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Abstract

In this talk, we introduce a joint statistical model for mixed-domain data that is
proposed by [1]. The proposed model contains multivariate Gaussian and log-linear
models. We show the existence and uniqueness of the proposed model under fairly
weak conditions. To estimate the dependence parameter in our model, we present
a conditional inference together with a sampling procedure and show it provides a
consistent estimator of the dependence parameter.

1 Minimum information dependence model

Let (Xi,F(Xi), dxi) for i = 1, . . . , d be measure spaces and denote their product space by
X =

∏d
i=1Xi and dx =

∏d
i=1 dxi. For index i, use the notation −i to indicate the removal

of the i-th coordinate, e.g., x−i = (xj)j 6=i, X−i =
∏

j 6=iXj, and dx−i =
∏

j 6=i dxj.
Let r1(x1; ν), . . . , rd(xd; ν) be statistical models of marginal densities on X1, . . . ,Xd,

respectively, where ν denotes parameters characterizing the marginal densities. We can as-
sign, if necessary, independent parameters to each ri as ri(xi; νi) by setting ν = (ν1, . . . , νd).

We consider a class of probability density functions

p(x; θ, ν) = exp

(
θ>h(x)−

d∑
i=1

ai(xi; θ, ν)− ψ(θ, ν)

)
d∏
i=1

ri(xi; ν), (1)

where θ ∈ RK is a K-dimensional parameter representing the dependence, and h : X → RK

is a given function. The functions ai(xi; θ, ν) and ψ(θ, ν) are simultaneously determined by
constraints ∫

p(x; θ, ν)dx−i = ri(xi; ν), i = 1, . . . , d, and (2)∫ d∑
i=1

ai(xi; θ, ν)p(x; θ, ν)dx = 0. (3)

Note that the density (1) is reduced to the independent model
∏d

i=1 ri(xi; ν) if θ = 0.

Definition 1. A statistical model (1) together with the constraints (2) and (3) is called a
minimum information dependence model. The parameter θ is called the canonical param-
eter, ν is the marginal parameter, h(x) comprises the canonical statistics, ai(xi; θ, ν)s are
the normalizing functions and ψ(θ, ν) is the potential function.
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Figure 1 displays a two-dimensional histogram of samples from the minimum informa-
tion dependence model for mixed variables (discrete and [0, 1]) with negative correlation,
which shows that the minimum information dependence model easily expresses the depen-
dence between mixed-domain variables.
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Figure 1: Two-dimensional histograms of 10000 samples from the minimum information
dependence model with the Beta Beta(10, 10) and Poisson Po(3) marginals. The canon-
ical statistic h(x, y) is given by h(x, y) = x/(y + 1). The joint histogram and marginal
histograms are plotted. (a) Joint histogram with θ = 0. (b) Joint histogram with θ = 100.

Let p0(x) :=
∏d

i=1 ri(xi; ν). We say that a function H ∈ L1(p0(x)dx) is feasible if there
exist measurable functions {ai(xi) : i = 1, . . . , d} and a real number ψ ∈ R such that the

function p(x) = eH(x)−
∑d

i=1 ai(xi)−ψp0(x) satisfies∫
p(x)dx−i = ri(xi; ν) for each i = 1, . . . , d and∫ d∑
i=1

ai(xi)p(x)dx = 0.

Theorem 1 (Theorem 1 of [1]). A function H ∈ L1(p0(x)dx) is feasible if there exist
{bi ∈ L1(ri(xi)dxi) : i = 1, . . . , d} such that∫

eH(x)−
∑d

i=1 bi(xi)p0(x)dx <∞. (4)

Furthermore, if H is feasible, then
∑d

i=1 ai(xi) and ψ are unique.

2 Conditional inference

To analyse the dependence, we need to estimate the dependence parameter θ. However, the
maximum likelihood estimate requires the values of ais and ψ, and ais cannot be written in
a closed form except for limited cases. So, we propose a conditional maximum likelihood
estimator of θ that does not require the values of ais and ψ.

Suppose that x(1), . . . , x(n) are independent and identically distributed (i.i.d.) from
the minimum information dependence model (1). Denote the components of x(t) as x(t) =
(xi(t))

d
i=1.

We decompose the likelihood function into a marginal part and a dependent part using
an order and a rank. By the well-ordering principle, we can define a total order ≤i on Xi
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for each i = 1, . . . , d. Using the ordering is convenient for the following description and the
choice does not affect the inference. We denote the symmetric group of degree n by Sn.

For each i = 1, . . . , d, define the set of i-th marginal values by

Mi(1) ≤i · · · ≤i Mi(n), (5)

where for each i, Mi = (Mi(1), . . . ,Mi(n)) are the n observations (xi(t))
n
t=1 sorted by the

predetermined order ≤i. We call it the marginal order statistic. Define the rank statistic
by a permutation πi = (πi(t))

n
t=1 ∈ Sn such that xi(t) = Mi(πi(t)). If there are ties of

observations, we choose π with equal probability over the set of permutations giving the
same observations. Denote the vector of all statistics as M = (M1, . . . ,Md) ∈

∏d
i=1X n

i and
π = (π1, . . . , πd) ∈ Sdn. For each t = 1, . . . , n, the t-th observation x(t) is recovered from M
and π, and is written as

x(t) = (M ◦ π)(t) = (Mi(πi(t)))
d
i=1.

Using the marginal order statistic and the rank statistic, we have the following likelihood
decomposition.

Lemma 1. The likelihood function is decomposed as

L(M,π; θ, ν) :=
n∏
t=1

p((M ◦ π)(t); θ, ν) = f(π|M ; θ)g(M ; θ, ν),

where

f(π|M ; θ) =
e
∑n

t=1 θ
>h((M◦π)(t))∑

π̃∈Sdn
e
∑n

t=1 θ
>h((M◦π̃)(t)) and g(M ; θ, ν) =

∑
π̃∈Sdn

L(M, π̃; θ, ν).

By denoting h∗(π) =
∑n

t=1 h((M ◦ π)(t)) ∈ RK , the conditional likelihood is then
expressed as

f(π|M ; θ) =
eθ
>h∗(π)∑

π̃∈Sdn
eθ>h∗(π̃)

, (6)

where the conditional likelihood does not involve ai(xi; θ, ν)s and ψ(θ, ν).

Definition 2. The conditional maximum likelihood estimate θ̂ is a maximizer of the con-
ditional likelihood (6).

We obtain the following consistency result of the conditional maximum likelihood esti-
mator θ̂.

Theorem 2 (Corollary 4 of [1]). Under Assumptions 1 and 2 in [1], we have θ̂ → θ0 in
probability.
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