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Program

Saturday, 14, September

Reception 13:00-13:25

Opening 13:25-13:30 Junichi HIRUKAWA (Niigata University)

Afternoon Session I (in Japanese) 13:30-15:00

Chair Kou Fujimori (Waseda University)

1. 13:30-14:15 /A #E (KUROKI, Yutaka)

BURHERL R RFBE TR (Graduate School of Engineering, Tokyo University of Science)
V=T« VI FREEAVZR Y b7 — 7 HDEOREE L 2 ORGEHMHE

(Constructing Network Centrality Measure based on Rating Methods and its Statistical Proper-

ties)

2. 14:15-15:00 KOTSUBO, Takuto

Graduate School of Engineering, Tokyo University of Science

Hidden Markov models for cylindrical data and its application for animal movement analysis
Coffee Break 15:00-15:15

Afternoon Session II (in Japanese) 15:15-16:45

Chair Takayuki Shiohama (Tokyo University of Science)

3. 15:15-16:00 Nakayama Yugo

Graduate School of Pure and Applied Sciences, University of Tsukuba

Support vector machine and optimal choice of parameters for high-dimensional imbalanced data

4. 16:00-16:45 # #4155 — (Shinmura Shuichi)

B2 K F 44 B E (Emeritus Professor of Seikei Univ.)
ERTCBIR T T — ZRHT DB & DA

(Release of Curse of High-dimensional Data Analysis)



Sunday, 15, September

Morning Session (in English) 9:15-11:30

Chair Muneya Matsui (Nanzan University)

5. 9:15-10:00 Yuichi Goto, Marc Hallin, Masanobu Taniguchi

Waseda University, Université libre de Bruxelles, Waseda University
Kolmogorov-Smirnov Tests for Laplace Spectral Density Kernels

6. 10:00-10:45 Kou Fujimori, Sota Sakamoto and Yasutaka Shimizu

Waseda University

Generalized maximum composite likelihood estimator for determinantal point processes
7. 10:45-11:30 Junichi Hirukawa and Kou Fujimori

Niigata University and Waseda University

Weak convergence of the partial sum of I(d) process to a fractional Brownian motion in finite

interval representation
Lunch 11:30-13:15

Afternoon Session I (in English) 13:15-15:30

Chair Nobuaki, HOSHINO (Kanazawa University)

8. 13:15-14:00 Toshihiro Abe

Nanzan University

A closed form EM algorithm for a multivariate skew-normal model

9. 14:00-14:45 Muneya Matsui

Nanzan University

Asymptotics of maximum likelihood estimation for stable law with continuous parameterization
10. 14:45-15:30 38 Jt® (Chang Yuan Tsung), &l {Zkf (Nobuo Shinozaki), William, E.
Strawderman

HHAKY - L2220 - L2 W R (Mejiro University, Department of Social Information, Faculty
of Studies on Contemporary Society),

BEHE R - T8 (Faculty of Science and Technology, Keio University),

Department of Statistics and Biostatistics, Rutgers University

Pitman Closeness Domination in Predictive Density Estimation for Two Ordered Normal Means

Under a-Divergence Loss

Coffee Break 15:30-15:45



Afternoon Session II (Guest speakers session) 15:45-16:45
Chair Junichi Hirukawa (Niigata University)

11. 15:45-16:45 Konstantinos Fokianos

Lancaster University

Auto-Distance Covariance Function for Time Series Analysis



Monday, 16, September

Morning Session (in Japanese) 9:15-11:30

Chair Toshihiro Abe (Nanzan University)

12. 9:15-10:00 AT Z& (Kaoru Irie)

HURLKFRRFE I (Faculty of Economics, The Univeristy of Tokyo)

M/ N 0 A & ARTEZE M E TV
(Shrinkage priors and state space models)

13. 10:00-10:45 7k % (Isamu Nagai)
PR ERRBE TR (School of International Liberal Studies, Chukyo University)

[N T v ZARRRHAIE 7 — 2128 1F 5 Extended GMANOVA € 7V DR & i 72 72 HEE 1
(Interpretation for the extended GMANOVA model in the balance type longitudinal data, and
new estimation method)

14. 10:45-11:30 2% {485 (Nobuaki, HOSHINO)
BIRKFERFEFFE (School of Economics, Kanazawa University)
[ AT 78 — AL Z T AT DWW T

(Generalized multinomial distributions with scalable variance)

Closing 11:30-11:35 Junichi HTIRUKAWA (Niigata University)
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Hidden Markov models for cylindrical data and

its application for animal movement analysis

Takuto Kotsubo
Graduate School of Engineering, Tokyo University of Science
Takayuki Shiohama
Department of Information and Computer Technology

Abstract

Analyzing animal tracking is a growing field in ecology and various models have been proposed
in literature. State space model is often used to fit the animal tracking data, however the limitations
of the linear and Gaussian assumption are sometimes reported. An alternative approach for model-
ing animal movement data is Hidden Markov Models (HMM) with cylindrical distribution, where the
cylindrical data consists of circular and linear variables. For linear part of the cylindrical distribution,
we adopt the generalized Palate-type distribution for heavy tailed observations in linear part, which
includes the Weibull-von Mises distributions on cylinder. Estimation for the model parameters are
done by using Expectation and Maximization (EM) algorithms, and we propose a modified M-step
procedure and a Maximum at posteriori (MAP) estimation for model parameters to avoid local max-
imum solutions in EM algorithms.

Keywords: Animal movement, cylindrical data, EM-algorithms, maximum likelihood estimation.

1 Introduction

A cylindrical data refers to a bivariate data which consists of circular and linear variables. Circular
data usually deal with direction and has periodic properties with frequency 27. Linear variables arise
in cylindrical data are usually defined on a positive real line. Cylindrical data arise often in various
fields in natural sciences, for example, wind directions and speeds in meteorology (Breckling (1989);
Ailliot et al. (2015)), wave directions and heights in oceanology (Ris et al. (1999)), ozone concentrations
and wind directions in environmental science (Camalier et al. (2007); Yi and Prybutok (1996)) and the
turning angels and step lengths of the animal movement in ecology (Jonsen (2016); Adam et al. (2019)).
These data consist of time series nature, however time series modeling of cylindrical data are not fully
investigated in literature. The reason behind this is that there exists a few distributions on cylinder.

The well known cylindrical distribution is called the Johnson and Wehrly distribution (Johnson and
Wehrly (1978)). The drawbacks of the Johnson and Wehrly distribution are reported in Abe and Ley
(2017), where they pointed out that the mode of the linear variables always defined at 0, which can not
be applied for many actual data analysis. Recently, Abe and Ley (2017) proposed cylindrical distribution
with combining sine-skewed von Mises and Weibull distribution to implement the skewness structures
in directional variables and to have the mode at some point on the domain of the probability distribution
function. Imoto et al. (2019) extends the Abe-Ley distributions to have more heavy tail distributions on



real part. There exists another class of the cylindrical distributions which includes the distributions of
Mardia and Sutton (1978) and Kato and Shimizu (2008). The normalizing constants of these distributions
are somewhat complex and that is not expressed in an analytic form, hence in this study we focus on
applying the distributions of Abe and Ley (2017) and Imoto et al. (2019).

The rest of paper is organized as follows. Section 2 introduces our HMM models. Several useful distri-
butional properties of cylindrical distributions are explained. Section 3 provides the maximum likelihood
estimation procedures which utilizing EM algorithms. Some technical improvements are also discussed
to avoid the local maximum solution in optimization together with to avoid unboundedness in likelihood
functions. In Section 4, some Monte Carlo simulations are performed to assess the performance of our
proposed procedures. Section 5 provides real data analysis of animal movement trajectories. Section 6
concludes our paper.
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Support vector machine and optimal choice of
parameters for high-dimensional imbalanced data

Yugo Nakayama
Graduate School of Pure and Applied Sciences, University of Tsukuba

1 Introduction

In this talk, we considered the classification for high-dimensional data. Suppose we have independent and
d-variate two populations, 7;, ¢ = 1,2, having an unknown mean vector p; and unknown covariance matrix
3, (> 0). Let A = ||uq — po||?, where || -|| denotes the Euclidean norm. We have independent and identically
distributed (i.i.d.) observations, ®;1,...,&,,, from each m;. We assume n; > 2, i = 1,2 and n; < ny. Let
x(y be an observation vector of an individual belonging to one of the two populations. We assume xg and
x;js are independent. Let n = ny + na.

In recent years, the margin-based classification methods such as support vector machine (SVM) are
studied for high-dimensional data. It is well known that many classifiers, including SVM, overfit the data
in the high-dimensional setting. Nakayama et al. (2019) claimed that SVM gives inconsistent properties for
imbalanced data:

e(l)=1+o0p(1l) and e(2) =0p(l) asd — oco; or (1)
e(1) =op(1) and e(2) =1+ o0p(l) asd — oo, (2)
where e(i) denote the error rate of misclassifying an individual from 7; into the other class for i = 1,2. The
cause of inconsistency is due to the imbalance of sample sizes and a huge bias of high-dimensional space.
In overcome this difficulty, Nakayama (2019) proposed linear robust SVM (RSVM) to imbalanced data. In

this paper, we investigate the asymptotic properties of RSVM more deeply in the framework of n/d — 0 as
m — 0o, where m = min{d, ny,na}.

2 Asymptotic properties of robust SVM

In this section, we compare SVM and RSVM for high-dimensional data. First, we introduce a formulation of
SVM. Let (z1,...,&n) = (€11, .., T1ny, T21, - - -, L2n, ). #S denotes the number of elements in a set S. The
discriminant function of SVM is given by

. 1 .
S

jes jes j'es

where § = {jl&; #0, j =1,...,n} and ng = #S. & = (4a,...,&,) is obtained by solving the following

maximization
n 1 n n
& = argmax (Z aj =3 Z Z ajaj/tjtjrijwj/)
@ j=1 j=1k=1
subject to
n
0<o; <C, j=1,...,n, and Zajtj:(), (4)
j=1



where C' > 0 is a regulariation parameter. Note that (3) becomes a hard-margin type when C' — co. There
exist some @;s satisfying that ¢;y(x;) = 1 (ie., &; # 0). Such x;s are called the support vector. SVM
classifies x( into 7 if y(xp) < 0 and into 7o otherwise.

The regularization parameter C' influences the properties of SVM. Let A, = A +tr(31)/ny + tr(X2)/na.
For C, we consider the following conditions:

limsup ———— < 1;0r )

m—>oop nlA*C o ( )
2

lim inf > 1. (6)

m—o0 N1 ALC
Let 6 = tr(X%1)/n1 — tr(Xs2)/n2. Then we have the following result.

Theorem 1. Assume some regularity conditions and

liminf |0|/A < 1. (7)
m—roo
Then, under (5), (3) holds (8).
e(i)=14o0p(1) asm — oo fori=1,2. (8)

Under (6), we have the following result.
Theorem 2. Assume some reqularity conditions and

n?CA

lim inf > 0; and (9)
m—oo n

. Nngr — Ny tI‘(Ei) — tr(Ei/) . .

1 ( ) 1 g 1
S mAC A <L iFe (10

Then, under (6), (3) holds (8).

SVM gives (1) and (2) for high-dimensional imbalanced data. We improved SVM by using a robust
intercept to imbalanced data. Let S; = {j|d;; # 0, j =1,...,n;} for i = 1,2. Then we define robust SVM:

arjxelxy Gojxd 200
Yo (@0 w) = Z ajtyal o + Z ¥ ek M Z 2525727 (11)
; il 2(77’51 - 1) Yy 2(”»5'2 - 1)
jes 3#3'(4,3" €51) J#3' (3,4 €S2)
Note that Y 7 ) Gy = 272 doj(= A, say) from (4). We have the following theorem.
Theorem 3. Under some regularity conditions, (11) holds (8).
RSVM gives (8) for imbalanced data and any C' satisfying (9) without assuming (7) and (10).
In this talk, we generalized RSVM for kernel functions and discussed the choice of tuning parameters. Fi-

nally, we checked the performance of RSVM and the validity of the tuning parameter by numerical simulations
and actual data analysis.
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Kolmogorov-Smirnov Tests
for Laplace Spectral Density Kernels

Yuichi Goto (Waseda University)
Marc Hallin (Université libre de Bruxelles)

Masanobu Taniguchi (Waseda University)

1. Introduction

A new type of spectral density, called the Laplace spectral density kernel, was proposed
by [1]. Laplace spectral density kernels characterize the collection of all marginal
bivariate distributions of a given stationary stochastic process, without requiring any
moment assumptions. In this presentation, we proposed a Kolmogorov-Smirnov (KS)
test for Laplace spectral density kernels.

2. Setting and Main Results

Let {X; : t € Z} be a strictly stationary process with continuous and strictly in-
creasing marginal distribution function F(-). We assume {X;} satisfies the following
assumption.

Assumption 1. There exists constants p € (0,1) and K € R such that, for arbitrary
intervals Aq,..., A, C R and arbitrary t,...,t, € Z,

)Cum (H{Zt16A1}7 s 7]I{thEAg}) ’ S KP(Zt - Al) Ce P(Zt - Ag)pmaxi*jeu """ & ‘ti_tjl.

The Laplace cross-covariance kernel of {X;} is defined, for all k € Z and (x1,z5) €
R2, as

Corwa (k) = CP(a1),F(as) (k) :=Cov (Iix, ,<u1}> Lixi<an}) = Cov (Ly, <kt Lvi<Fs)}) -

where Uy := F(Z;). Associated with this cross-covariance kernel, the Laplace spectral
density kernel is defined, for (z1,z) € R? and \ € [—, 7], as

o0

1 )
f1'171'2(A) = fF(m),F(:cz)(/\) = o C$17$2(k) exp{—zk/\}.

k=—o0

In order to estimate the Laplace spectrum of {X,}, the Laplace periodogram is de-
fined, for (z;,79) € R? and \ € [—7, 7], as

T g ]‘ x T
L) = Ly 0) = o d (N (<),

1
2mn "

where

n—1 n—1
di(N) = Tix,<ay exp{—ids} = > Ty <p) exp{—irs}.
s=0 s=0

This research supported by Grant-in-Aid for JSPS Research Fellow Grant Number JP201920060 (Y.
Goto), and the Research Institute for Science & Engineering of Waseda University and JSPS Grant-
in-Aid for Scientific Research (S) Grant Number JP18H05290 (M. Taniguchi).




Generalized maximum composite likelihood estimators for
determinantal point processes

Kou Fujimori*, Sota Sakamoto and Yasutaka Shimizu
Waseda University

In this talk, we dealt with the estimation problem for determinantal point processes (DPPs).
DPPs are the classes of spatial point processes with repulsive properties for each pair of realized
points and studied intensively in terms of statistical physics to capture the behavior of fermions.

Let (Q, F,P) be a probability space. For the kernel function K : R? x RY — R, the point
process X called determinantal point process with kernel K if the measure;

#

E Z LizieAs, apea,} |+ P=2,3,...
(z1,....xp)EXP

where A;, j = 1,...,p are bounded Borel sets on R? and X? is p-direct product of the point
process X, has the following density function (p-th order joint intensity function)

pP (1, ... xp) = det[K](z1,...,2p),

with
[K](21, ... 2p) = (K (20, 75)), < j<, € RV

We consider the case when the kernel K satisfies the following form:

K(z,y) = v/ p(z,\)p(y, \) Calz — y),

where the function p(-, A) is the intensity function with an unknown parameter A > 0 and C, is
the pair correlation function which satisfies Cy, (0) = 1 with an unknown parameter o € R9. We
denote this kernel K = Ky, where 0 = (\, a).

Our goal was to construct estimators for unknown parameter 6. Since well-known point
processes such as the Gibbs point process or Cox process only have the exact form of joint
intensities of second order, we often use the second order estimation function such as composite
likelihood functions. On the other hand, joint intensities of DPPs are given by the determinant
of positive definite kernels, which allows us to compute the joint intensities of general order.
Therefore, we can introduce the two step composite likelihood approach by using p-th order joint
intensity function p®) based on observations from fixed window D,, € R% which is the generalized
version of 2nd order estimation function. For the intensity parameter A, we considered the
following normalized quasi-likelihood function.

Hoi(A) = / log p(, \)N (dx) — / plu, N)du,

n

where D,, C R? is the observation window centered 0 which satisfies the following condition:

|Dn| Xnd’ Md—l(aDn) Xnd_la n— 00



with |- | and pg—1(+) is the d and d — 1-dimensional Lebesgue measure, respectively. We defined
the following normalized p-th order composite likelihood function for every integer p > 2 to
estimate the parameter a:

H;pQ)(/\, a) = / {log[pép) (x1,...,2p)] — log[Kyp(r : 9)]}
D},
xwy(z1,. .., 2p) NP (dxy - - - dxy), (1)
(p)

where 7 > 0 is a tuning parameter, p,  and K, , are respectively the joint intensity of p-th
order of DPP(Cjp) and the modified K-function of p-th order:

(»)

py (x1,...,2p) = det[Kp|(x1,...,2p),
p
= et A det[Col(z1, ..., zp)
=1

and
Kyp(r:0) = /p pép)(xl, o xp)wp(x, .. Tp)da - T,
Dy,

where w, is a bounded weight function whose support is given by
SPi={(z1,...,2p) 1 1 — 25| <7, 1 <5 <p}.
For example, a simple choice of the weight function w, is given by
Wy (71, .., 1p) = Lgp(@1,. .., 7p).

Note that N® is a counting measure of p-th order induced by the point process X, i.e.,

D 7>
N H 45| = Z NaieAr,apepds
Jj=1 (z1,...,xp)EXP

where A;, j = 1,...,p are bounded Borel sets on R?. Using the estimating functions H,;())
and H,2(\, ), we defined the following two-step estimator for 8 = (A, «).

Definition 1. The estimator éy(lp ) = (5\”, @ﬁf’ )) 1s called generalized mazimum composite likelthood
estimator if

)\n = arg sup Hnl()‘)a (2)
PYSICIN

@ﬁbp) = arg sup HSZPQ)(S\naa)' 3)
a€BOqy

In particular for stationary case, i.e., the case when the kernel function satisfies the following
condition;
Ka(.’E,y) :)\Ca<l'—y), x7y€Rd7

we proved the consistency and the moment convergence of the estimators as the volume of the
observation window |D,| — oo under some suitable conditions. Moreover, we presented the
information criterion based on the proposed estimating method in this talk.



Weak convergence of the partial sum of /(d) process to a
fractional Brownian motion in finite interval representation

Junichi Hirukawa and Kou Fujimori

Niigata University and Waseda University

ABSTRACT

An integral transformation which changes a fractional Brownian motion to a process with independent increments
has been given. A representation of a fractional Brownian motion through a standard Brownian motion on a finite
interval has also been given. On the other hand, it is known that the partial sum of the discrete time fractionally
integrated process (I(d) process) weakly converges to a fractional Brownian motion in infinite interval representation.
In this talk we derive the weak convergence of the partial sum of I(d) process to a fractional Brownian motion in finite
interval representation.

1 Introduction

Stochastic analysis for FBM has been developed by Decreusefond and Ustiinel (1997) using Malliavin calculus. Norros
et al. (1999) showed that many basic results can be obtained more directly with rather elementary arguments and
computations. Norros et al. (1999) considered a normalized fractional Brownian motion (FBM) (Z,),5¢ with self-
similarity parameter H € (0, 1). Mandelbrot and Van Ness (1968) defiend the process more constructively as the
integral

00

[ [
7, -7 =cu (f t — w2 qw, + f {(t — )12 (5 - u)H‘l/z}dW,,),

where W, is the standard Brownian motion. The normalization E (Zf) = 1 is achieved with the choice

2HT (3 - H) ]

3 1/2
3
Ccyg =
[F(H+ %)r(z —2H)

where I" (+) denotes the Gamma function.

1.1 The fundamental martingale M

Norros et al. (1999) considered the following process. Let w (z, s) be the function

“s) ey sV = )VH - for s €(0,0),
wi(t,s) =
0, for s ¢ (0,1),

where

1 !
Cc1 = {ZHB(E - H H+ 5)}



and B is the beta funtion
IF'wT (v)
B = —
@) I'(u+v)

Then, the centered Gaussian process

!
M, = f w(t, s)dZ;
0
has independent increments and variance function
E(M}) =",

where

CH
cp= —————————.
*ToH@ - 2m)

In particular, M is a martingale.

2 Weak convergence of / (d) process

Now, we obtain the following functional central limit result for 7 (d) process

[nt] [n]-1 ([nt]-1
5 Z = = D EADW e S N g2 W
opd+12 7 = ang 1V‘H ST i uut+l-sVyq s

s= s=1 u=s

¢ ¢ '
= ﬁfo s7¢ {fs (u— s)%! u"du}dW(S) = fo dZ(s)=Z ().

References

Mandelbrot B. B. and van Ness J. W. (1968). Fractional Brownian motions, fractional noises and applications STAM
Review, 10, 422-437.

Norros, I. and Valkeila, E. and Virtamo, J. (1999). An elementary approach to a Girsanov formula and other analytical

results on fractional Brownian motions Bernoulli 4, 571-587.

Pipiras, V. and Taqqu, Murad S. (2001). Are classes of deterministic integrands for fractional Brownian motion on
an interval complete? Bernoulli 7, 873—897.

Tanaka, K. (2013). Distributions of the maximum likelihood and minimum contrast estimators associated with the
fractional Ornstein-Uhlenbeck process Stat. Inference Stoch. Process. 16, 173—192.



A closed form EM algorithm for a multivariate
skew-normal model

Toshihiro Abe (Nanzan University)
Hironori Fujisawa (The Institute of Statistical Mathematics, RIKEN)
Takayuki Kawashima (Tokyo Institute of Technology)

The most famous skew distribution is a skew-normal distribution, which was proposed by
Azzalini (1985, 1986). Various extensions to multivariate skew distributions have been proposed.
Azzalini & Dalla Valle (1996) introduced a two-dimensional skew distribution whose marginal
distribution is a univariate skew-normal distribution through additional parameters. Azzalini
& Capitanio (1999) proposed a multivariate skew-normal distribution and investigated many
properties of multivariate skew-normal distributions. Arellano-Valle & Genton (2005) presented
some expressions of skew distribution and discussed basic classes of skew distribution, including
skew-symmetric, skew-elliptical, and skew-spherical distributions. It is known that the maxi-
mum likelihood estimation for skew-normal distributions presents a problematic aspect in the
neighborhood of base distribution.

In this talk, we consider the maximum likelihood estimation via an EM algorithm (Dempster
et al., 1977) for a multivariate skew-normal distribution. Some stochastic representations were
proposed to obtain a multivariate skew-normal distribution. A stochastic representation often
enables us to make an EM algorithm in a convenient manner (McLachlan & Krishnan, 2007). Lin
et al. (2007) constructed an EM algorithm for a mixture of univariate skew-normal distributions,
but the EM algorithm obtained there demands a solution of complicated estimating equation
for a skew parameter. The same problem happens even in a usual univariate skew-normal
distribution, so that it is hard to extend the idea to a multivariate case. Lin (2009) considered an
EM algorithm for a mixture of multivariate skew-normal distributions, although the multivariate
skew-normal distribution treated there was based on Sahu et al. (2003) and a different type
from Azzalini & Capitanio (1999). The EM algorithm demands multi-dimensional numerical
integrations, which are hard to compute in a high-dimensional case. So far, there has no EM
algorithm in a closed form.

Here we review the stochastic representation which implies the multivariate skew-normal
distribution (Azzalini & Capitanio, 1999). Suppose

(¥ )~Mon0o) o= g 7). 1)

Then, U = sgn(Yp)Y has the following density function:
f(u) = 22(a’u)é(u; 0,9), (2)

where a = Q718 /(1 —87Q~16)'/2, (%) is the cumulative density function of the standard nor-
mal distribution and ¢(z;0, Q) is the normal density function with mean vector 0 and covariance
matrix Q. The random variable U with the density (2) is said to have the multivariate skew-
normal distribution (with mean zero). The distribution of U + p is expressed as SNy (u, 2, ).

In this talk, we construct an EM algorithm in a closed form, using the stochastic represen-
tation (1) with a slight modification. We change the covariance structure of (Y, Yp) from Q*

to
Q 025
X = ( 76T QL2 72 ) ’ (3)



and then we consider the random variable X = sgn(Yy)Y. Here we give two devices. The first
one is essential when we construct an EM algorithm. We add the parameter 7 in (3). We can
consider the covariance matrix 3. on the whole space of positive definite matrix, although * has
the restriction 7 = 1 in (1). This device makes it easy to optimize the objective function in the
M-step of the EM algorithm. The second one is a slightly different expression of parameter. We
replace 8 in Q* by Q'/2§ in ¥, which changes the positive definite condition of the covariance
matrix from 6§ Q71§ < 1 to the simple condition § '§ < 1. We will show that X = sgn(Y)Y
has a multivariate skew-normal distribution SN, (0, 2, &) with a = Q71/2§/v/1 — §7 6, which is
the same as the original multivariate skew-normal distribution if Q24 is placed back to 8. A
remarkable point is that the distribution of X does not depend on the parameter 7, since the
joint distribution of (Y, Yy) includes the parameter 7. In this sense, the parameter 7 can be
called the overparameter. The overparameter 7 is not necessary when we consider a multivariate
skew-normal distribution, but it enables us to construct an EM algorithm in a closed form. The
R package snem has been developed to obtain the maximum likelihood estimate via the EM
algorithm.
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Asymptotics of maximum likelihood estimation for stable
law with continuous parameterization

Nanzan University = Muneya Matsui

Abstract Asymptotics of maximum likelihood estimation for a-stable law are analyti-
cally investigated with a continuous parameterization. The consistency and asymptotic
normality are shown on the interior of the whole parameter space. Although these asymp-
totics have been provided with Zolotarev’s (B) parameterization, there are several gaps
between. Especially in the latter, the density, so that scores and their derivatives are
discontinuous at o = 1 for 8 # 0 and usual asymptotics are impossible. This is consider-
able inconvenience for applications. By showing that these quantities are smooth in the
continuous form, we fill gaps between and provide a convenient theory. We numerically
approximate the Fisher information matrix around the Cauchy law («, 8) = (1,0). The
results exhibit continuity at o = 1, § # 0 and this secures the accuracy of our calculations.

Main contents We use the following definitions and notations throughout. Denote ch.f.
of stable law in continuous form by

exp ( — |ot|*{1 + iBsignt tan T2 (|ot|' > — 1)} + iut) ifa#1

p(t) =
exp | — |ot| — iot (28/7) log |ot| + z',ut) if =1,
where u € R, 0 € Ry, € (0,2],8 € [-1,1] with Ry = (0,00). We denote this
parameter space by O and its interior by ©9,. A parameter vector is denoted by
0 = (01,02,603,04) = (u,0,,3). Asusual [, f” mean the first and the second derivatives
with respect to (w.r.t.) z and fg = (fo,, fo,, fos, fo,)' denotes a vector of partial derivatives
of f w.r.t. 8. The second order partial derivatives w.r.t. x and 6 are denoted by
0% f 0% f 0% f 0% f

j = B 05 = = i=1,....,4
o 0x00;  90;0x’ Jou, 06,00, ~ 90;00, 7T T

i.e. all derivatives will be shown to be interchangeable in our case. Moreover, denote the
log-likelihood function of f and its scores respectively by

0l(x;0)  fo,(x;0) ,
96 = o) L=tsh

l(x;0) =log f(z;0) and {ly,(x;0) =

where for convenience we sometimes write ¢(x) and £, (x) for these quantities. The second
order derivatives of score functions w.r.t. # and z, denoted by
0ly, (x;0) 1
/ i ) _ / . . . / .

0Ly, (x;0 .
Co,0,(x) = eé(Qj ) _ fg(i; 3 (foi0,(2;0) f (x;0) — fo,(x;0) fo,(2;0)), 1<i,j <4,

are also investigated. Again orders of partial derivatives w.r.t. (z, ) are all exchangeable.
Based on the following technical Lemma 0.1 and Proposition 0.2, we establish asymp-
totics of maximum likelihood estimation as Theorem 0.3.

Lemma 0.1. For every x € R, f(x;0) : 6 € ©F is twice continuously differentiable w.r.t.
0, and fp,, 1 =1,...,4 is continuously differentiable w.r.t. x. Moreover fg,, féz_, Jo.0; 1,5 =
1,...,4 are jointly continuous in (x,0) on R x ©;.



The tails of f and its derivatives for sufficiently large |x| satisfy

f=0(|x|~0F), fi, = = fup = O(|a|7BF)), foa = O(Jz|~ 0+ log |z]),
fu=—f =0(z|7®+)), fl = —f,; = O(|jx|" ), fop = O(|z|~(1H)),
fo = O(|z|~(Fe), fro=—fua = O(lz|~* D og |z]), faa = O(|z|~ 1+ log?|z]),
fo = O(lz[~Hloga]), fh = —fus = O(|x|" ), fap = O(|z|~0F log |z|),
f3 = O(|z|~(0Fe)), foo = O(Jx|~(0F), fap = O(lz|~(F9),

Furthermore for a =1, g € (—1,1), we have

foo = O(lz|Ploglz]),  fas = Ol log|z|).
Proposition 0.2. Let § € ©5,. For every x € R,

lo,(x), Ly, (z) and Lo, (x), 4,5=1,...,4,

are well-defined and continuous in 6, and they are jointly continuous in (x,0) on R x ©F,.
Concerning tail behaviors, we have for sufficiently large |x|, x € R,

u(z) = Oz ), Luu(@) = —€,(x) = O(|z|7?),
lo(x) = O(1), o () = —Ly(x) = O(|z| 1),
lo(z) = O(log |2]), Lua(z) = —Lo(z) = O(Jz|~" log |z|),
s(x) = O(1), up(a) = —L(z) = O(|z[ 1),
and moreover,
so(z) = O(1), loa(z) = O(log [z]), {op(z) = O(1),

12
laa(@) = O(10g? ]), Lap(x) = Ollog a]), £gs(x) = O(1).

Theorem 0.3. Let én be the maximum likelihood estimator based on i.i.d. n observations
from stable law (Py : 0 € ©pr). Assume that the true parameter 6y is in the interior
o € ©%, and prepare an arbitrary compact set C C ©%, such that g € C. Then MLE

0,, restricted on C is consistent and has asymptotic normality. In particular we have an
exTPTession

Vi (Bn — 00) = I ! fzeao<xk>+0pgo<1>,
=1

where \/n (6, — 0o) LN N(0, I%l) as n — oo, and Iy, is the Fisher information matriz.

Other remaining results including numerical works are given in the reference. By
applying our present work, we are examining Quasi-maximum likelihood estimation for
stable law.
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Pitman Closeness Domination in Predictive Density Estimation for Two Ordered Normal
Means Under a-Divergence Loss

Yuan-Tsung Chang (Mejiro University) Nobuo Shinozaki (Keio University )
William, E. Strawderman (Rutgers University)

We consider Pitman closeness domination in predictive density estimation problems when the underlying
loss metric is a-divergence {D(a)}, a loss introduced by Csiszar (1967) given by

Da{a(ily).plile)} = [ fa@((gl'j))p(w)dg, (1)

where, for —1 < a <1

1—4a2 (1 - Z(1+a)/2)a |a‘ <1
fa(z) =1 zlogz, a=1 (2)
—log z, a=—1.
Here KL loss corresponds to o = —1. The case a = 1 is sometimes referred to as reverse KL loss.

We consider the normal distributions case and generalized Bayesian predictive densities case.

1) Case of normal distributions

If the true density function of Y is N(u,0?) and the estimated predictive density of Y is N(fi, 5?), Chang
and Strawderman (2014) have derived the general form of D,, loss and have shown that it is a concave
monotone function of quadratic loss and is also a function of the variances (observed, predicand, and
plug-in). The general form is given as following:

a) for -1 < a < 1,

4 L2y (a—p)?
Da(N (i1, %), N, 0%) = 7—— (1 —d(0?,6%)e A ) (3)
—
where
(a=1)/2 1-— 1—a)r? 1 1 1-—
2 .2y O T 9 Ao\ o _( )T i Ta @
do%0%) = Samp Al = < 252 >(1 202 ) >0 5= ( 262 | 2 )

Further, d(c?,6?) < 1 and A(0?,62) > 0.

N N A N2

b) for a = +1, Dyx(N (71 6%), N(la, 0%) = & [( log % - 1) n H] | (1)
P 2

o) fora = —1, D_i(N(jlp,62), N(jlu, 02)) = ;[(g —log &z —1 )+ 4] (5)

The underlying distributions considered are normal, including the distribution of the observables,
the distribution of the variable whose density is to be predicted, and the estimated predictive density
which will be taken to be of the plug-in type. We demonstrate {D(«)} Pitman closeness domination of
certain plug-in predictive densities over others for the entire class of metrics simultaneously when related
Pitman’s closeness domination holds in the problem of estimating the mean.

Examples of Pitman closeness domination presented relate to the problem of estimating the predictive
density of the variable with the larger mean. More precisely, let X1 ~ N(u1,0%) and Xo ~ N(u2,03) be
two independent random normal variables, where 17 < po. Under the above restriction we wish to predict
a normal population with mean equal to the larger mean, j», and variance equal to o2, Y ~ N (p2,0?).
We consider different versions of this problem, depending on whether the ?,i = 1,2 are known or are
unknown but satisfy the additional order restriction, o7 < 3. The case of two ordered normal means
with known covariance matrix is also considered.

We also consider {D(«)} Pitman domination of certain generalized Bayesian (best invariant) proce-
dures suggested by Corcuera and Giummole (1999) in next section.

2) Case of generalized Bayesian predictive densities
In this section we discuss improving the generalized Bayesian predictive densities suggested by Corcuera
and Giummole (1999) under D(«) loss.
Based on the data
Xij ~ N(:ui»az?)vi =12,5=1,---,n;

we predict the density ¥ ~ N(pi,02),i = 1,2. We denote its density function by p(#; u;, 0;), where pu;
and o? are unknown.



When —1 < a < 1, Corcuera and Giummole (1999) have established that the best invariant predictive
density of p(g; p;, 0;) based solely on 1, - Tin, is

1 o\ 27 -(@2ni—1-a)/2(1—a)

ﬁa(g;‘fia&i) X 2le+1704

where Z; is the sample mean and 67 = ((n; — 1)/n;)s? is the sample variance. Corcuera and Giummole

(1999) have also shown that p,(9;T;,d;) is the generalized Bayesian predictive density for the prior
density f(p;,0;) x 1/0;,0 < 0; < oo. It is to be noted that p,(¥;Z;, ;) is not a normal distribution,
although the plug-in density N(Z;,s?) is the generalized Bayes rule when o = 1.

We consider the following two cases separately where order restrictions on p; and/or o7 are present,
i) when p1 < po case and ii) when p; < pp and o? < o3.

We consider to improve pq(7; i, ;) or pa(7; 9%, 5;) by replacing z; with 499 or 49 with ¢,
respectively, where

1 S% = TLQS%

a9 = min{Xl,ﬂGD

Y% ~OS v ~GD
1 X2 = max X2
n135+n23% nls%+n28% }a H2 { ) }7

~08 ; 2 2
my, if s1 < s5
ﬂCS _
1= ) v v % ) 2
mln{Xl, ananl + nl’anXg}, if sy > s5
~08 : 2 2
M2 ) Z.f 31 S 52
/jLCS _
2 = e % v ) 2
max{Xg, nl’jrlle + n;fm X2}7 if s7 > s5.

The next lemma is usefully for improving the generalized Bayesian predictive densities (6).

Lemma Let f(-) be the probability density function of X ~ N(0,72). Assume that g(t) > 0 is
symmetric about the origin and is a strictly decreasing function of |¢| such that ffooo g(z) f(x)dr < .

Then ffooo g(y — x) f(y — p)dy is a strictly decreasing function of |z — p|.

Let fi; denote an estimator of p;,7 = 1,2 in general. Now we show that for any 1 < a < 1,
Do, (pa(; f1iy 61), p(F; i, 05)) is a strictly increasing function of |fi; — ;).

From Lemma, we see that for |a] < 1,

oo

Do (pa (s ftiy 61), (T i, 0)) < 1 — / 9(9 — f1:) f(§ — pa)dy

oo

is a strictly increasing function of |fi; — p;|, where

1—a y—x 29 —(2n;i—1—a)(1+a)/4(1—a)
2n;+1—« i

gy —x) = {1+

and (1-a)(y - p)?
—a)(y—p
402 }

fly—p) eXP{—

For a = —1,
AP _ ﬁl(g§ﬂi76i):|}
D_1(p-1(Y; 1, 6:), (Y5 piy 0i)) = —Egq log | —=———+
1(P—1(F; i, 63), p(F; iy 04)) y{ g[ (3 f12, 07)

is a strictly increasing function of |i; — p;| from Lemma.

1) p1 < po case

Theorem 1. The predictive density estimate pq (; ﬂ?s ,0:),% = 1,2 is closer to the predictive density
p(Y; i, 0;) than P, (y; Z;, 6;), respectively, under the {D(«)} metric for all —1 < a < 1 and for every
estimator &; if and only if 4¢P is Pitman closer to p than X; for all 07 and 02 when u; = o = p.

ii) p1 < pe and of < o3 case

Theorem 2. The predictive density estimate p,, (7; 15, 62) is closer to the predictive density p(7; u2, 02)
than p(7; 45, 62) under the {D(a)} metric for all —1 < o < 1 and for every estimator 3.

Theorem 3. The predictive density estimate po (7; 21§, 61) is not Pitman closer to p(; u1,s1) than
Do (5 199, 61) when o — iy is sufficiently large, under the {D(a)} metric for all =1 < o < 1 and for any
estimator 67.
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There has been a considerable recent interest in measuring dependence by employing the concept of distance
covariance function, a new measure of dependence for random variables, introduced by Székely et al. (2007). This
tool has been recently defined to the context of multivariate time series by Zhou (2012), but without exploring
the interrelationships between the various time series components. In this work, we extend the notion of distance
covariance to multivariate time series by defining its matrix version.

We denote by {X; : t = 0,%1,£2,...} a d-dimensional time series process, with components X;.,, r =
1,...,d. Suppose we have available a sample of size n, that is {X;,t = 1,...,n}. We define the pairwise auto-
distance covariance function as a function of the joint and marginal characteristic functions of the pair (X¢.r, X¢4j:m),

forr,m =1,...,d. Denote by (bg-r’m)(u, v) the joint characteristic function of X,., and X4 j..,,; that is
95" (u,0) = Elexp (i(uXey + vXejim))],  J €L,

and the marginal characteristic functions of X¢.,- and Xyt j.m as (") (u) := (;Sgr’m) (u,0) and (™) (v) := ¢§r,m) (0,v)
respectively, where (u,v) € R?, and i*> = —1. The pairwise auto-distance covariance function (ADCV) between X.,.

and X4 jim, Ve (J), is defined as the positive square root of

V2.() =

T2

2
e ) = 6 (et (v)
/ dudv, j€Z.
R2

Jul* [o]”

The auto-distance covariance matrix, V' (j), is then defined by

V(i) = VemDpper s J €2

The pairwise auto-distance correlation function (ADCF) between Xy, and X4 ., Ry (J), is a coefficient that

lies in the interval [0, 1] and also measures dependence and is defined as the positive square root of
V2

RETTL («]) = o (j )

VVEO)/VZ(0)

for V;-(0)Vinm (0) # 0 and zero otherwise. The auto-distance correlation matrix of X¢, is then defined as

R(j) = [Rem()) ey » G E 2

When j # 0, V,,,,(j) measures the dependence of Xy, on X¢yjim. In general, Vi, (5) # Vinr(j) for r # m,

since they measure different dependence structure between the series { Xy, } and {X;,,, } forallr,m =1,2,...,d.



Thus, V(j) and R(j) are non-symmetric matrices, but V/(—j) = V'(j) and R(—j) = R'(j). More properties can be
found in Fokianos and Pitsillou (2018). The empirical pairwise ADCV, ‘A/rm(j), for j > 0, is the non-negative square
root of
~ 1 —
V2,0) = = 3 ALBE.
0= G 2, e

where A" = A;s and B™ = By, are Euclidean distance matrices given by

Ay = aps —ay, —al +al,
with af, = [ Xe = Xoylaf, = (S0 af,) /(n = )@ = (D1 an) J(n = ) an = (052 at) /(0= )%
B} is defined analogously in terms of b} = |X¢4j.m — Xs1j.m|- Fokianos and Pitsillou (2018) have shown that
for a d-dimensional strictly stationary and ergodic process {X;} with E |X,.,|* < oc, forr = 1,...,d, then for all
J €1,
V(i) = V),

almost surely, as n — oco. In addition, under pairwise independence it holds that

nV2,() = Z =Y MZE,
k
in distribution, as n — oo, where {Z} is an i.i.d sequence of N (0, 1) random variables, and () is a sequence of
nonzero eigenvalues.

Based on these results, we will be considering the following two problems:

« Testing the iid hypothesis by employing the generalized spectral density approach as developed by (Hong,
1999)

« Developing consistent testing procedures for the detection of multiple change-points in a given stream of

data.
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Generalized Multinomial Distributions with Scalable Variance

Nobuaki Hoshino*

September 2019

Abstract

In this talk we generalize the multinomial distribution to keep closure under the collapse
of cells, motivated by a practice of statistical disclosure control. The resulting family of
distributions is characterized by Bell polynomials, and its parameter spaces are derived.
This family is shown to have the same mariginal first moment as that of the multinomial
distribution, but its second moment can be overdispersed. Also shown is that an infinite
dimensionl distribution of this family exists by Kolmogorov’s extension theorem. In this limit
the marginal distribution of positive frequencies is reduced to a simple random partitioning
distribution of a positve integer, which is useful to deal with a sparse contingency table.

Keywords: Discrete multivariate distribution, Overdispersion, Sparsity
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