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Spatial and/or space- time problems in a wide range of areas have attracted more and 
more attention especially after 2000, with a proliferation of books, conferences, and 
papers. The explosion of interests in spatial statistics has been largely fueled by the 
increased availability of large spatial and spatio-temporal datasets across many fields, 
such as from the recent progress of geographic information systems (GIS). Spatial 
statistics can be regarded as one of the most critical areas in statistics to work for many 
modern issues in the age of big data. This conference welcomes presentations in the 
broad areas aiming to develop spatial and/or spatio-temporal analysis. 
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ABRIDGED VERSION1—IMPORTANT CONSIDERATIONS ABOUT SPACE-TIME 
DATA: MODELING, SCRUTINY, AND RATIFICATION

Daniel A. Griffith
Ashbel Smith Professor of Geospatial Information Sciences, U. of Texas at Dallas

1. Introduction
Space-time data analysis has a literature spanning many decades, including Cliff et al. (1975), Bennett 
(1979), Heuvelink and Griffith (2010), and Cressie and Wikle (2011), among others. This literature’s
most modern section includes matrix models and Markov chain analysis, dynamic geographic optimi-
zation, and numerous statistical entries by Gelfand and his colleagues, and Christakos and his col-
leagues, inter alia. This paper acknowledges, without reviewing, this literature; instead, it focuses on
the evolution of the space-time autocorrelation concept, a vital property of space-time data.

Autocorrelation (i.e., correlation amongst a single variable’s observations) characterizes some 
correlated data family members, including time series, space series, and space-time series (Griffith, 
2020). Its all-inclusive literature covers nearly two centuries, beginning with temporal autocorrela-
tion—correlation among a single variable’s data values at consecutive points in time—followed by
spatial autocorrelation (SA)—correlation among a single variable’s data values at pairs of neighboring 
points in space—and culminating in space-time autocorrelation—correlation among a single varia-
ble’s data values at two consecutive points in time as well as nearby points in space.

Although interest in space-time data dates back at least to the mid-1900s, almost exclusively with
separate treatments of space and time, such socio-economic and demographic datasets remained 
scarce until the 2000s. Unfortunately, earlier widely embraced accessible datasets furnished by An-
drews and Herzberg (1985), for example, are fraught with entry errors that almost certainly scramble 
their space and/or time orderings, highlighting that accuracy is a fundamental space-time data quality 
assessment requirement, one complicated by the relatively large size and complexity of many space-
time datasets vis-à-vis solely their time series or space series components.

The purpose of this paper is to address two important issues. The first is space-time autocorrela-
tion in terms of its individual temporal and SA constituents latent in, and accuracy assessment prelim-
inaries for evaluating the veracity of, a space-time dataset. The second is furnishing insights, articulat-
ing autocorrelation relationships, and raising awareness about probable best practices when undertak-
ing an analysis of space-time data. Exemplifications of discussions employ annual United States (US) 
county population data for 1969-2019, the overwhelming majority of which the policy setting US Na-
tional Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) Program uses. The 
data generating process here is a combination of the US decennial census survey and annual updates 
to these census figures extracted from official government records that add births, subtract deaths, and 
adjust for net migration as well as age cohort shifts attributable to the passing of time.

2. The data: a brief overview
The US NCI SEER dataset currently consists of annual county time series from 1969 to 2018. This is 
an appealing dataset because it satisfies expert opinion asserting that the simplest of analyses requires 
a time series with a minimum of about 50 observations (see Hanke and Wichern, 2013). The selected
geographic sample of these data for evaluation here contains the following six states: Ohio (OH), Ore-
gon (OR), Florida (FL), Maine (ME), South Dakota (SD), and Texas (TX).

3. Temporal, spatial, and space-time autocorrelation
On average, temporal autocorrelation ( T) tends to be stronger than SA ( s), frequently exceeding
0.95; the degree of SA for socio-economic and demographic data tends to be in the 0.4 to 0.6 range,
with most remotely sensed s value in excess of 0.9. These two descriptions underscore 
the empirical tendency for both forms of autocorrelation to be positive, with negative SA being much 
rarer than negative temporal autocorrelation. An intermingling of these two kinds of autocorrelation in 
space-time data routinely results in temporal autocorrelation dominating SA.

Each of the sample states has n counties (16 < n < 254), with each of these counties having a time 
series of length 51 before differencing, and 50 after differencing. Autocorrelation in each of the differ-
enced time series is well-described by a lag-one model specification; however, temporal autocorrela-

                                                            
1This is an abridged version of a paper with the same title that presently is under review by Transactions in GIS.
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tion is not very concentrated for most of the individual states. Although the preponderance of time se-
ries display relatively high degrees of positive temporal autocorrelation, the considerable heterogene-
ity of parameter estimates here fails to support the parsimonious positing of a single temporal autocor-
relation parameter in a space-time autocorrelation specification, even separately state-by-state.

Each of the states has 50 time-differenced log-population density (improving normality) geo-
graphic distributions. Simultaneous autoregressive (i.e., SAR) spatial regression model estimation re-
sults reveal that a rook adjacency definition coupled with a second-order model specification de-
scribes autocorrelation in each of the space series well, and that individual state SA also is not very 
concentrated. The considerable heterogeneity of parameter estimates here once more fails to support 
the parsimonious positing of a single SA parameter in a space-time autocorrelation specification.

The preceding discussion treats temporal and SA separately, when they actually coalesce in 
space-time situations. The conceptualization and description of this interacting combination tends to 
occur in three different ways. Cliff et al. (1975) furnish one of the first comprehensive treatments of 
this conceptualization, presenting a space-time autoregressive (STAR) model specification of the fol-
lowing two forms: space-time lag (i.e., SA arises in terms of the preceding time period), and contem-
poraneous (i.e., SA is instantaneous, arising from the current time period). Meanwhile, contemporary 
statistical mixed models theory (e.g., West et al., 2007) furnishes a third form by positing a random 
effects (RE) specification to describe space-time data. This RE conceptualization maintains that re-
gression model residuals are the sum of a systematic component, arising from, say, missing variables, 
plus a stochastic component, arising from the independent and identically distributed (iid) regression 
errors assumption. A standard chorological regression analysis requires additional information to sep-
arate these two components. One ancillary information source is repeated measures, such as time se-
ries of annual population densities, and another is a spatial weights matrix (SWM) that allows the par-
titioning of the systematic part into two sub-parts, a spatially structured RE (SSRE), which relates to a 
SWM, and a spatially unstructured RE (SURE), which is geographically random in nature, and hence 
void of SA. This RE term is a time invariant map that repeats itself for each point in a time series; it is
a common factor across time instilling temporal autocorrelation into a space-time series dataset.

4. Space-time data accuracy assessment
One goal traversing the exploratory diagnostic computation of n temporal autocorrelation estimates, 

, and T SA estimates, , is assessing whether or not their respective variations are within margins 
of design-based or model-based stochastic sampling error. Sufficiently narrow estimate ranges sup-
port a parsimonious space-time data description whose predictive power reinforcements sustains the 
fidelity of its implications. Another useful investigative task is to inspect the global mean and varia-
tion of a space-time dataset. Yet a third helpful examination ascertains the degree to which space-time 
dataset parts may be interpolation and extrapolation technique constructions. Inspecting data extremes 
as well as variance homogeneity are two additional interrelated standard considerations. A further ap-
praisal concerns model overfitting and the quality of any recognized imputed values. These seven as-
sessments constitute best practice procedures for initiating a data scrutiny and ratification plan.

5. Conclusions
This paper establishes seven beneficial best practices enabling a space-time analyst to become more 
familiar with a given dataset, to more easily address data debugging and remediation issues, and to
better express the soundness of inferred generalizations coupled with more robust finding limitations.
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Compositionally-warped additive mixed modeling for large non-
Gaussian data: Application to COVID-19 analysis 

 
Daisuke Murakami 

 
Institute of Statistical Mathematics, 10-3 Midoricho, Tachikawa, Tokyo, 190-8562, Japan 

Email: dmuraka@ism.ac.jp 
 

1. Outline 

An increasing number of non-Gaussian geospatial data is becoming available. At the same time, 

the size of spatial data rapidly grows together with the development of sensing technology. Given these 

backgrounds, this study develops a flexible additive mixed modeling approach for large non-Gaussian 

data. The development is done by combining an additive mixed model (AMM), which accommodates 

spatial and other effects, with the compositionally-warped Gaussian process (CWGP; Rois and Tober, 

2019) estimating the shape of data distribution that can be either Gaussian or non-Gaussian possibly 

have skewness, fat tail, and other properties. The proposed model, termed compositionally-warped 

additive mixed model (CAMM) is estimated through a restricted likelihood maximization balancing 

model accuracy and complexity. Monte Carlo experiments shows that the proposed approach accurately 

model a wide variety of non-Gaussian data accuracy without losing computational efficiency relative 

to the linear AMM. The developed CAMM is applied to a spatiotemporal analysis of COVID-19 in 

Japan. The developed approach will be implemented in an R package spmoran. 

 

2. Compositionally-warped additive mixed model (CAMM) 

The proposed model describes non-Gaussian explained variables ݕ௜|݅ ∈ {1, … ,ܰ} as follows: 

߮દ(ݕ௜) = ෍ݔ௜,௞ߚ௞௄
௞ୀଵ + ෍ ௟݂(ݖ௜,௟)௅

௟ୀଵ + ௜ߝ , … . .  (1)  .(ଶߪ,0)ܰ~௜ߝ

௞݂(ݖ௜,௞) is a smooth function depending on l-th covariate ݖ௜,௟, accommodating a wide variety of effects. 

Just like the classical AMM, this term can capture linear/non-linear effects, spatial and/or temporal 

effects, and other effects. ߮દ(∙)  is a function transforming the non-Gaussian variable ݕ௜  to a nearly Gaussian variable. 

Interestingly, a wide variety of non-Gaussian variables can be transformed to Gaussian variables 

without assuming data distribution if the ߮દ(∙) function is defined by concatenating D transformation 

functions as below (see Rois and Tober, 2019): ߮દ(ݕ௜) = ߮ીವ൫߮ીವషభ(⋯߮ીభ(ݕ௜))൯, (2) 

where દ ∈ {ી஽,ી஽ିଵ, … ,ીଵ}. The d-th transformation function ߮ી೏(ݕ௜) in Eq. (2) is specified as  ߮ી೏(ݕ௜) = ܽௗ + ܾௗsinh (ܿௗ arcsinh(ݕ௜) − ݀ௗ), (3) 



where ીௗ ∈ {ܽௗ , ܾௗ , ܿௗ ,݀ௗ}  are parameters characterizing the d-th transformation. Rios and Tober 

(2019) called Eq.(3) as SAL layer (Sinh-Arcsinh and Affine where the “L” comes from linear).As 

illustrated in Figure 1, I confirmed accuracy of this transformation. After preliminary analysis, we 

decided to specify the ߮દ(ݕ௜) function as shown in Figure 2.  

Although Rois and Tober (2019) proposed the SAL transformation, the transformation has 

never been applied to regression modelling. Our novelty is to combine the SAL transformation and 

AMM to enable us flexibly modelling a wide variety of non-Gaussian data using AMM without 

assuming data distribution. It considerably improves modelling accuracy. In addition, the 

transformation function can be estimated computationally quite efficiently. 

In the presentation, I apply the developed CAMM to an COVID-19 analysis in Japan. 

 
Figure 1: Fitting result of the for beta and skew t distributions. Left panels represent histograms of the 
simulated data and the right six panels show the histograms after the transformation. 

 
Figure 2: The ߮દ(∙)  function for CAMM. (A) is the suggested default function while (B) is 
recommended if non-negative explained variables. 

Reference 
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On Gaussian semiparametric estimation for
two-dimensional intrinsic stationary random fields

Yoshihiro Yajima
Tohoku University

2020. Oct 30.

Abstract

We propose two estimators of two-dimensional intrinsic stationary random fields (ISRFs) observed on a
regular grid and derive their asymptotic properties. Originally they are proposed to estimate prameters
of long memory models of stationary and nonstationary time series. One is the log-periodgram regression
estimator (Robinson(1995a); Velasco(1995a)) and the other is the Gaussian semiparametric estimtor(the local
Whittle estimator Robinson(1995b); Velasco(1999b)). We apply them to two dimensional ISRFs. These
ISRFs include a fractional Brownian field, which is a Gaussian random field and is used to model many
physical processes in space(Mandelbrot, B.B. and Van Ness, J.W. (1968)). The estimators are consistent and
have the limiting normal distributions as the sample size goes to infinity. We also list some problems such
as testing isotropy or applications to more general models that are to be solved in future.

Keywords:intrinsic stationary random fields; spatio-temporal models; local Whittle estimator; log peri-
odogram regression; fractional Brownian field.
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Spatially Clustered Regression

Shonosuke Sugasawa

Center for Spatial Information Science, The University of Tokyo

1 Introduction

Geographically weighted regression (GWR) is widely adopted for modeling possibly

spatially varying regression coefficients. However, GWR is known to be numerically

unstable and may produce extreme estimates of coefficients especially when covari-

ates are spatially correlated. Recently, Li and Sang (2019) adopted fused lasso to

shrink regression coefficients in neighboring locations, but it can be computationally

intensive under large spatial data. In this work, we propose a new strategy for spatial

regression that takes account of spatial heterogeneity in regression coefficients. The

proposed method can be easily estimated via a simple iterative algorithm, and it can

handle variable selection or semiparametric modeling.

2 Spatially Clustered Regression

Let yi be a response variable and xi is a vector of covariates in the ith location, for

i = 1, . . . , n, where n is the number of samples. We suppose we are interested in the

conditional distribution f(yi|xi; θi), where θi is a vector of unknown parameters. Here

θi may change over different locations and represent spatial heterogeneity. For exam-

ple, f(yi|xi; θi) = φ(yi;x
t
i1θi + xti2γ, σ

2
i ). We assume that geographical information si

(e.g. longitude and latitude) is also available for the ith location. We further assume

that n locations are divided into G groups and locations in the same group share

the same parameter values of θi. We introduce gi ∈ {1, . . . , G}, an unknown group

membership variable for the ith location, and let θi = θgi . Then, the distinct values

of θi’s reduce to θ1, . . . , θG, where θ = (θt1, . . . , θ
t
G)

t is the set of unknown parameters.

1



Therefore, the unknown parameters in the model is the structural parameter θ and

membership parameter g = (g1, . . . , gn). Regarding the membership parameter, it

would be reasonable to consider that the membership in neighboring locations are

likely to have the same memberships, which means that the fitted conditional distri-

butions are likely to be the same in the neighboring locations. In order to encourage

such structure, we propose the following penalized likelihood:

Q(θ, g) ≡
n∑

i=1

log f(yi|xi; θgi) + φ
∑
i<j

wijI(gi = gj), (1)

where wij = w(si, sj) ∈ [0, 1], w(·, ·) is a weighting function, and φ controls strength

of spatial similarity. The penalty function is motivated from the Potts model (Potts,

1952) and a similar penalty function is adopted in Sugasawa (2020). We define

the estimator of θ and g as the maximizer of the objective function Q(θ, g). The

maximization can be easily carried out by a simple iterative algorithm similar to

k-means algorithm. Owing to the simple formulation (1), the proposed strategy

allows several important extensions. For example, variable selection can be done

by introducing additional penalty function for θ, and semiparametric form for the

regression term can also be adopted.

We will report the numerical performance of the proposed method compared with

existing methods such as GWR or method by Li and Sang (2019) through simulation

studies and real data applications.
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Li, F. and H. Sang (2019). Spatial homogeneity pursuit of regression coefficients for

large datasets,. Journal of the American Statistical Association 114, 1050–1062.

Potts, R. B. (1952). Some generalized order-disorder transformations. Mathematical

Proceedings of the Cambridge Philosophical Society 48, 106–109.

Sugasawa, S. (2020). Grouped heterogeneous mixture modeling for clustered data.

Journal of the American Statistical Association, to appear.

2



Post-selection Inference for
Spatio-temporal Trajectory Segmentation

Hiroki Toda1, Yu Inatsu2, and Ichiro Takeuchi1, 2

1Nagoya Institute of Technology, 2Riken AIP

1 Introduction
Trajectory segmentation is a common task in spatio-temporal trajectory data analysis. It splits
a sequence of locations with time stamps into a small number of sub-sequences or segments with
respect to some criteria. Despite the development of a wide variety of methods [1], to date,
little attention has been paid to quantifying the uncertainty of segment breakpoints identified by
trajectory segmentation. In this study, we aim to develop inference tools that provide valid p-values
for each breakpoint. The difficulty lies in the fact that the location of each breakpoint is selected by
a segmentation algorithm, and this fact must be properly incorporated in the statistical inference.
Unfortunately, if one uses classical statistical inference, the p-values or confidence intervals are
not valid anymore in the sense that the false positive rate cannot be controlled at the desired
significance level. To address this problem, we adopt the framework of Selective Inference (SI) [2]
(also known as Post-selection Inference), a new statistical inference framework for data-driven
hypotheses. This enables us to perform exact (non-asymptotic) inference conditioning on the
selection procedure. Additionally, we introduce a parametric programing approach [3, 4] to solve
the problem that SI has low statistical power due to over-conditioning, which was assumed to be
one of the major drawbacks of SI. To the best of our knowledge, this study is the first application
of SI to trajectory data analysis. In the talk, we will demonstrate the performance of the proposed
methods when in animal trajectory data analysis.

2 Trajectory Segmentation and Statistical Tests
Let T = [p1, p2, . . . , pn] denote a trajectory of length n, where each point pi = (xi, yi, ti) consists
of (x, y) location (and possibly additional parameters) of a moving object at time ti. A trajectory
segmentation algorithm splits the trajectory T into segments at breakpoints τ = (τ1, . . . , τK) with
known or unknown number of breakpoints K. Trajectory segmentation is mainly classified into two
types, time series-based and topology-based algorithm. The former first converts the trajectory
into univariate sequence xobs ∈ R

N of a feature (e.g., speed, acceleration and direction), then
change-point detection is applied to xobs. The latter directly uses the locational data xobs =
(x1, . . . , xn, y1, . . . , yn)� ∈ R

N as an input. We assume that xobs is a single observation drawn
from X ∼ N(μ, Σ) ∈ R

N .
We develop inference tools for the two types of algorithms. For time series-based algorithm, we

consider optimal change-point detection for a sequence with piecewise constant and piecewise linear
mean. In the case of the piecewise constant, statistical test of interest might be H

(k)
0 : μk = μk+1

v.s. H
(k)
1 : μk �= μk+1 for k ∈ {1, . . . , K}, where μk is the population mean of kth segment.

For topology-based algorithm, we consider Ramer-Douglas-Peucker (RDP) algorithm, which is
traditional but popular because of its simplicity. Due to space limitations, we omit the details of
the algorithms and statistical tests for each algorithm.

1



3 Selective Inference
The basic idea of SI [2] is to make inference conditional on the selection event, which allows us to
derive the exact (non-asymptotic) sampling distribution of a test statistic. Given a statistical test
H0 and H1, we assume that the test statistic can be written in the form of η�xobs using some
contrast vector η ∈ R

N . Then, we have the following (two-sided) selective p-value:

p := PrH0

(|η�X| ≥ |η�xobs| | M(X) = M(xobs), A(X) = A(xobs), P⊥
η X = P⊥

η xobs
)

.

Note that p satisfies PrH0(p < α) = α, ∀α ∈ [0, 1]. The first condition M(X) = M(xobs) = τ̂
indicates the event that breakpoints τ̂ are selected. The second condition A(X) = A(xobs)
indicates the algorithm-dependent nuisance selection event that we had no choice but to condition
on for tractability in most cases. The condition P⊥

η X = P⊥
η xobs is introduced for technical

reasons, where P⊥
η = IN − cη� is the orthogonal projection matrix with c = Ση(η�Ση)−1.

Conditioning not only on the selection of breakpoints but also on the algorithm procedure itself
A(X) = A(xobs) makes the conditioning space smaller:

{X : M(X) = M(xobs), A(X) = A(xobs)} ⊆ {X : M(X) = M(xobs)}.

This leads low statistical power of SI. Existing exact SI framework has suffered from this over-
conditioning problem.

Recently, we have developed a new SI framework [3, 4] that uses a parametric programming
technique to circumvent the over-conditioning. We define the parameterized data x′

obs(z) = cz +
P⊥

η xobs with a parameter z ∈ R, then we have a valid selective p-value

p := PrH0

(|η�X| ≥ |η�xobs| | M(X) = M(xobs), P⊥
η X = P⊥

η xobs
)

= PrH0

(|z| ≥ |η�xobs| | M(x′
obs(z)) = M(xobs)

)
.

By using this, we are able to perform powerful testing. We also have developed the effective
procedure to identify the all intervals of z where the same breakpoints τ̂ are obtained, by searching
z over (−∞, ∞).
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A multi-resolution approximation via linear
projection for large spatial datasets

Toshihiro Hirano

Kanto Gakuin University

Abstract

Recent technical advances in collecting spatial data have been increasing the
demand for methods to analyze large spatial datasets. The statistical analysis for
these types of datasets can provide useful knowledge in various fields. However, con-
ventional spatial statistical methods, such as maximum likelihood estimation and
kriging, are impractically time-consuming for large spatial datasets due to the nec-
essary matrix inversions. To cope with this problem, we propose a multi-resolution
approximation via linear projection (M -RA-lp). The M -RA-lp conducts a linear
projection approach on each subregion whenever a spatial domain is subdivided,
which leads to an approximated covariance function capturing both the large- and
small-scale spatial variations. Moreover, we elicit the algorithms for fast computa-
tion of the log-likelihood function and predictive distribution with the approximated
covariance function obtained by the M -RA-lp. Simulation studies and a real data
analysis for air dose rates demonstrate that our proposed M -RA-lp works well rel-
ative to the related existing methods.

Keywords: Covariance tapering; Gaussian process; Geostatistics; Large spatial
datasets; Multi-resolution approximation; Stochastic matrix approximation

1 Introduction

Advances in Global Navigation Satellite System (GNSS) and compact sensing devices have

made it easy to collect a large volume of spatial data with coordinates in various fields

such as environmental science, traffic, and urban engineering. The statistical analysis for

these types of spatial datasets would assist in an evidence-based environmental policy and

the efficient management of a smart city.

In spatial statistics, this type of statistical analysis, including model fitting and spa-

tial prediction, has been conducted based on Gaussian processes. However, traditional

spatial statistical methods, such as maximum likelihood estimation and kriging, are com-

putationally infeasible for large spatial datasets, requiring O(n3) operations for a dataset

E-mail: 1hirano2@kanto-gakuin.ac.jp
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of size n. This is because these methods involve the inversion of an n × n covariance

matrix.

Hirano (2020) proposed a multi-resolution approximation via linear projection (M -

RA-lp) of Gaussian processes observed at irregularly spaced locations. The M -RA-lp

implements the linear projection on each subregion obtained by partitioning the spatial

domain recursively, resulting in an approximated covariance function that captures both

the large- and small-scale spatial variations unlike the covariance tapering and some low

rank approaches. Additionally, we derive algorithms for fast computation of the log-

likelihood function and predictive distribution with the approximated covariance function

obtained by the M -RA-lp. Also, these algorithms can be parallelized. Our proposed

M -RA-lp is regarded as a combination of the two recent low rank approaches: a modified

linear projection (MLP) (Hirano, 2017) and a multi-resolution approximation (M -RA)

(Katzfuss, 2017). The M -RA-lp extends the MLP by introducing multiple resolutions

based on the idea of Katzfuss (2017), leading to better approximation accuracy of the

covariance function than that by the MLP. Particularly, when the variation of the spatial

correlation around the origin is smooth like the Gaussian covariance function, the approx-

imation accuracy of the covariance function by the MLP often degrades. In contrast, the

M -RA-lp avoids this problem. Additionally, the M -RA-lp is regarded as an extension

of the M -RA and enables not only to alleviate the knot selection problem but also to

increase empirically numerical stability in specific steps of fast computation algorithms of

the M -RA. Simulation studies and a real data analysis for air dose rates generally support

the effectiveness of our proposed M -RA-lp in terms of computational time, estimation of

model parameters, and prediction at unobserved locations when compared with the MLP

and M -RA.
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Testing independence of continuous time stochastic
processes – toward independence test for random fields –

Nanzan University Muneya Matsui

Abstract

Firstly we give a talk about independence test of a pair of stochastic processes.
As a measure of independence, we construct distance covariance (DC) and dis-
tance correlation (DCR) based on approximations of the component processes
at finitely many discretization points. Assuming that the mesh of the dis-
cretization converges to zero as a suitable function of the sample size, we show
that the sample distance covariance and correlation converge to limits which
are zero if and only the component processes are independent. In the talk,
we moderately explain theoretical results and spare more time for numerical
studies.

Secondly several ideas toward independence test for random fields are given.
Especially, we state differences in sampling scheme between stochastic pro-
cesses and random fields.

Definitions
For two processes X and Y on [0, 1] with some mild conditions, we define DC for processes

Tβ(X,Y ) = E
[‖X1 −X2‖β2‖Y1 − Y2‖β2

]
+ E

[‖X1 −X2‖β2
]
E
[‖Y1 − Y2‖β2

]
−2E

[‖X1 −X2‖β2 ‖Y1 − Y3‖β2
]
, β ∈ (0, 2],

where ‖ξ‖2 denotes the L2-norm of a process ξ on [0, 1]. Of course, Tβ(X,Y ) = 0 for
independent X,Y . The converse is not obvious; we prove it in Theorem 0.2. The cor-
responding distance correlation is given by Rβ(X,Y ) = Tβ(X,Y )/

√
Tβ(X,X) · Tβ(Y, Y ).

Since the whole path of a process Z on [0, 1] is unavailable in reality, we consider dis-
cretizations of the process at a partition 0 = t0 < t1 < · · · < tp = 1 of [0, 1]. Assuming
that p = pn → ∞ as n → ∞ and the mesh satisfies δn = maxi=1,...,p(ti − ti−1) →
0 , n → ∞ , we normalize the points Z(ti) by

√
ti − ti−1. Writing for any partition (ti),

Δi = (ti−1, ti] , |Δi| = ti − ti−1 , i = 1, . . . , p , we consider a vector of weighted discretiza-
tions Zp =

(|Δ1|1/2Z(t1), . . . , |Δp|1/2Z(tp)
)
and define the discretization of the process

Z(p)(t) =
∑p

i=1 Z(ti)1(t ∈ Δi). For stochastically continuous, measurable and bounded
processes Z and Z ′ we have as p → ∞,

|Zp − Z′
p|2 =

p∑
i=1

(Z(ti)− Z ′(ti))2|Δi| = ‖Z(p) − (Z ′)(p)‖22 →
∫ 1

0
(Z(t)− Z ′(t))2 dt = ‖Z − Z ′‖22 ,

in probability. Therefore, we could approximate Tβ(X,Y ) by Tβ(X
(p), Y (p)) properly.

The sample analog of Tβ(X,Y ) and Rβ(X,Y ) are respectively given by

Tn,β(X,Y ) =
1

n2

n∑
k,l=1

‖Xk −Xl‖β2‖Yk − Yl‖β2 +
1

n2

n∑
k,l=1

‖Xk −Xl‖β2
1

n2

n∑
k,l=1

‖Yk − Yl‖β2

−2
1

n3

n∑
k,l,m=1

‖Xk −Xl‖β2‖Yk − Ym‖β2 ,

and Rn,β(X,Y ) = Tn,β(X,Y )/
√

Tn,β(X,X) · Tn,β(Y, Y ).



Main results

1. Asymptotics of test statistic.

Theorem 0.1. Assume some moment and smoothness conditions of (X,Y ) and the growth
condition on p = pn → ∞. Then under the null hypothesis (X and Y are independent),

Rn,β(X
(p), Y (p))

p→ 0 , and nRn,β(X
(p), Y (p))

d→
∞∑
i=1

λi(N
2
i − 1) + c

for an iid sequence of standard normal random variables (Ni), a constant c, and a square
summable sequence (λi).

For proving the second quantity, we notice that Tn,β(X,Y ) has representation as a V -
statistics of order 4 with a 1-degenerate symmetric kernel h4 = h(x1, x2, x3, x4).

2. The condition Tβ(X,Y ) = 0 and independence of X and Y .
Let B1, B2 be independent Brownian motions (BMs) on [0, 1], independent of (X,Y ).
The stochastic integrals Z1 =

∫ 1
0 XdB1 and Z2 =

∫ 1
0 Y dB2 are well defined (and are,

given (X,Y ), independent normal random variables). Let FB denote the σ-field generated
by B = (B1, B2). The quantity Tβ(X,Y ) is shown to be contracted from the stochastic
integrals Z1, Z2.

Theorem 0.2. If the stochastic integrals Z1 and Z2 are a.s. conditionally independent
given FB then X,Y are independent. In particular, if β ∈ (0, 2) and E[‖X‖β2 + ‖Y ‖β2 +

‖X‖β2‖Y ‖β2 ] < ∞, then Tβ(X,Y ) = 0 if and only if X,Y are independent. Then we have

3. The bootstrap for the sample distance covariance.
The bootstrap can be made to work for the degenerate V -statistic Tn,β(X,Y ). We validate
that the bootstrap version of nTn,β(X

(p), Y (p)) approximates the bootstrap distribution
of Tn,β(X,Y ).

4. Simulations.
We illustrate the theoretical results in a small simulation study using typical processes such
as fractional Brownian motions, α-stable Lévy motions, etc. With various boxplots, we
see the convergences of Tn,β(X

(p), Y (p)) to theoretical limits assuming X,Y are indepen-
dent/(weak/strong)dependent. We have also conducted a simulation study to illustrate
the performance of the bootstrap procedure for the distance correlation based test for
independence. Specifically, we have tested for independence of two BMs and two α-stable
Lévy motions X, Y .

All details of results are given in [2], see also DCR for time sires [1], and another version
of DC for stochastic processes [3].
In the talk we present several sampling schemes for approximating DCR for random fields.

References

[1] Davis, R.A., Matsui, M., Mikosch, T. and Wan, P. (2018) Applications of distance correlation
to time series. Bernoulli 24, 3087–3116.

[2] Dehling, H., Matsui, M., Mikosch, T., Samorodnitsky, G. and Tafakori, L. (2018) Distance
covariance for discretized stochastic processes. Bernoulli (to appear).

[3] Matsui, M., Mikosch, T. and Samorodnitsky, G. (2017) Distance covariance for stochastic
processes. Probab. Math. Statist. 37, 355–372.

2



SPACE-TIME

AUTOREGRESSIVE MOVING AVERAGE MODELS

YASUMASA MATSUDA

1. Abstract

In this talk, we propose a space-time autoregressive and moving average
(ST-ARMA) model for spatio-temporal data, a discrete time series obser-
vation of irregularly spaced data, denoted as Xt(s), s ∈ R

2, t = 1.2. . . ..
Figure 1 shows observation points in US to record monthly precipitation,
providing a typical example of spatio-temporal data. Regarding Xt(s) as
a L2(R2)-valued time series, we construct a space-time ARMA(p, q) model,
given by

Xt(s) =

p∑
j=1

∫
R2

φj(s− u)Xt−j(u)du+

q∑
j=0

∫
R2

θj(s− u)Lt−j(du),(1)

s ∈ R
2, t = 0,±1,±, 2, . . . ,

where Lt(u) is a Lévy sheet on R
2 independent across t, and φ(s) and θ(s) are

CARMA kernels in L2(R2). It is an temporal extension of continuous ARMA
random fields of Brockwell and Matsuda[2] by a convolutional operator of φ
and θ on L2(R2).

A space-time ARMA model is a kind of model for functional time series,
a H2-valued time series for a Hilbert space H2. See Ramsay and Silverman
[5] for independent cases, Bosq[1] for stationary time series cases, Liu et al.
[4] for a pure AR model for L2[0, 1] valued time series, and Li et al. [3]
for a semiparametric method to detect a long memory property in L2[0, 1]
valued time series. One feature of ST-ARMA model in (1) is that it is a
L2(R2)-valued time series model. It scauses several difficulty in establishing
ST-ARMA model properties that infinite region R

2 rather than the fixed
interval [0, 1]2 over which square integrable functions of Hilbert space is
defined.

We shall introduce the basic properties of space-time ARMA models given
as

• stationary conditions, more specifically, causal and invertible condi-
tions,

• explicit form of spectral density functions,

Key words and phrases. CARMA random fields, Causality, Invertibility, Irregularly
spaced data, Lévy sheet, Periodogram, Spectral density function, Whittle likelihood.
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Figure 1. Weather stations in United States

• Whittle estimation for parameters that specify CARMA kernels of
φ(·) and θ(·),

• forecasting,
• empirical applications to US precipitation data.

The striking features are the explicit derivation of spectral density functions
which makes it possible to conduct a parametric estimation by Whittle like-
lihood function and forecasting of future values by the estimated CRMA
kernels.
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