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1 Introduction

Change-point analysis can generally be classified into two broad approaches. The first
deals with a given dataset to investigate the existence, number, and locations of change-
points, while the second monitors data that are observed sequentially in order to detect a
change-point as quickly as possible. The latter is commonly referred to as online change-
point detection, whereas the former is known as offline change-point analysis. In this talk,
we focus on the offline setting. Even within this framework, two distinct situations can
be considered. In the first, the existence of change-points is assumed, and the objective
is to estimate both their number and locations. In the second, the existence of change-
points is itself uncertain, requiring both a statistical test for their presence and, if present,
estimation of their number and locations. When a change-point is assumed to exist and
there is exactly one change-point, the problem is referred to as single change-point detec-
tion. When multiple change-points are allowed, the problem is typically known as multiple
change-point detection or time-series segmentation.

In recent years, the scope of change-point analysis has been extended to high-dimensional
data, motivated by the increasing availability of large-scale observations in fields such as
genomics, finance, neuroscience, and network analysis. Classical change-point detection
methods are often designed under the assumption that the data dimension is fixed and
relatively small compared to the sample size. However, such methods may fail or become
unreliable when the number of variables is comparable to or even exceeds the number of
observations. This high-dimensional regime introduces substantial challenges, including
the need to handle strong dependence among variables, to ensure statistical consistency
under sparsity or low-rank structures, and to maintain computational feasibility despite
the explosive dimensionality. Accordingly, a growing body of research has been devoted to
developing high-dimensional change-point detection methods that leverage modern statis-
tical and computational tools such as principal component analysis (PCA), factor models,
estimating covariance structure, and sparse regularization techniques. These approaches
aim to detect structural changes not only in the mean vector but also in the covariance
or latent factor structure, providing a more comprehensive understanding of change-point
detection in high-dimensional settings.

A number of studies have been conducted on change-point detection in high-dimension,
low-sample-size (HDLSS) settings. Among them, the cumulative sum (CUSUM) statistic,



a representative approach for detecting mean shifts, has been widely extended to the high-
dimensional framework. For instance, Liu et al. [9] developed a CUSUM-type procedure
based on U-statistics for high-dimensional data. Similarly, Yu and Chen [16] proposed
a bootstrap-based CUSUM method tailored for HDLSS data to improve finite-sample
performance. Li [7] proposed a nonparametric change-point detection procedure for high-
dimensional data and established its asymptotic properties without imposing restrictive
assumptions on the underlying population distribution. Dimension-reduction-based ap-
proaches have also attracted attention. Wang and Samworth [12] proposed a method
that employs random projection to reduce dimensionality, assuming that mean changes
occur only within a sparse subset of variables and under a normality assumption. Many
of these CUSUM- and projection-based approaches derive their asymptotic properties un-
der various sparsity conditions. For change-point detection using PCA, one may refer to
Xiao et al. [13]. Relatedly, Yata and Aoshima [15] and Nakayama et al. [10] proposed
clustering methods based on PCA that can be applied to change-point detection. More
recently,　 Drikvandi and Modarres [2] introduced a change-point detection framework
that first identifies candidate change-points and then tests whether these candidates are
true change-points, providing theoretical properties when employing a unique distance
function. In addition, Liu et al. [8] provided a comprehensive survey of high-dimensional
change-point detection and conducted a comparative simulation studies across existing
approaches.

Despite the extensive literature on high-dimensional change-point analysis, most ex-
isting methods rely on specific structural assumptions―such as sparsity, independence,
or normality―that may not hold in practice. Meanwhile, in the broader development
of high-dimensional statistical analysis, the importance of the eigenvalue structure of
the covariance matrix has been increasingly recognized. As exemplified by Johnstone
[6] and Paul [11], spiked covariance models have become a central framework in high-
dimensional asymptotics, capturing scenarios where a few dominant eigenvalues represent
major sources of variation. Empirically, Yata and Aoshima [14] reported that the lead-
ing eigenvalues of covariance matrices often grow as power functions of the dimension.
In response to these findings, Aoshima and Yata [1] proposed a classification of high-
dimensional covariance structures based on the contribution of the leading eigenvalues to
introduce the strongly spiked eigenvalue (SSE) and the non-SSE (NSSE) model for high
dimensional covariance matrix. For a d-dimensional positive definite covariance matrix Σ
with eigenvalues λ1 ≥ · · · ≥ λd ≥ 0, the SSE and NSSE model in Aoshima and Yata [1]
are defined as the conditions

lim inf
d→∞

λ2
1

tr(Σ2)
> 0 (1)

and

λ2
1

tr(Σ2)
→ 0 as d → ∞, (2)



respectively. This dichotomy provides a fundamental classification for analyzing high-
dimensional data, since the covariance matrix and the inference procedures differ dras-
tically between these two regimes. Most notably, in spite of the extensive literature on
high-dimensional change-point analysis, many existing methods implicitly assume a co-
variance structure corresponding to the NSSE model. Among the various forms of SSE
models, Ishii et al. [5] introduced a uni-SSE (USSE) model defined as∑d

i=2 λ
2
i

λ2
1

→ 0 as d → ∞. (3)

This model assumes that a single leading eigenvalue dominates the covariance structure,
while the contributions of the remaining eigenvalues become asymptotically negligible.
Thus, the USSE model provides a mathematically tractable and conceptually clear frame-
work within the broader class of SSE models. Accordingly, the USSE model serves as a
practical and theoretically sound basis for developing statistical methodologies. Under the
USSE model, Ishii et al. [3, 4] studied the estimation of eigenspaces.

Building upon these developments, it is natural to consider change-point analysis
within the framework of the USSE model. In addition, since many real datasets fall
within the scope of the SSE model, developing theoretical frameworks that explicitly ac-
count for the USSE model, a specific case of the SSE model, can be expected to enhance
methodological performance. Consequently, the importance of developing change-point
detection procedures under the USSE model has become increasingly evident.

In this talk, we introduce a high-dimensional multivariate CUSUM procedure presented
in Liu et al. [8], and derive its asymptotic properties in the framework of HDLSS, including
the SSE model. Based on the asymptotic properties obtained, we propose a modification.
Furthermore, we introduce a change-point detection procedure that captures not only
shifts in mean vectors but also changes in covariance structures.

2 Change-point detection

Suppose that there are two independent d-dimensional populations. Each population πi is
assumed to have an unknown mean vector µi and an unknown positive-definite covariance
matrix Σi. We do not assume that the population distributions are normal. Suppose
that n1 independent observations {x11, . . . , x1n1} are obtained from population π1, and
subsequently n2 independent observations {x21, . . . , x2n2} are obtained from population
π2. Let n = n1 + n2 and nmin = min{n1, n2}. For simplicity, we define yj = x1j for
j ∈ {1, . . . , n1}, and yn1+k = x2k for k ∈ {1, . . . , n2}.

The change-point detection problem can be formulated as the following hypothesis
test:

H0 : π2 = π1 v.s. H1 : π2 ̸= π1.



We conduct the test using the given dataset {y1, . . . ,yn}. For a test statistics, we consider
the multivariate CUSUM method shown in Liu et al. [8] for the given dataset {y1, . . . ,yn}.
For k ∈ {1, . . . , n− 1}, define

C(k) =
k(n− k)

n

∥∥∥∥∥1k
k∑

i=1

yi −
1

n− k

n∑
i=k+1

yi

∥∥∥∥∥
2

.

The change-point location is estimated as

τ̂C = 1 + argmax
1≤k≤n−1

C(k),

where C(k) measures the squared difference between the mean of the sample before and
after time k.

For i ∈ {1, 2}, the eigen-decomposition of Σi is expressed as Σi = H iΛiH
T
i =∑d

j=1 λi(j)hi(j)h
T
i(j), where Λi = diag(λi(1), ..., λi(d)) is a diagonal matrix of eigenvalues

with λi(1) ≥ · · · ≥ λi(d) ≥ 0, and H i = (hi(1), ...,hi(d)) is an orthogonal matrix whose
columns are the corresponding eigenvectors. It should be noted that λi(1) represents the
largest eigenvalue of Σi for i ∈ {1, 2}.

We assume that

lim sup
d→∞

∥µi∥2

d
< ∞, lim inf

d→∞

tr(Σi)

d
> 0, and lim sup

d→∞

tr(Σi)

d
< ∞

for i ∈ {1, 2}. We assume that

yi = H1Λ
1/2
1 zi + µ1 for i ∈ {1, ..., n1}, yi = H2Λ

1/2
2 zi + µ2 for i ∈ {n1 + 1, ..., n}

where zi, i ∈ {1, ..., n}, are i.i.d. random vectors having E[zi] = 0 and Var[zi] = Id. We
introduce the following notations to state the theoretical results: Let ∆µ = ∥µ1 − µ2∥2
and ∆Σ = |tr(Σ1)− tr(Σ2)|. Additionally, let L1 = Var[∥yj −µ1∥2] for j ∈ {1, ..., n1} and
L2 = Var[∥yj − µ2∥2] for j ∈ {n1 + 1, ..., n}.

3 Asymptotic property

The following assumptions were considered.

(A-i): nLi/∆
2
µ → 0 and ntr(Σ2

i )/∆
2
µ → 0, i ∈ {1, 2} as d, n → ∞

Note that Li = 2tr(Σ2
i ) when Πi is Gaussian.

Theorem 3.1. Assume some regularity conditions, (A-i), and

lim sup
d→∞

∆Σ/(nmin∆µ) < 1. (4)

Under H1, τ̂C = n1 + 1 + op(1) as d → ∞, either when n is fixed or when n → ∞.



In this talk, we modify C(k) to have consistency without condition (4) and propose
a test statistic based on the modification and investigate its asymptotic properties under
both the null hypothesis H0 and the alternative hypothesis H1. In addition, we introduce
a test statistic designed to detect not only changes in mean vectors but also changes in
covariance matrix.
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