an dilated CNN f ′ ∈ P(L′, B′,W ′, C ′, L2(T ),W2(T ), S2(T ), B2(T )) satisfying
the following approximation error: ‖f ′ − fo‖2 ≲ 2−(1−v/ã)T .

From this theorem, we can see that the number of layers, the width, the number of parame-
ters, and the size of the parameters are both determined by T and the smoothness parameter a.
Moreover, in Theorem 6, the approximation error was derived assuming that the appropriate index
set I(T, γ) was provided. On the other hand, in Theorem 8, we do not make such an assumption
because the CNNs can automatically extract the required index I(T, γ).

Next, we consider the estimation error of these models in the regression problem (Eq. (1.1)).
Suppose that we are given n observations Dn = (Xi, yi)

n
i=1 following the model (1.1). We consider

the empirical risk minimization estimator (ERM estimator) in the model P̄ that is given by any
minimizer of the empirical risk:

f̂ ∈ argmin
f∈P̄

1

n

n∑
i=1

(f(Xi)− yi)
2.

As we have stated above, we employ the mean squared error ‖f̂−fo‖2PX
as a performance measure.

Since f̂ depends on the training data Dn, we take expectation with respect to Dn: EPn [‖f̂ −
fo‖2PX

] := E(Xi,yi)ni=1∼Pn [‖f̂ − fo‖2PX
]. Then, the following theorem holds.

Theorem 9 (Estimation error under smoothness with polynomial order increase). Suppose that
Assumptions 3 and 7 hold, then we have the following estimation error bounds:

1. Mixed smoothness (γ(s) = 〈a, s〉): If v/a1 < 1, then by setting the network structure as

L′ = 1, B′ = 1, W ′ ∼ (log n)
1
q , C ′ ∼ (log n)

1
q and (L,W,S,B) = (L1(T ),W1(T ), S1(T ), B1(T ))

for T = a1

2(a1−v)+1 log2(n), the ERM estimator f̂ in P̄(Bf , L
′, B′,W ′, C ′, L,W, S,B) achieves

EPn [‖f̂ − f◦‖2PX
] ≲

(∏∞
i=2(1− 2

−(ai−a1)

a1 )−1
)
n
− 2(a1−v)

2(a1−v)+1 (log n)
2
q+2 max{(log n)

4
q , (log n)4}.

2. Anisotropic smoothness (γ(s) = maxi{aisi}): Under the same setting, if v < ã, by setting

the network structure as L′ = 1, B′ = 1, W ′ ∼ (log n)
1
q , C ′ ∼ (log n)

1
q and (L,W,S,B) =

(L2(T ),W2(T ), S2(T ), B2(T )) for T = ã
2(ã−v)+1 log2(n), the ERM estimator f̂ achieves

EPn [‖f̂ − f◦‖2PX
] ≲ n−

2(ã−v)
2(ã−v)+1 (log n)

2
q+2 max{(log n)

4
q , (log n)4}.

This theorem shows that even if the dimension of the input data is infinite, for a function
with a particular smoothness, CNNs can achieve a dimension-independent convergence rate which
is a polynomial order, that is, it can avoid the curse of dimensionality by utilizing the increasing
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smoothness. We can see that the derived convergence rate is a direct extension of finite dimensional
one. Actually, if v = 0, the rate for the anisotropic smoothness matches that of the finite dimen-
sional one (Suzuki & Nitanda, 2021) up to poly-log order which is known as minimax optimal.
Therefore, CNNs can achieve the optimal rate up to poly-log order at least when v = 0. As for
the mixed smoothness, a finite dimensional version was analyzed (Suzuki, 2019) and a similar rate
was derived. However, our analysis assumes a1 < a2 and ai = Ω(iq) and thus obtained completely
dimensionality independent bound while the bound by Suzuki (2019) depends on d in the exponent
of the poly-log order.

2 High-dimensional asymptotics of feature learning

Here, we show the asymptotic analysis of predictive accuracy of two layer neural networks with
feature learning developed in Ba et al. (2022). We consider the training of a fully-connected
two-layer neural network (NN) with N neurons,

fNN(x) =
1√
N

N∑
i=1

aiσ(〈x,wi〉) =
1√
N

a⊤σ(W⊤x), (2.1)

where x ∈ Rd,W ∈ Rd×N ,a ∈ RN , σ is the nonlinear activation function applied entry-wise,
and the training objective is to minimize the empirical risk. Our analysis will be made in the
proportional asymptotic limit, i.e., the number of training data n, the input dimensionality d, and
the number of neurons N jointly tend to infinity. Intuitively, this regime reflects the setting where
the network width and data size are comparable, which is consistent with practical choices of model
scaling.

In this section, ‖·‖ denotes the ℓ2-norm for vectors and the ℓ2 → ℓ2 operator norm for matrices,
and ‖ · ‖F is the Frobenius norm. For matrix M ∈ Rn×n, tr(M) = 1

n Tr(M) is the normalized
trace. Od(·) and od(·) stand for the standard big-O and little-o notations, where the subscript
highlights the asymptotic variable; we write Õ(·) when the (poly-)logarithmic factors are ignored.
Od,P(·) (resp. od,P(·)) represents big-O (resp. little-o) in probability as d → ∞. Ω(·),Θ(·) are
defined analogously. Γ is the standard Gaussian distribution in Rd. Given f : Rd → R, we denote
its Lp-norm w.r.t. Γ as ‖f‖Lp(Rd,Γ), which we abbreviate as ‖f‖Lp when the context is clear.

2.1 Training procedure

Gradient descent on the 1st layer. Given training examples {(xi, yi)}ni=1, we learn the two-
layer NN (2.1) by minimizing the empirical risk: L(f) = 1

n

∑n
i=1 ℓ(f(xi), yi), where ℓ is the squared

loss ℓ(x, y) = 1
2 (x− y)2. As previously remarked, fixing the first layer W at random initialization

and learning the second layer a yields an RF model, which is a convex problem with closed-form
solution. In contrast, we are interested in learning the feature map (representation); hence we first
fix a (at initialization) and perform gradient descent on W . We write the initialized first-layer as
W 0, and the weights after one gradient step as W 1. The gradient update, which we refer to as
the feature learning step, with learning rate η is given as: W 1 = W 0 + η

√
N ·G0 where

G0 :=
1

n
X⊤

[(
1√
N

(
y − 1√

N
σ(XW 0)a

)
a⊤

)
� σ′(XW 0)

]
, (2.2)

in which � is the Hadamard product, σ′ is the derivative of σ (acting entry-wise), and we denoted
the input feature matrix X ∈ Rn×d, and the corresponding label vector y ∈ Rn. We remark that
the

√
N -scaling in front of η accounts for the 1√

N
-prefactor in our definition of two-layer NN (2.1).

Ridge regression for the 2nd layer. After obtaining the updated weights W 1, we evaluate
the quality of the new CK features by computing the prediction risk of the kernel ridge regression
estimator on top of the first-layer representation. Note that if ridge regression is performed on
the same data X, then after one feature learning step, W 1 is no longer independent of X, which
significantly complicates the analysis. To circumvent this difficulty, we estimate the regression
coefficients â using a new set of training data {x̃i, ỹi}ni=1, which for simplicity we assume to
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have the same size as the original dataset. This can be interpreted as the representation being
“pretrained” on separate data before the ridge regression estimator is learned.

Denoting the feature matrix on the fresh training set {X̃, ỹ} as Φ := 1√
N
σ(X̃W 1) ∈ Rn×N , the

CK ridge regression estimator can be obtained by solving â = argmina

{
1
n‖ỹ −Φa‖2 + λ

N ‖a‖2
}
.

2.2 Student-teacher setting and main assumptions

Given a target function (teacher model) f∗ and a learned model f̂ , we evaluate the model perfor-

mance using the prediction risk: R(f̂) = Ex(f̂(x)− f∗(x))2 = ‖f̂ − f∗‖2L2 , where the expectation
is taken over the test data from the same training distribution.

We utilize the orthogonal decomposition of the activation function σ. Define the coefficients

µ0 = E[σ(z)], µ1 = E[zσ(z)], µ2 =
√
E[σ(z)2]− µ2

0 − µ2
1, where z ∼ N (0, 1). (2.3)

This implies σ(z) = µ0 + µ1z + σ⊥(z), where E[σ⊥(z)] = E[zσ⊥(z)] = 0, and E[σ⊥(z)2] = µ2
2.

Similarly, for square integrable target function f∗, we have the orthogonal decomposition

f∗(x) = µ∗
0 + µ∗

1〈x,β∗〉+ P>1f
∗(x), µ∗

1β∗ = E[xf∗(x)], (2.4)

where P>1 is the projector orthogonal to constant and linear functions in L2(Rd,Γ), which im-
plies that E[P>1f

∗(x)] = 0,E[xP>1f
∗(x)] = 0. As d → ∞, quantities defined in (2.4) satisfy

‖β∗‖ = 1, ‖P>1f
∗‖L2 → µ∗

2, where µ
∗
0, µ

∗
1, µ

∗
2 are bounded constants. Intuitively, µ∗

0, µ
∗
1, and µ

∗
2

can be interpreted as the “magnitude” of the constant, linear, and nonlinear components of f∗,
respectively.

Assumption 10.

1. Proportional limit. n, d,N → ∞, n/d→ ψ1, N/d→ ψ2, where ψ1, ψ2 ∈ (0,∞).

2. Gaussian initialization.
√
d · [W 0]ij

i.i.d.∼ N (0, 1),
√
N · [a]j

i.i.d.∼ N (0, 1), for i ∈ [d], j ∈ [N ].

3. Normalized activation. The activation function σ has λσ-bounded first three derivatives
almost surely. In addition, σ satisfies µ0 = 0 and µ1, µ2 6= 0 defined in (2.3).

4. Single-index teacher. Labels are generated as yi = f∗(xi) + εi, where xi
i.i.d.∼ N (0, I), and

εi is i.i.d. sub-Gaussian noise with mean 0 and variance σ2
ε . The teacher f∗(x) = σ∗(〈x,β∗〉),

where β∗ ∈ Rd with ‖β∗‖ = 1, and σ∗ is Lipschitz with µ∗
0 = 0, µ∗

1 6= 0 as defined in (2.4).

2.3 η = Θ(1): improvement over the initial CK

In this section, we precisely characterize the CK prediction risk under the small learning rate
η = Θ(1). We first introduce the Gaussian equivalence property which will be useful in the
risk computation. The Gaussian Equivalence Theorem (GET) states that the performance of a
nonlinear kernel model is the same as that of a noisy linear model. Specifically, for the ridge
regression estimator, define

RF(λ) = Ex

(
〈ϕF(x), âλ〉 − f∗(x)

)2
,

âλ = argmina

{ 1

n

n∑
i=1

(yi − 〈ϕF(xi),a〉)2 +
λ

N
‖a‖2

}
, (2.5)

where F ∈ {CK,GE} indicates the choice of feature map, which can be either the nonlinear
CK feature ϕCK(x) = 1√

N
σ(W⊤x), or the linear Gaussian equivalent (GE) feature ϕGE(x) =

1√
N

(
µ1W

⊤x + µ2z
)
where z ∼ N (0, I) is independent of x, W . In the following, for both ϕCK

and ϕGE, we take W to be the updated weight matrix W1 after one GD step.
The Gaussian equivalence refers to the universality phenomenon RCK(λ) ≈ RGE(λ). For RF

models, the GET has been rigorously proved in Hu & Lu (2020); Montanari & Saeed (2022); Mei
& Montanari (2022). Furthermore, Goldt et al. (2021); Loureiro et al. (2021) provided empirical
evidence that such equivalence holds for more general feature maps, including the representation
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of certain pretrained NNs (e.g., see Loureiro et al. (2021, Figure 4)). Since our setting goes beyond
RF models and cannot be covered by the prior results, we establish the GET for our trained feature
map under small learning rate.

Theorem 1. Suppose that Assumption 10 holds and the activation σ is an odd function. If the
learning of W1 in (2.2) and estimation of âλ in (2.5) are performed on independent training data
X and X̃, respectively, then the GET holds after the first-layer weight is trained for one gradient
step with learning rate η = Θ(1); that is, for the CK feature ϕCK(x) =

1√
N
σ(W⊤

1 x), and λ > 0,

|RCK(λ)−RGE(λ)| = od,P(1).

Implications of Gaussian equivalence. Under the GET, we can alternatively compute
RGE(λ), the prediction risk of ridge regression on noisy Gaussian features ϕGE, which is much
easier to analyze. The GET also implies that the kernel estimator is essentially “linear” in high
dimensions. For the squared loss, it is straightforward to verify that the Gaussian equivalent model
cannot learn the nonlinear component of the target function P>1f

∗ as follows.

Fact 2. Under the same assumptions as Theorem 1, RGE(λ) ≥ ‖P>1f
∗‖2L2 for any ψ1, ψ2, λ > 0.

Hence when η = Θ(1), even though training the first-layer W for one step can lead to non-
trivial improvement over the initial RF model (which we precisely quantify in Section 2.3), the
learned CK cannot outperform the best linear model on the input features. In other words, to
(possibly) learn a nonlinear f∗, the trained feature map needs to violate the GET. In the case of
one gradient step on W , this amounts to using a sufficiently large step size, which we analyze in
Section 2.4.

Precise asymptotics of CK ridge regression Having established the Gaussian equivalence
property for the CK ridge estimator after one gradient step with η = Θ(1), we can now compute
the asymptotic prediction risk for the trained kernel and compare with the initialized RF. To
quantify the discrepancy in the prediction risk (2.5), we write R0(λ) as the prediction risk of the
initialized RF ridge regression estimator (on the feature map x 7→ σ(W⊤

0 x)), and R1(λ) as the
prediction risk of the ridge estimator on the trained feature map after one feature learning step
x 7→ σ(W⊤

1 x).

Theorem 3. Under the same assumptions as Theorem 1 and η = Θ(1), we have

R0(λ)−R1(λ)
P→ δ(η, λ, ψ1, ψ2) ≥ 0,

where δ(η, λ, ψ1, ψ2) is a non-negative constant. Here, δ is a non-negative function of η, λ, ψ1, ψ2 ∈
(0,+∞) with parameters µ∗

1, µ1, µ2, and it vanishes if and only if (at least) one of µ∗
1, µ1 and η is

equal to zero.

Remarkably, this improvement (when δ > 0) holds for any ψ1, ψ2 ∈ (0,∞), that is, taking one
gradient step (with learning rate η = Θ(1)) is always beneficial, even when the training set size n
is small.

2.4 η = Θ(
√
N): improvement over the kernel lower bound

In this section, we consider a gradient step with large learning rate η = Θ(
√
N), which matches

the asymptotic order of the Frobenius norm of the gradient G0 and that of the initialized weight
matrix W 0. Note that after absorbing the prefactors, this learning rate scaling is analogous to
the maximal update parameterization (Yang & Hu, 2020), which admits a feature learning limit.
More specifically, the change in each coordinate of the feature vector [σ(W⊤x)]i is Θ̃d,P(1), which
has roughly the same order of magnitude as its value at initialization.

Due to the large step size, columns of the updated weight matrix W 1 are no longer near-
orthogonal, which is an important property in existing analyses of the Gaussian equivalence. In-
deed, we will see that in this regime, the ridge regression estimator on the trained CK features
is no longer “linear” and can potentially outperform the kernel lower bound in the proportional
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limit. However, in the absence of GET, it is difficult to derive the precise asymptotics of the CK
model. As an alternative, we establish an upper bound on the prediction risk R1(λ), which we
then compare against the kernel ridge lower bound.

Existence of a “good” solution. Given the trained first-layer weights W 1, we first construct
a second-layer ã for which the prediction risk can be upper-bounded. For a pair of nonlinearities
(σ, σ∗), we introduce a scalar τ∗ which is the optimum of the following minimization problem:

τ∗ := inf
κ∈R

Eξ1

[(
σ∗(ξ1)− Eξ2σ(κξ1 + ξ2)

)2]
, (2.6)

where ξ1, ξ2
i.i.d.∼ N (0, 1). We write κ∗ as an optimal value at which τ∗ is attained (when τ∗ is not

achieved by a finite κ, the same argument holds by introducing a small tolerance factor ϵ > 0 in
τ∗). Roughly speaking, τ∗ approximates the prediction risk of a specific student model which takes
the form of an average over a subset of neurons (after one feature learning step). In particular,
the first term on the RHS of (2.6) containing σ∗ corresponds to the teacher f∗, and the second
term Eξ2 represents the constructed student model. The following lemma shows that we can find
some ã on the trained CK features whose prediction risk is approximately τ∗, under the additional
assumption that the activation function σ is bounded.

Lemma 4 (Informal). Suppose that Assumption 10 holds and σ is bounded. Then, after one
gradient step on W with η = Θ(

√
N), there exist some second-layer coefficients ã such that the

constructed student model f̃(x) = 1√
N
ã⊤σ(W⊤

1 x) achieves a prediction risk which is “close” to

τ∗.

It is worth noting that the definition of τ∗ does not involve the specific value of the learning
rate η. This is because for any choice of η = Θ(

√
N), due to the Gaussian initialization of ai, we

can find a subset of weights that receive a “good” learning rate (with high probability) such that
the corresponding neurons are useful for learning the teacher model. In addition, observe that τ∗

is a simple Gaussian integral which can be numerically or analytically computed. For instance,
when σ = σ∗ = erf, one can easily verify that κ∗ =

√
3 and τ∗ = 0.

Prediction risk of ridge regression. Since we have established the existence of a “good”
student model f̃ that can achieve a prediction risk close to τ∗ (as defined in (2.6)), in what follows,
we prove an upper bound for the prediction risk of the ridge regression estimator on the trained
CK features R1(λ) in terms of the scalar τ∗.

Theorem 5. Under the same assumptions as Lemma 4, after one gradient step on W with η =
Θ(

√
N), there exist constants C,ψ∗

1 > 0 such that for any n/d > ψ∗
1 , the ridge regression estimator

(2.5) with regularization parameter nε−1 < N−1λ < n−ε for some small ε > 0 satisfies

R1(λ) ≤ 10τ∗ + C
(√

τ∗ ·
√

d
n + d

n

)
,

with probability 1 as n, d,N → ∞ proportionally.

While Theorem 5 does not provide exact expression of the prediction risk, the upper bound
still allows us to compare the prediction risk of the CK ridge regression before and after one large
gradient step. In particular, if ‖P>1f

∗‖2L2 ≥ 10τ∗ (the constant 10 is not optimized), we know
that the trained CK can outperform the kernel lower bound (and also the initialized CK) in the
proportional limit, when the ratio ψ1 = n/d is sufficiently large.

Corollary 6. Under the same conditions as Theorem 5, there exists a constant ψ∗
1 such that for

any ψ1 > ψ∗
1 , the following holds with probability 1 when n, d,N → ∞ proportionally:

• For σ=σ∗=erf, we have R1(λ)=O(d/n). • For σ=σ∗=tanh, we have R1(λ) < ‖P>1f
∗‖2L2 .

In the two examples outlined above, training the features by taking one large gradient step
on the first-layer parameters can lead to substantial improvement in the performance of the CK
model. In fact, the new ridge regression estimator may outperform a wide range of kernel models.
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However, we emphasize that this separation is only present in specific pairs of (σ, σ∗) for which
the scalar τ∗ is sufficiently small. In general settings, learning a good representation would likely
require a training procedure that takes more than one gradient step (even if f∗ is as simple as a
single-index model).
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