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Abstract
In this talk, we introduce a joint statistical model for mixed-domain data that is
proposed by [1]. The proposed model contains multivariate Gaussian and log-linear
models. We show the existence and uniqueness of the proposed model under fairly
weak conditions. To estimate the dependence parameter in our model, we present
a conditional inference together with a sampling procedure and show it provides a
consistent estimator of the dependence parameter.

1 Minimum information dependence model

Let (X;, F(X;),dx;) for i = 1,...,d be measure spaces and denote their product space by
X =TIL, & and dz =[], dz;. For index i, use the notation —i to indicate the removal
of the i-th coordinate, e.g., z—; = (), X—i = [[,; &j, and dz_; = [, dw;.

Let i (z1;v),...,1q4(xq;v) be statistical models of marginal densities on Aj,..., Xy,
respectively, where v denotes parameters characterizing the marginal densities. We can as-
sign, if necessary, independent parameters to each r; as r;(z;; v;) by setting v = (14, ..., vq).

We consider a class of probability density functions

d d
p(z;0,v) = exp <9Th($) - Zai(xi§07 v) — (0, V)) ri(zi;v), (1)

i=1 i=1

where 6 € R¥ is a K-dimensional parameter representing the dependence, and h : X — RE
is a given function. The functions a;(x;; 0, v) and (0, v) are simultaneously determined by
constraints

/p(x; O,v)de_; =ri(x;;v), i=1,...,d, and (2)

d
/Zai(xi; 0,v)p(x;0,v)dx = 0. (3)

Note that the density (1) is reduced to the independent model H?Zl ri(z;v) if 6 = 0.

Definition 1. A statistical model (1) together with the constraints (2) and (3) is called a
manimum information dependence model. The parameter 6 is called the canonical param-
eter, v is the marginal parameter, h(x) comprises the canonical statistics, a;(z;;0,v)s are
the normalizing functions and ¥ (0, v) is the potential function.
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Figure 1 displays a two-dimensional histogram of samples from the minimum informa-
tion dependence model for mixed variables (discrete and [0, 1]) with negative correlation,
which shows that the minimum information dependence model easily expresses the depen-
dence between mixed-domain variables.
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Figure 1: Two-dimensional histograms of 10000 samples from the minimum information
dependence model with the Beta Beta(10,10) and Poisson Po(3) marginals. The canon-
ical statistic h(x,y) is given by h(z,y) = x/(y + 1). The joint histogram and marginal
histograms are plotted. (a) Joint histogram with 6 = 0. (b) Joint histogram with # = 100.

Let po(z) := Hfil ri(x;;v). We say that a function H € Ly(po(z)dz) is feasible if there
exist measurable functions {a;(x;) : i = 1,...,d} and a real number ¢ € R such that the
function p(z) = eH(x)_zgzlai(mi)_¢p0(x) satisfies

/p(a:‘)dxi = ri(z;;v) foreachi=1,...,d and

/

Theorem 1 (Theorem 1 of [1]). A function H € L;(po(z)dz) is feasible if there exist
{b; € Li(r;(z;)dx;) :i=1,...,d} such that

[

a;(x;)p(z)dz = 0.

=1

/eH(ﬂc)—Z‘f1 bi(mi)po(x)dx < 0. (4)

Furthermore, if H is feasible, then Zle a;(x;) and 1) are unique.

2 Conditional inference

To analyse the dependence, we need to estimate the dependence parameter . However, the
maximum likelihood estimate requires the values of a;s and v, and a;s cannot be written in
a closed form except for limited cases. So, we propose a conditional maximum likelihood
estimator of § that does not require the values of a;s and .

Suppose that z(1),...,x(n) are independent and identically distributed (i.i.d.) from
the minimum information dependence model (1). Denote the components of x(t) as z(t) =
(i(t)is

We decompose the likelihood function into a marginal part and a dependent part using
an order and a rank. By the well-ordering principle, we can define a total order <; on AX;
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for each i = 1,...,d. Using the ordering is convenient for the following description and the
choice does not affect the inference. We denote the symmetric group of degree n by S,,.
For each ¢ = 1,...,d, define the set of i-th marginal values by

M;(1) <5 -+ <3 Mi(n), (5)

where for each i, M; = (M;(1),...,M;(n)) are the n observations (z;(t));_, sorted by the
predetermined order <;. We call it the marginal order statistic. Define the rank statistic
by a permutation m; = (m;(t))}., € S, such that x;(t) = M;(m;(t)). If there are ties of
observations, we choose m with equal probability over the set of permutations giving the
same observations. Denote the vector of all statistics as M = (M, ..., My) € [[L, & and
= (m,...,mq) €S Foreacht=1,... n, the t-th observation x(t) is recovered from M
and m, and is written as

z(t) = (M om)(t) = (Mi(mi(t)))izy-

Using the marginal order statistic and the rank statistic, we have the following likelihood
decomposition.

Lemma 1. The likelihood function is decomposed as

L(M,7;0,v) := [ [ p(M o 7)(£); 6,v) = f (x| M;0)g(M;6,v),

=1
where

ey 0T h(Mom) (1)) )
S g(M;6,v) =Y L(M,7;6,v).

wesd wesd

f(m|M;0) =

By denoting h.(m) = > h((M o 7)(t)) € RX, the conditional likelihood is then
expressed as

€9Th*(7r)
0T ha(7)
Z%esg e?" (™)

where the conditional likelihood does not involve a;(x;; 6, v)s and (0, v).

(6)

f(m|M;0) =

Definition 2. The conditional maximum likelihood estimate 8 is a maximizer of the con-
ditional likelihood (6).

We obtain the following consistency result of the conditional maximum likelihood esti-
mator 6.

Theorem 2 (Corollary 4 of [1]). Under Assumptions 1 and 2 in [1], we have § — 6 in
probability.
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