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Product Embedding with Receipt context for Disaggregated Sales Data 

Yinxing Li and Nobuhiko Terui 

 

Marketing data are expanding in several modes nowadays, as the number of variables 
explaining customer behavior has greatly increased, a Product Embedding for Large-Scale 
Disaggregated Sales Data Yinxing Li and Nobuhiko Terui Marketing data are expanding in several 
modes nowadays, as the number of variables explaining customer behavior has greatly 
increased, and automated data collection in the store has also led to the recording of customer 
choice decisions from large sample sizes. Thus, high-dimensional models have recently gained 
considerable importance in several areas, including marketing. Although some models, such as 
Prod2Vec, involve various marketing variables such as price and customer demographic data, 
the role of the variables in forecasting is still not discussed. In light of the limitations mentioned 
above, our study not only aims to propose a model with better forecasting precision but also to 
reveal how customer demographics affect customer behavior. we propose a Bayesian 
Word2Vec based framework that incorporates marketing variables and environment by 
considering following situations in our model. When considering the market basket, our study 
incorporates the receipt vector into the model as the prior information of each purchased 
product in a basket, which means a preferred purchasing pattern for a certain shopping. It 
assumes that the customer will consider the whole purchasing context before choosing a 
product. We also assume a state space model for the receipt vector through the trips for each 
customer. We use the weekday, promotion information as the data for the state space model 
for higher interpretability of the prior structure such as the purchasing scenarios of each 
customer. Besides, we consider the purchasing probability of a certain product conditional on an 
existing market basket is influenced by the following three factors - 1) The compatibility with the 
marketing basket, which is represented by the inner product of product vectors, 2) customer 
utility for the product, which incorporate the customer heterogeneity structure, and 3) Thinking 
ahead algorithm, which represents one-step ahead forecasting before purchasing the product. 
Our proposed model contributes both to higher precision for forecasting by incorporating the 
marketing environment and customer heterogeneity into the model, and better interpretability. 
We use receipt data from a retailer for our empirical analysis, containing the information of 
customer demographic, promotion and other marketing information. We show not only the 
effectiveness of marketing environment for the forecasting by using the Hit Rate@K for the 
hold-out sample comparing to the several benchmark models , but also the high interpretability 
of our proposed model in the empirical studynd automated data collection in the store has 
also led to the recording of customer choice decisions from large sample sizes. Thus, 
high-dimensional models have recently gained considerable importance in several areas, 
including marketing. Although some models, such as Prod2Vec, involve various 
marketing variables such as price and customer demographic data, the role of the 
variables in forecasting is still not discussed. In light of the limitations mentioned above, 
our study not only aims to propose a model with better forecasting precision but also to 
reveal how customer demographics affect customer behavior. we propose a Bayesian 
Word2Vec based framework that incorporates marketing variables and environment by 
considering following situations in our model.  



When considering the market basket, our study incorporates receipt vector into 
the model as the prior information of each purchased product in a basket, which means a 
preferred purchasing pattern for a certain shopping. It assumes that the customer will 
consider the whole purchasing context before choosing a product. We also assume a state 
space model for the receipt vector through the trips for each customer. We use the 
weekday, promotion information as the data for the state space model for higher 
interpretability of the prior structure such as the purchasing scenarios of each customer. 

Besides, we consider the purchasing probability of a certain product conditional on an 
existing market basket is influenced by the following three factors - 1) The compatibility 
with the marketing basket, which is represented by the inner product of product 
vectors, 2) customer utility for the product, which incorporate the customer 
heterogeneity structure, and 3) Thinking ahead algorithm, which represents one-step 
ahead forecasting before purchasing the product. 

Our proposed model contributes both to higher precision for forecasting by 
incorporating the marketing environment and customer heterogeneity into the model, and 
better interpretability. We use receipt data from a retailer for our empirical analysis, 
containing the information of customer demographic, promotion and other marketing 
information. We show not only the effectiveness of marketing environment for the 
forecasting  by using the Hit Rate@K for the hold-out sample comparing to the several 
benchmark models , but also the high interpretability of our proposed model in the 
empirical study.  



Hierarchical Topic Model for Tensor Data and Extraction of 
Weekly and Daily Activity Patterns 

Shunichi Nomura (Waseda University) 

  

Latent Dirichlet allocation (LDA) is a popular topic model for 
extracting common patterns from discrete datasets. It is extended to 
the pachinko allocation model (PAM) with a hierarchical topic 
structure. This study presents a combination meal allocation (CMA) 
model, which is a further enhanced topic model from the PAM that 
has both hierarchical categories and hierarchical topics. We consider 
count datasets in multiway arrays, i.e., tensors, and introduce a set 
of topics to each mode of the tensors. The topics in each mode are 
interpreted as patterns in the topics and categories in the next mode. 
Despite there being a vast number of combinations in multilevel 
categories, our model provides simple and interpretable patterns by 
sharing the topics in each mode. Latent topics and their membership 
are estimated using Markov chain Monte Carlo (MCMC) methods.  

We apply the proposed model to step-count data recorded by activity 
monitors to extract some common activity patterns exhibited by the 
users. Our model identifies four daily patterns of ambulatory activities 
(commuting, daytime, nighttime, and early-bird activities) as sub-
topics, and six weekly activity patterns as super-topics. We also 
investigate how the amount of activity in each pattern dynamically 
affects body weight changes. 

This is joint work with Michiko Watanabe at Rissho University and 
Yuko Oguma at Keio University. 

 



Performance-Based Earthquake Early Warning 
for Regional Seismic Risk Mitigation

Stephen Wu, The Institute of Statistical Mathematics, Japan
Keisuke Yano, The Institute of Statistical Mathematics, Japan
Masumi Yamada, DPRI, Kyoto University, Japan
Koji Tamaribuchi, Meteorological Research Institute, Japan
Sarah Minson, US Geological Survey, USA
Elizabeth S. Cochran, US Geological Survey, USA

Talk summary:

Earthquake early warning system (EEWS) aims to provide few seconds to a minute of 
shaking alert before strong shaking of an on-going seismic event reaches a target site. 
Developing a reliable EEWS typically involves rapidly solving a highly ill-posed seismic 
source inversion problem using only few seconds of seismic wave data. Such a 
problem is inherently highly uncertain, which means that false and missed alarm is 
unavoidable. Therefore, a performance-based approach for the system design is 
needed in order to develop a practically useful EEWS. Here, we propose a fully 
probabilistic framework that covers three important aspects of EEWS – real-time 
ground motion prediction, spatially correlated warning criteria, and temporally 
correlated warning criteria. In each aspect, exploiting relevant prior knowledge can help 
reducing the uncertainty of warnings, thus, developing a more robust EEWS. This talk 
will mainly focus on discussion of the ideology and design strategy of such practically 
useful EEWS from a statistical perspective.



Portfolio risk valuation using asymmetric copulas∗

Toshinao Yoshiba†

October 12, 2022

The multivariate Student-t copula is frequently used in financial portfolio risk management and
other statistical areas when there is tail dependence in the data. It often is a good-fitting copula
but can be improved on when there is tail asymmetry. We propose to use Generalized Hyperbolic
(GH) and Azzalini–Capitanio (AC) skew-t copulas to incorporate asymmetric tail dependence of
risk factors using the numerical implementation for maximum likelihood estimation proposed in
Yoshiba (2018). The GH skew-t copula was proposed by Demarta and McNeil (2005).

The GH skew-t random vector X is constructed by using the Gamma random variable V ∼
G(ν/2, ν/2) and the d-variate normal random vector Z = (Z1, . . . , Zd)

� ∼ Nd(0,Ψ) with the
correlation matrix Ψ as:

X = γV −1 +
Z√
V
, (1)

where γ ∈ R
d is the skewness paramemter vector. On the other hand, AC skew-t copula implicit in

Azzalini and Capitanio (2003) multivariate skew-t distribution was proposed by Joe (2006). The
AC skew-t random vector X is given as:

X =
Y√
V
, (2)

where Y = (Y1, . . . , Yd)
� is the skew Normal random vector proposed by Azzalini and Dalla Valle

(1996), which is constructed as:

Yj = δj |Z0|+
√

1− δ2jZj , j = 1, . . . , d, Z0 ∼ N(0, 1), (3)

where δ ≡ (δ1, . . . , δd)
� ∈ (−1, 1)d is the skewness paramemter vector and Z = (Z1, . . . , Zd)

� ∼
Nd(0,Ψ) as the GH skew-t random vector.

We compare the parameters of AC skew-t, GH skew-t, Student-t, Normal copulas using Akaike
and Bayesian information criteria for the two groups of daily stock returns in stress and in peace-
time. For skew-t copulas, we assume equi-skewness settings, that is, δ1 = · · · = δd = δ for AC and
γ1 = · · · = γd = γ for GH. Each group is given by the equally weighted portfolio which consists of
three indices from TOPIX33 Sector Indices. The first portfolio consists of financial sectors portfo-
lio with high correlation including bank, insurance, and securities sectors. The second consists of
bank, air transportation, electricity sectors with low correlation.

In the empirical analyses, we show the skewness δ, γ of skew-t copulas are significantly negative
for both the unfiltered returns and the filtered returns by EGARCH(1,1). We also show that the
more sophisticated the marginal model, the more significant the negativity. The tendency holds
both in stress and in peacetime.

With validating the skewness, we investigate the behavior of the value-at-risk and expected
shortfall of the two types of stock portfolio by employing several backtesting methods. The back-
testing methods include the unconditional coverage test of Kupiec (1995), the independence test,
and the conditional coverage test of Christoffersen (1998) for value-at-risk, and the discrepancy
measurement of Embrechts, Kaufmann and Patie (2005) for expected shortfall.

∗This research is supported by JSPS KAKENHI Grant Number JP21K01581.
†Tokyo Metropolitan University / Institute of Statistial Mathematics (E-mail: tyoshiba@tmu.ac.jp)
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The unconditional coverage tests for the value-at-risk with unfiltered return are rejected in
stress for both the financial sectors portfolio and the low-correlated portfolio. On the other hand,
the tests with EGARCH filtered return are not rejected.

The independence tests for the value-at-risk with unfiltered return are rejected in peacetime for
both the financial sectors portfolio and the low-correlated portfolio. On the other hand, the tests
with EGARCH filtered return are not rejected.

The discrepancies of expected shortfall by skew-t copulas are small especially in stress. Even
in peacetime, the discrepancies of expected shortfall by skew-t or Student-t copulas are small.

We conclude that the value-at-risk with high confidence level and the expected shortfall of a
stock portfolio are well captured by skew-t copulas with filtered return.

References

Azzalini, A. and Dalla Valle, A. (1996) “The Multivariate Skew-Normal Distribution,” Biometrika, 83(4),
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Local asymptotic normality for jump-diffusion processes with
discrete observations

Teppei Ogihara (University of Tokyo) and Yuma Uehara (Kansai University)

We study local asymptotic normality (LAN) of jump-diffusion processes with discrete observations.

Local asymptotic normality (LAN) is an important property in asymptotic statistical theory because it

enables us to discuss asymptotic efficiency of parameter estimators for parametric models. Let Xα
t be a

parametrized m-dimensional stochastic process satisfying

Xα
t = x0 +

∫ t

0

a(Xα
s , θ)ds+

∫ t

0

b(Xα
s , σ)dWs +

Nt∑
j=1

Yi, (1)

where a, b : Rm- and R
m ⊗ R

m-valued continuous functions, Nt is a Poisson process with intensity λ(θ),

Wt: an m-dim standard Brownian motion, (Yi)
∞
i=1 is an i.i.d. sequence with the density function Fθ, and

α = (σ, θ) ∈ R
d is a parameter to be estimated. Let α0 = (σ0, θ0) be the true value of the parameter,

and let Xt = Xα0
t . We observe (Xtk)

n
k=0, where tk = khn, hn → 0 and nhn → ∞.

Let {Pα,n}α,n be a family of probability measures generated by the observation (Xα
tk
)nk=0. {Pα,n}α,n is

said to satisfy local asymptotic mixed normality (LAMN) at α = α0 if there exist d× d random, positive

definite matrices Γn and Γ, d-dim random vectors Nn and N , and a positive definite matrix εn such that

log
dPα0+εnu,n

dPα0,n
−

(
u�√ΓnNn − 1

2
u�Γnu

)
→ 0

in Pα0,n-probability, N ∼ N(0, Id), N and Γ are independent, and L((Nn,Γn)|Pα0,n) → L((N ,Γ)) as

n → ∞ for any u ∈ R
d. If Γ is nonrandom, {Pα,n}α,n satisfies the LAN property. Under LAMN, any

regular estimator {Vn} satisfies the inequality

lim inf
n→∞ Eα0,n[l(|ε−1

n (Vn − α0)|)] ≥ E[l(|Γ−1/2N|)]

for any increasing function l : [0,∞) → R with l(0) = 0 (Proposition 3 in Jeganathan [3]). An estimator

which attains the lower bound of the above inequality is called asymptotically efficient.

To show the LAN property, we need to specify the limit of log(dPα0+εnu,n/dPα0,n). It is difficult to

deal with transition density ratio for two different jump-diffusion processes. In the proof of the LA(M)N

properyt for diffusion processes in Gobet [1, 2], he used Aronson estimates

C1G1(x, y) ≤ pk(x, y) ≤ C2G2(x, y)

for transition density pk of the diffusion process to control transition density ratios, where G1, G2 are

Gaussian density functions and C1, C2 are positive constants. However, it is difficult to obtain Aronson-

type estimates for jump-diffusion processes.

Instead, we use a scheme with the so-called L2 regularity condition developed in Jeganathan [3]. Let

pk,α(xk−1, xk) be the transition density function. We assume that pk,α ∈ C2(Θ) and the zero points of

pk,α do not depend on the parameter α. A simple version of the L2 regularity condition is the condition

of the following convergence:

n∑
k=1

Eα0

[ ∫ (√
pk,αu −√

pk,α0 −
u�εn∂θpk,α0

2
√
pk,α0

)2

(xk−1, xk)dxk

]
→ 0,



where αu = α0 + εnu. The integrand in the left-hand side of the above equation can be rewritten as

follows. ∫ 1

0

(1− s)

∫ {
u�εn

(
∂2
αpk,αsu

2pk,αsu

− ∂αpk,αsu
∂αp

�
k,αsu

4(pk,αsu)
2

)
εnu

}2

pk,αsudxkds.

In the last expression, only the transition density at αsu appears, and hence we do not need Aronson-type

estimates for transition density functions. Jeganathan [3] showed LAMN for Markov processes under the

L2 regularity condition and some conditions for ∂l
α log pk,α0 (l ∈ {1, 2}). The original scheme cannot

be applied for jump-diffusion processes because of their fat-tailed behaviors. Therefore, we extend the

scheme so that it can be applied to jump-diffusion processes.

Another problem to show the LAN property for jump-diffusion processes is that the transition proba-

bility for no jump is quite different from that for the presence of jumps. This fact makes it difficult to

identify the asymptotic behavior of the likelihood function. To deal with this problem, we approximate

the original likelihood function by using a thresholding likelihood function that detects the existence

of jumps. By using these techniques, we obtain the LAN property for jump-diffusion processes. The

matrices εn and Γ in the definition of the LAMN property is given by

εn =

(
n−1/2Id1

0

0 (nhn)
−1/2Id2

)
and Γ =

(
Γ1 0

0 Γ2

)
,

where π(dx) is the limit distribution of Xt, fθ(z) = λ(θ)Fθ(z), S(x, σ) = bb�(x, σ),

[Γ1]ij =
1

2

∫
tr(∂σi

SS−1∂σj
SS−1)(x, σ0)dπ(x),

[Γ2]ij =

∫
(∂θia)

�S−1(∂θja)(x, α0)dπ(x) +

∫
∂θifθ0∂θjfθ0

fθ0
(z)dz.

These εn and Γ are the same as the ones associated with the quasi-maximum-likelihood and Bayes-type

estimators proposed in Shimizu and Yoshida [5] and Ogihara and Yoshida [4], and then we can show

these estimators are asymptotically efficient in this model.

参考文献
[1] E. Gobet. Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach.

Bernoulli, 7(6):899–912, 2001.

[2] E. Gobet. LAN property for ergodic diffusions with discrete observations. Ann. Inst. H. Poincaré Probab.
Statist., 38(5):711–737, 2002.

[3] P. Jeganathan. On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed
normal. Sankhyā Ser. A, 44(2):173–212, 1982.

[4] T. Ogihara and N. Yoshida. Quasi-likelihood analysis for the stochastic differential equation with jumps. Stat.
Inference Stoch. Process., 14(3):189–229, 2011.

[5] Y. Shimizu and N. Yoshida. Estimation of parameters for diffusion processes with jumps from discrete
observations. Stat. Inference Stoch. Process., 9(3):227–277, 2006.



Quasi-infinitely divisible distributions

Alexander Lindner

Infinitely divisible probability distributions on R
d constitute a well-studied class

of probability distributions. By definition, a probability distribution μ on R
d is infin-

itely divisible if and only if it has convolution roots of all orders, i.e. if for every n ∈ N

there exists some probability measure μn on R
d such that μ∗n

n , the n-fold convolution

of μn with itself, is equal to μ. By the famous Lévy-Khintchine formula, a probability

measure μ on R
d is infinitely divisible if and only its characteristic function μ̂, defined

by μ̂(z) =
∫
Rd e

izx μ(dx) for z ∈ R
d, has a Lévy–Khintchine representation, i.e. if and

only if there are γ ∈ R
d, a symmetric non-negative definite matrix A ∈ R

d×d and a

Lévy measure ν on R
d such that

(1) μ̂(z) = exp

{
i〈z, γ〉 − 1

2
〈z, Az〉+

∫
Rd

(ei〈z,x〉 − 1− i〈z, x〉) ν(dx)
}

∀ z ∈ R
d;

recall that a Lévy measure is a measure on R
d such that ν({0}) = 0 and

∫
Rd(1 ∧

|x|2) ν(dx) < ∞. The triplet (A, ν, γ) is called the characteristic triplet of ν and is

known to be unique; further, to any given triplet (A, ν, γ) there exists an infinitely

divisible distribution having this triplet as characteristic triplet. The importance of

infinitely divisible distributions lies in their one-to-one correspondence to Lévy pro-

cesses (in law), i.e. stochastic processes with independent and increments that start

in 0 and have càdlàg paths. Properties and examples of infinitely divisible distribu-

tions are well-studied. Normal distributions, compound Poisson distributions, stable

distributions, geometric distributions and many other distributions are known to be

infinitely divisible. On the other hand, probability distributions with compact support

or not infinitely divisible unless they are Dirac measures, and by the Lévy–Khintchine

representation, the characteristic function of an infinitely divisible distribution must

be zero-free.

The goal of the present talk is to extend the class of infinitely divisible distribu-

tions to a larger class. Inspired by the Lévy–Khintchine formula, we call a probability

distribution μ on R
d quasi-infinitely divisible, if its characteristic function has a Lévy–

Khintchine representation as in (1), however with a ‘signed Lévy measure’ and some

symmetric, but not necessarily non-negative definite, matrix A ∈ R
d×d. Here, by a

signed Lévy measure we mean a ‘signed measure’ that can be written as a difference

of two Lévy measures, which will henceforth be called a quasi-Lévy measure. The

1



corresponding triplet (A, ν, γ) can again be shown to be unique and is again called

the characteristic triplet of the quasi-infinitely divisible distribution.

We will study quasi-infinitely divisible distributions to some extent and present

examples. In particular, we will see that not every triplet gives rise to a probabil-

ity distribution, and even more, that the matrix A must be positive semi-definite.

The quasi-Lévy measure however can be truly signed, although not all quasi-Lévy

measures can appear. We then study certain subclasses of distributions. E.g., it can

be shown that a probability distribution that has an atom of mass greater than 1/2

must be quasi-infinitely divisible. Further, we study probability distributions on the

grid Z
d and obtain that such a distribution is quasi-infinitely divisible if and only if

its characteristic function is zero-free. We deduce that the class of quasi-infinitely

divisible distributions is dense with respect to weak convergence in dimension d = 1,

but fails to be dense in higher dimensions. We also mention some further results

regarding characterisations of quasi-infinite divisibility for subclasses of probability

distributions, such as discrete distributions on R or probability distributions that

have a non-trivial absolutely continuous part and non-trivial discrete part but no

continuous singular part, as discussed in [1, 2, 3, 5]. The talk is based on [4, 6, 7],

which are (joint) works with/of Berger, Kutlu, Pan and Sato.

References
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Subexponentiality of densities of infinitely divisible distributions
Nanzan University Muneya Matsui

Abstract

We show the equivalence of three properties for an infinitely divisible distribution:
the subexponentiality of the density, the subexponentiality of the density of its
Lévy measure and the tail equivalence between the density and its Lévy measure
density, under monotonic-type assumptions on the Lévy measure density. The key
assumption is that tail of the Lévy measure density is asymptotic to a non-increasing
function or is almost decreasing. Our conditions are natural and cover a rather wide
class of infinitely divisible distributions. Several significant properties for analyzing
the subexponentiality of densities have been derived such as closure properties of
[ convolution, convolution roots and asymptotic equivalence ] and the factorization
property. Moreover, we illustrate that the results are applicable for developing
the statistical inference of subexponential infinitely divisible distributions which are
absolutely continuous.

Introduction

Let f, g be probability density functions on R and denote by f ∗ g the convolution of f and g:

f ∗ g(x) =
∫ ∞

−∞
f(x− y)g(y)dy,

and denote by f∗n the nth convolutions with itself. Throughout the paper, for functions α, β : R →
R+, α(x) ∼ β(x) means that limx→∞ α(x)/β(x) → 1. We study the following characteristics for
densities.

Definition 0.1. (i) f is (right-side) long-tailed, denoted by f ∈ L, if there exists x0 > 0 such that
f(x) > 0, x ≥ x0 and for any fixed y > 0 f(x+ y) ∼ f(x).
(ii) f is (right-side) subexponential on R, denoted by S, if f ∈ L and f∗2(x) ∼ 2f(x).
(iii) f with dist. F is weakly (right-side) subexponential on R, denoted by S+, if f ∈ L and the
function f+(x) = 1R+(x)f(x)/F (0), x ∈ R is subexponential, i.e. f+ ∈ S. Here F (x) = 1− F (x).

Definition 0.2. (i) We say that a density f : R → R+ is asymptotic to a non-increasing function
(a.n.i. for short) if f is locally bounded and positive on [x0,∞) for some x0 > 0, and

sup
t≥x

f(t) ∼ f(x) and inf
x0≤t≤x

f(t) ∼ f(x).(0.1)

(ii) We say that a density f : R → R+ is almost decreasing (al.d. for short) if there exists x0 > 0
and K > 0 such that

f(x+ y) ≤ Kf(x), for all x > x0, y > 0.

Notice that the al.d. property includes the a.n.i. property, and the latter is satisfied by the
regularly varying functions with negative indices.

We will investigate properties of the above sort, particularly on infinitely divisible distributions
μ on R. The characteristic function (ch.f.) of μ is

μ̂(z) = exp
{∫ ∞

−∞
(eizy − 1− izy1{|y|≤1})ν(dy) + iaz − 1

2
b2z2

}
,(0.2)

where a ∈ R, b ≥ 0 and ν is the Lévy measure satisfying ν({0}) = 0 and
∫∞
−∞(1 ∧ x2)ν(dx) < ∞.

Throughout this paper, we always assume that the Lévy measure ν of μ has a density, and we
denote by ID(R) the class of all infinitely divisible distributions on R.
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Main contents

We separate the cases depending on weather ν(R) < ∞ or ν(R) = ∞. Note that we use notation
g also for the (non-proper) density of a Lévy measure.

Theorem 0.3. Let μ ∈ ID(R) with ν(dx) = g(x)dx such that ν(R) < ∞. Denote the non-Gaussian
part μ′, which is a γ-shifted compound Poisson given by

μ′(dx) = e−λδγ(dx) + (1− e−λ)f(x− γ)dx, γ ∈ R,

where δγ is Dirac measure at γ, f is a proper density and λ > 0 is the Poisson parameter. Then
the following are equivalent.

(i) f ∈ S+ and f is al.d.

(ii) g ∈ S+ and g is al.d.

(iii) g ∈ L, g is al.d. and lim
x→∞ f(x)/g(x) = λ/(1− e−λ).

Theorem 0.4. Let μ ∈ ID(R) with ν(dx) = g(x)dx such that ν(R) = ∞. Suppose that g1(x) =
1{x>1}g(x)/ν((1,∞)) is bounded. For a density f of μ we consider the following properties.

(i) f ∈ S+ and f is al.d.

(ii) g1 ∈ S+

(iii) g1 ∈ L & lim
x→∞ f(x)/g1(x) = ν((1,∞)).

(a) If g is a.n.i., then we can choose f such that (i), (ii) and (iii) are equivalent.
(b) If g is al.d., then we can choose f such that (ii) ⇔ (iii) implies (i).

Since the a.n.i. property includes regular variation, the following is immediate.

Corollary 0.5. Let μ ∈ ID(R) with ν(dx) = g(x)dx such that ν(R) = ∞. Suppose that g1(x) =
1{x>1}g(x)/ν((1,∞)) is bounded. Then, g1(x) is a.n.i. and we can choose a density f of μ such
that it is regularly varying if and only if g is regularly varying, and in this case f(x) ∼ g(x).

We apply our results to the consistency proof of the maximum likelihood estimation (MLE for
short) for μ ∈ ID(R) which is absolutely continuous. For simplicity we put a = b = 0 in μ̂(z) of
(0.2) and assume that μ̂(z) is absolutely integrable.

Let f(x; θ) be the density of μ with θ a parameter vector and g(x; θ) be a density of the corre-
sponding Lévy measure ν. Let (X1, . . . , Xn) be a random sample from f(x; θ0) with θ0 ∈ Θ where
Θ is a compact parameter space. Define the likelihood function

Mn(θ) = n−1
n∑

i=1

log f(Xi; θ).

MLE θ̂n maximizes the function θ �→ Mn(θ). We say that a function α(x; θ) is identifiable if

α(· ; θ) �= α(· ; θ′) every θ �= θ′ ∈ Θ, i.e. α(x; θ)
a.e.
= α(x; θ′) does not hold. For convenience, we

only consider the symmetric or positive-half case, but we can easily generalize the result in the
non-symmetric two-sided case. We use the function g1 defined in Theorem 0.4.

Proposition 0.6. Let μ ∈ ID(R) given by (0.2) with a = b = 0 such that μ̂(z) is absolutely inte-
grable. Let g(x; θ) be a symmetric or positive-half density of ν. Suppose (i) : g(x; θ) is identifiable,
θ �→ g(x; θ) is continuous in θ for every x, and

∫
(supθ∈Θ | log g1(x; θ)|)g1(x; θ0)dx < ∞ with Θ a

compact set such that θ0 ∈ Θ. Suppose (ii) : g1(x; θ) is bounded and a.n.i., and g1 ∈ S. Then MLE

θ̂n satisfies θ̂n
p→ θ0.
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Existence and distributional properties of solutions for
SPDEs driven by Lévy white noise

David Berger

In this talk we are discussing solutions of linear stochastic partial differential

equations (SPDEs) driven by so-called Lévy white noise, where we are interested

in distributional solutions, i.e. our solutions are generalized stochastic processes on

the space of infinitely differentiable functions with compact support D(Rd). Let us

shortly recall the definition of a generalized process.

Definition 0.1 (see [1]). A generalized random process is a linear and continuous

function s : D(Rd) → L0(Ω). The linearity means that, for every ϕ1, ϕ2 ∈ D(Rd) and

γ ∈ R,

s(ϕ1 + γϕ2) = s(ϕ1) + γs(ϕ2) almost surely.

The continuity means that if ϕn → ϕ in D(Rd), then s(ϕn) → s(ϕ) in L0(Ω).

A generalized process s can also be seen as a random variable on the space

of distributions D′(Rd), which then gives rises to define the so-called characteristic

functional Ps(ϕ) :=
∫

D′(Rd)

ei〈u,ϕ〉dPs(u) for ϕ ∈ D(Rd). The characteristic functional

describes uniquely the probability measure generated by the generalized random pro-

cess. We define a Lévy white noise as a generalized random process with a special

characteristic functional.

Definition 0.2. A Lévy white noise L̇ is a generalized random process, where the

characteristic functional is given by

P̂L̇(ϕ) = exp

⎛
⎝ ∫

Rd

ψ(ϕ(x))λd(dx)

⎞
⎠

for every ϕ ∈ D(Rd), where ψ : R → C is given by

ψ(z) = iγz − 1

2
az2 +

∫
R

(eixz − 1− ixz1|x|≤1)ν(dx)

where a ∈ R
+, γ ∈ R and ν is a Lévy-measure, i.e. a measure such that ν({0}) = 0

and
∫
R

min(1, x2)ν(dx) < ∞. We say that L̇ has the characteristic triplet (a, γ, ν).

We are interested in solutions of the equation

p(D)s = q(D)L̇,(0.1)

1



where p(D) and q(D) are linear partial differential operators. We say that a general-

ized process s solves (0.1) if

〈s, p(D)∗ϕ〉 = 〈L̇, q(D)∗ϕ〉 for every ϕ ∈ D(Rd).

Constructing an extension of the Lévy white noise to a greater domain we show the

following.

Theorem 0.3 (see [1]). Let p and q be polynomials such that the rational function

q(i·)/p(i·) has a holomorphic extension in a strip {z ∈ C
d : ‖�z‖ < ε} for some ε > 0

and let L̇ be a Lévy white noise with characteristic triplet (a, γ, ν) such that∫
R

1|r|>1 log(|r|)dν(dr).

Then there exists a stationary solution s of (0.1), which we call a stationary CARMA(p, q)

generalized process.

We also discuss distributional properties of the solution s.

Proposition 0.4 (see [1]). Let L̇ have existing β-moment (β > 0) and let p and

q be polynomials satisfying the condition from Theorem 0.3. Then the stationary

CARMA(p, q) generalized process s constructed in Theorem 0.3 has existing β-moment,

too.
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Nonparametric regression for locally stationary

random fields on R
d

Daisuke Kurisu (Yokohama National University)

1 Introduction

In this study, we develop an asymptotic theory of nonparametric regression for locally stationary

random fields (LSRFs) {Xs,An
: s ∈ Rn} in R

p observed at irregularly spaced locations in Rn = [0, An]
d ⊂

R
d. We first derive the uniform convergence rate of general kernel estimators, followed by the asymptotic

normality of an estimator for the mean function of the model. Moreover, we consider additive models

to avoid the curse of dimensionality arising from the dependence of the convergence rate of estimators

on the number of covariates. Subsequently, we derive the uniform convergence rate and joint asymptotic

normality of the estimators for additive functions. We also introduce approximately mn-dependent RFs to

provide examples of LSRFs. We find that these RFs include a wide class of Lévy-driven moving average

RFs.

2 Model

In this study, we consider the following model:

Ysj ,An
= m

(
sj
An

,Xsj ,An

)
+ εsj ,An

, sj ∈ Rn, j = 1, . . . , n, (1)

where E[εs,An
|Xs,An

] = 0 and Rn = [0, An]
d ⊂ R

d is a sampling region with An → ∞ as n → ∞.

Here, Ysj ,An and Xsj ,An are random variables of dimensions 1 and p, respectively. We assume that

{Xs,An
: s ∈ Rn} is a locally stationary random field on Rn ⊂ R

d (d ≥ 2).

3 Main Results

The objectives of this study are to (i) derive the uniform convergence rate of kernel estimators for

the density function of Xs,An and the mean function m in the model (1) over compact sets; (ii) derive

the asymptotic normality of the estimators at a specified point; and (iii) provide examples of locally

stationary random fields on R
d with a detailed discussion of their properties. To attain the first and

second objectives, we first derive the uniform convergence rate of the important general kernel estimators;

the result is crucial for demonstrating our main results. As general estimators include a wide range of

kernel-based estimators such as the Nadaraya-Watson estimators, the general results are of independent

interest. Although these results are general, the estimators are affected by dimensionality because their

convergence rate depends on the number of covariates. Hence, we consider additive models and derive

the uniform convergence rate and joint asymptotic normality of kernel estimators for additive functions

based on the backfitting method developed by Mammen et al. (1999) and Vogt (2012). Our results

are extensions of the results for time series in Vogt (2012) to random fields with irregularly spaced

observations, which include irregularly spaced time series as a special case.

To attain the third objective of our study, we discuss examples of locally stationary random fields on R
d



that satisfy our regularity conditions. For this, we introduce the concept of approximately mn-dependent

locally stationary random fields (mn → ∞ as n → ∞) and we extend continuous autoregressive and

moving average (CARMA)-type random fields developed in Brockwell and Matsuda (2017) to locally sta-

tionary CARMA-type random fields. CARMA random fields are characterized by solutions of (fractional)

stochastic partial differential equations (cf. Berger (2020)) and are known as a rich class of models for

spatial data (cf. Brockwell and Matsuda (2017)).
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Intergenerational Risk Sharing in a Defined Contribution

Pension System: Analysis with Bayesian Optimization

An Chen1, Motonobu Kanagawa2, and Fangyuan Zhang2
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2Data Science Department, EURECOM

The talk at the 3rd Tohoku-ISM-UULM workshop in Japan

Abstract

We study a fully funded, collective defined-contribution (DC) pension system with multiple
overlapping generations. We investigate whether the welfare of participants can be improved by
intergenerational risk sharing (IRS) implemented with a realistic investment strategy (e.g., no
borrowing) and without an outside entity (e.g., share holders) that helps finance the pension fund.
To implement IRS, the pension system uses an automatic adjustment rule for the indexation
of individual accounts, which adapts to the notional funding ratio of the pension system. The
pension system has two parameters that determine the investment strategy and the strength
of the adjustment rule, which are optimized by expected utility maximization using Bayesian
optimization. The volatility of the retirement benefits and that of the funding ratio are analyzed,
and it is shown that the trade-off between them can be controlled by the optimal adjustment
parameter to attain IRS. Compared with the optimal individual DC benchmark using the life-
cycle strategy, the studied pension system with IRS is shown to improve the welfare of risk-averse
participants, when the financial market is volatile.
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On Modified Interdirections

Jana Klicnarová�

The high-dimensional data analysis is still more and more required; therefore, simple, ro-
bust, and powerful nonparametric tests for high-dimensional data are in demand. One of the
possible concepts of how to handle such data is based on hyperplane signs (see [Randles, 1989]
and ranks (see [Hettmansperger et al., 1999], [Oja and Paindaveine, 2005]). These concepts
became popular due to their simplicity, geometric interpretation, affine invariance, weak mo-
ment assumptions, and robustness to both – radial and angular – outliers. Many authors
were interested in such approaches, see [Randles and Peters, 1990], [Jan and Randles, 1996],
[Gieser and Randles, 1997], [Hallin and Paindaveine, 2002]. On the other hand, the original
concepts suffer from high computational demands, which led to falling out of the fashion of
these technics. In the talk, we will discuss the possibilities of these concept modifications,
which reduce computational effort, and, if possible, preserve the advantages of these methods.

We focus on statistics based on hyperplanes in more detail. More precisely, on statistics
based on interdirections [Randles, 1989] and lift-interdirections [Hettmansperger et al., 1999],
[Oja and Paindaveine, 2005]. Let us suppose p dimensional sample of size n. The classi-
cal tests based on interdirections and lift-interdirections are computationally feasible only
for small data dimensions p and small sample sizes n. If we take a closer look at the
statistics, we realize that we handle with complete U-statistics. It means that the com-
putational demand arises exponentially with the dimension p. Therefore, Hudecova et al.
([Hudecová et al., 2020]) discussed the possibility of using incomplete U-statistics instead of
complete ones, i.e., they define so-called incomplete lift-interdirections and incomplete in-
terdirections. They showed, for interdirections, that it is possible, in test statistics given by
Randles ([Randles, 1989]), to use incomplete interdirections based on subsets chosen randomly
with or without replacement if the cardinality of the subsets (mn,p−1) satisfies: mn,p−1/n → 0
as n → ∞ (n is a size of sample). Also in the test statistics proposed by Oja and Pain-
daveine [Oja and Paindaveine, 2005], it is possible to replace classical interdirections and lift-
interdirections by incomplete ones if design sets are chosen independently and randomly with
or without replacement, satisfying that mn,p−1/n → 0 as n → ∞ and ms

n,p/n → 0 as n → ∞,
where ms

n,p is a cardinality of design set for lift-interdirections.
Such results allow us to reduce the computational demand of tests. In the case of incom-

plete interdirections, the number of considered hyperplanes does not grow with the dimension
of observation; hence we can also easily handle samples from p = 100 dimensional spaces.
On the other hand, for lift-interdirections, the number of needed hyperplanes depends on the
dimension by the factor 2p. I.e., for p > 10, the computation of the test is already quite
difficult.

�Faculty of Economics, University of South Bohemia, Studentská 13, CZ-370 05, České Budějovice, Czech
Republic
email: klicnarova@ef.jcu.cz
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Another possibility of allowing a smaller number of hyperplanes is to apply randomized
lift-interdirections. In such a case, the test statistics asymptotics will be affected by random-
ization; on the other hand, it allows us to use tests based on this concept in higher dimensions.
In the paper [Hudecová and Šiman, 2022], Hudecová and Šiman study such an approach, give
theoretical results and provide a small simulation study. Such randomized lift-interdirections
allow to run of the test for high dimensional data (p > 100) and large samples (n > 1000) in
a short time (the computational demand does not depend on p); on the other hand, there is
some uncertainty to the statistical inference, given by randomization. Still, it does not affect
the mean p-value too much; moreover, it quickly becomes reasonably small with a growing
number of chosen hyperplanes.
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Extracting Valuable Information based on Human Behavior
Satoshi Shioiri

Advanced Institute of Yotta Informatics & Research Institute of Electrical Communication, Tohoku University
Accumulation of information is essential for human knowledge production, and information technology 

has accelerated the speed of data accumulation. The momentum of expansion of its production volume is 
growing more and more in this century. Based on a forecast, it will exceed 1 Yottabytes in 2030 [1, 2]. We 
introduce an approach for solution of these problems [3, 4] with an example of research along the 
approach, in order to solve the problem of quantity and quality of information: that is, which information 
deserves to be kept, what information should be left for knowledge production, which information should 
be discarded in order to secure storage capacity. This can be recognized as evaluation of data value. It is 
difficult to define and evaluate the qualitative aspects of information compared to the quantitative aspects 
of information. Our research group proposed a new approach based on information quality and value 
concepts as "quali-informatics" [4]. Since evaluation of information is inherently relative to the evaluator's 
subjectivity and to the context, the target is a specific data set for individual person, organization or society. 
Critical factor of quali-informatics is, therefore, evaluation by human [5].

In this presentation, I introduce three topics related to evaluation of value of information: attention as a 
selection process, learning effect for selection, and estimation of subjective judgments by machine 
learning. First is selecting information by attention. The brain receives a vast amount of input from the 
sensory organs such as eyes and ears each second and the brain must decide what to process by selecting 
the appropriate information. The function of selective attention is indeed what is required in society with 
Yottabyte scale data. The human attention process could provide clues for evaluation method of 
information values. The visual system, for example, can attend to several aspects of stimulation such as 
space, time, features, objects, link to body or action and so on [6,7]. This indicates that the brain selects 
information processing a limited number of aspects instead of any possible information from the retina, 
such as signals from individual photoreceptors or any possible combination of them. In other words, 
aspects that can be attended is along the line of value estimation of the visual system. Value of information 
is evaluated based on processing of the information in the brain.

Second is learning effect for selection. It is not surprising that a person can find things in a familiar 
place like own office easily than in a place novel to s/he. Either/both explicit or/and implicit learning 
generates representation of a place through spending time there, with which s/he can find things there 
efficiently. If the value of information from the environment, such as arrangement of things in a room, is 
considered for finding things in a place, objects identified as landmarks and global feature that identify the 
room are likely valuable.  Since their meaning is only based on previous experience, we can say that 
knowledge plays important roles for evaluation of information values. Tsuchiai et al. reported that object 
arrangements in a space is memorized implicitly in three dimensional representations throughout repeated 
excursion of visual search [8]. The study compared the transfer of the contextual cueing effect between 
cases with and without self-motion by using visual search displays for 3D objects. The contextual cueing 
effect is a learning effect of spatial layout in visual search displays. The contextual cueing effect was 
obtained with self-motion but disappeared when the display changed without self-motion. This indicates 
that there is an implicit learning effect in spatial coordinates and suggests that the spatial representation of 
object layouts or scenes can be obtained and updated implicitly.

Third is the use of image features and facial expressions to evaluate the value of information. To 
evaluate value of information, it is fundamental to find features that is relevant to the usage of the 
information. In the condition where the purpose to decide whether to keep or delete pictures in a mobile 
device, one method is image features can be used to evaluate human preference to each picture. A 
computer can make the decision by finding the link between image features and preference judgements. 
Since human judgements are subjective, collection of preference judgements results are required. Similar 
to image features, facial expressions during judgements can also be used to evaluate value of the pictures. 
Shioiri et al reported that both image features and facial expressions are useful to estimate preference 
judgments. In the study, participants was asked to judge whether they like or dislike (prefer/not prefer) 
each picture retrieved from Instagram, which is a photo-sharing social network service. Stimulus pictures 
were obtained with a hashtag to collect a certain type of pictures (#luchbox and #landscape). The face was 
video recorded while participants were thinking for the preference, and the facial expressions were 
analyzed later. Pictures used were also analyzed to extract image features using a trained network (Resnet-
50). Facial features were extracted using open source software (OpenFace). Image and face features were 
used to predict participants’ judgments with a machine learning method (LightGBM) to predict the 
participants preference from image and facial features. The results of the analyses showed that facial 
expression features are useful for predicting the participants’ judgments of preference. However, it was 



also found that prediction from the facial expression is likely limited for the same individuals since 
prediction accuracy is poor when training data and the test data were from different participants.

Evaluation of information values is critical in Yottabyte scale society. I believe that approaches with 
consideration of human sciences will play important roles there as described in this presentation.
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Recommendation Systems with Network Structure and Big Data

Tsukasa ISHIGAKI (Tohoku University)

Recommendation system supports to provide some valued items for each user from huge 
number of alternatives and it are used in a variety of industries, including retail, restaurant, 
news, trip, music, movie and media. The market of recommendation systems was valued at 
USD 1.2 billion in 2020 [Mordor Intelligence 2021] and is forecast to reach USD 16.13 
Billion by 2026 [Reports and Data 2021]. Recommendation system has a crucial role in 
today’s business.
In this talk, I will talk about some novel recommendation methods using network structures 

and big data. First, I will provide some introductory topics about motivations, properties of 
data, problem settings and basic methods on recommendation system. Then, three topics 
that we have proposed in [1-3] will be talked. The methods have been realized using deep 
learning with implicit feedback or knowledge graph. The results show that the proposed 
methods have a high performance in terms of accuracy or novel recommendation in some 
experiments using big data. 

[1] Linh Nguyen, Tsukasa Ishigaki, D2D-TM: A Cycle VAE-GAN for Multi-Domain 
Collaborative Filtering, Proceedings of IEEE International Conference on Big Data (IEEE 
Big Data 2019), pp.1175-1180, 2019
[2] Kachun Lo, Tsukasa Ishigaki, PPNW: Personalized Pairwise Novelty Loss Weighting for 
Novel Recommendation, Knowledge and Information Systems, Vol.63, No.5, pp.1117-1148, 
2021
[3] Kachun Lo, Tsukasa Ishigaki, X-2ch: Quad-Channel Collaborative Graph Network over 
Knowledge-Embedded Edges, Proceedings of the 44th International ACM SIGIR 
Conference on Research and Development in Information Retrieval (SIGIR 2021), pp.2076-
2080, 2021
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In the literature, a non-concave maximization problem under a Value-at-Risk (VaR)

or an Average Value-at-Risk (AVaR) constraint has been studied. For example, one

can find the optimal solution for a non-concave maximization problem arising from a

non-linear payoff function under a VaR constraint in Nguyen and Stadje (2020), and

the optimal solution with an S-shape utility function under a VaR constraint in Dong

et al. (2019). In addition, a non-linear payoff function under an AVaR constraint is

studied in De Franco and Tankov (2011), and an S-shape utility function under an AVaR

constraint is discussed in Armstrong and Brigo (2019). However, both of these discussions

under an AVaR constraint are restricted to some special cases. Despite these studies, the

closed form solutions for a non-concave utility maximization under an Expected Shortfall

or an Expected Discounted Shortfall constraint are missing. Moreover, a thoroughly

comparative analysis of the risk constraints on a non-concave maximization problem

based on closed form solutions is also missing in the literature. Our paper fill this gap.

In this work, we consider a non-concave maximization problem under a risk constraint

(Expected Shortfall, Expected Discounted Shortfall, Value-at-Risk, Average Value-at-

Risk). We provide closed-form solutions by the Lagrangian approach. Due to the non-

concave utility function and the risk constraint, the constructed Lagrangian for solving

the optimization problem is highly non-concave and discontinuous. We show that by

decomposing the highly non-concave Lagrangian into local concave or affine functions

on disjoint sets, the global maximum is obtained by comparing local maximums of piece-

wise Lagrangian, which reduces to finding the zero roots of a sequence of conjugate
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functions. However, it is non-trivial to determine the global maximum as the conjugate

functions do not necessarily have zero roots, which implies that the existence of the op-

timal solution is not fully ensured. Note that in traditional concave utility maximization

problems under risk constraints, the existence of the optimal solution is guaranteed by

the existence of the Lagrangian multipliers. But in the non-concave maximization prob-

lem under risk constraints, the optimal solution exists if the Lagrangian multipliers as

well as the zero roots of the conjugate functions both exist, which is more challenging

to prove. In this paper, we work out the conditions under which the zero roots of the

conjugate functions exist and obtain full analytical solutions for the non-concave utility

maximization problems under risk constraints.
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The purpose of this study was to develop a model that can estimate the
transition of quantile points of a response variable from longitudinal data
with a nonlinear structure when the nonlinear function cannot be identified
in advance. To achieve this goal, we consider a basis expansion method
for both fixed- and random-effects terms in quantile mixed-effects models.
Since models with basis expansions can be expressed in the same form as
a linear model, they can be treated as a special case of the linear quantile
mixed-effects model, such as those proposed by Geraci and Bottai (2007)
and Geraci and Bottai (2014).

To overcome the expensive computational cost of this approach, we pro-
posed the Bayesian nonparametric quantile mixed-effects models (BNQMs,
Tanabe, Araki et al. 2022). In BNQMs, Bayesian regularization can be
performed by assuming a specific distribution of the prior for the coefficient
parameters of the basis function. The priors or hyperpriors are assumed
hierarchically for the parameters of the priors for the coefficient parame-
ters, and regularization parameters can be estimated simultaneously by the
MCMC method. We also proposed the use of a Gaussian process (GP) prior
for the coefficient parameter vectors of the basis functions. We showed that
the smoothness can be appropriately adjusted when the number of basis
functions is excessive by using a GP prior for Bayesian regularization.

We take the observation of the i-th individual at the j-th measurement
time tij , {(tij , yij); i = 1, ..., N, j = 1, ..., ni}. Then, the τ -th quantile of yij
at tij can be modeled as

Qyij (τ |tij) =

p∑
k=1

βτkφk(tij) +

q∑
l=1

bτilψl(tij)

= β�
τ φ(tij) + b�τiψ(tij), (1)

1



where τ ∈ (0, 1), Qyij (·) ≡ F−1(·), and φ(t) = (φ1(t), · · · , φp(t))
� and

ψ(t) = (ψ1(t), · · · , ψq(t))
� are vectors of the basis functions in the fixed-

and random-effects terms, respectively, βτ = (βτ1, · · · , βτp)� is a p × 1
coefficient parameter vector of φ(t), and bτi = (bτi1, · · · , bτiq)� is a q × 1
coefficient parameter vector of ψ(t), where bτi ∼ N(0,Γτ ) is assumed. Here,
Γτ is a q × q positive-definite covariance matrix.

We assume that the conditional distribution of yij is an asymmetric
Laplace distribution. Here, the conditional distribution of yij is written as
yij |β, bi, σ ∼ AL(μij , σ, τ); therefore, its probability density function can be
written as

p(yij |β, bi, σ) = τ(1− τ)

σ
exp

{
−ρτ

(
yij − μij

σ

)}
, (2)

where μij = β�φ(tij) + b�i ψ(tij) is the location parameter, −∞ < μij <
∞, σ > 0 is the scale parameter, 0 < τ < 1 is the skewness parameter,
and ρτ (u) = u(τ − I(u < 0)) is the loss function with indicator function
I(·). For further details of the model and estimation, including GP prior
regularization for basis expansion method and prior setting and posterior of
BNQM, please refer to Tanabe, Araki et al. (2022).

The performance of BNQMs was evaluated by a Monte Carlo simulation.
The proposed BNQMs showed the highest estimation accuracy for each data
structure and were shown to be useful as a quantile regression technique in
hierarchical data with a nonlinear structure. Then, a BNQM was applied
to longitudinal data of cortisol in infants. The results suggested that the
cortisol secretion rhythm in infancy is bimodal, and the magnitude of the
amplitude increases as the cortisol level itself increases.
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This talk is based on a recent paper [3]. The R extrapolation code for heavy tailed time series can be
found in [2].

Let Y : Ω → R be a square integrable random variable defined on a probability space (Ω,F ,P), and let
G ⊂ F be an observable sub–σ–algebra.The classical L2–theory of prediction of random variables states that
the best unbiased predictor of Y with respect to G is given by the conditional expectation E(Y |G). But as
far as Y has no finite moments, no unified widely accepted prediction theory exists. Our contribution creates
such theory which also applies to the finite variance case. Its main idea is the following. Let u ∈ R be an
excursion level chosen according to a finite measure m(·) on R. For any two random variables Y1, Y2 : Ω → R

introduce the excursion pseudo-metric

Em(Y1, Y2) :=

∫
R

P({Y1 > u} � {Y2 > u})m(du),

which is an m-weighted average probability of symmetric difference of excursions of Y1 and Y2 over u ∈ R.
Then, we say that Z is a prediction of a random variable Y onto the σ–algebra G introduced above if

Z = argminY0
Em(Y, Y0),

whenever this minimum (taken over all G-measurable random variables Y0) exists and is unique. Sometimes
we add more constraints to the geometry of our projection space saying that, additionally to G-measurability,

Y0
d
= Y or that Y0 is a linear combination of observables. Apparently, the above solution Z, its existence

and uniqueness may heavily depend on the choice of measure m(·). A natural candidate for this would be
the distribution of Y . We will show that Em is a metric on the space of random variables whenever the
distribution function of m(·) is strictly increasing.

The intuition behind the use of the new metric is the following. Assume that a stationary heavy–tailed
time series {Yt, t ∈ R} is observed at locations t1, . . . , tn in a compact window W ⊂ R. As proposed in [1],

the linear predictor Ŷt =
n∑

j=1

λjYtj , t �∈ {t1, . . . , tn}, is a minimizer of the functional

∫
R

E
[
v1

(
AY (u)ΔA

̂Y (u)
)]

m(du) =

∫
W

Em(Yt, Ŷt) dt

with respect to the choice of weights λ1, . . . , λn subject to the constraint Ŷt
d
= Yt. The left hand side

term is the mean length of the symmetric difference of excursion sets AY (u) := {t ∈ W : Yt > u} and

A
̂Y (u) := {t ∈ W : Ŷt > u} averaged over the levels u ∈ R picked up according to the measure m(·). Here

v1(·) is the Lebesgue measure on R.
Let U be a random variable with probability law m which is independent of Y1, Y2. It can be interpreted

as a random excursion level which we choose to build the metric Em. We show that Em coincides with the
so–called separation (pseudo) metric [4] whenever m is a probability measure.

Lemma 1. Let m be a probability measure on R with c.d.f. FU (x) =
∫ x

−∞ m(dy), x ∈ R. Then

Em(Y1, Y2) = E|FU (Y2−)− FU (Y1−)|.
∗Institute of Stochastics, Ulm University, Germany; vitalii.makogin@uni-ulm.de
†Institute of Stochastics, Ulm University, Germany; evgeny.spodarev@uni-ulm.de
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Theorem 1. Let XS be the space of random variables with support S ⊆ R. If FU is strictly increasing on
S, then Em is a metric on XS ×XS .

Restricted to the space of random variables Y with the same absolutely continuous distribution F , the
metric EF turns to be distribution–free depending only on bivariate copulas. We call this metric a Gini
metric. It properties are investigated.

Consider the prediction of a value of random variable X with continuous distribution function FX based
on the set Xn := (X1, . . . , Xn) of realizations of X via the excursion metric metric EFX

. Namely, we propose

a predictor X̂λ := g(λ,Xn), where λ = (λ1, . . . , λn) ∈ Λ ⊂ R
n is deterministic and g : Rn × Λ → R, n ∈ N,

is a continuous measurable function such that the excursion metric is minimal:

λ̂ := argmin
λ∈Λ

EFX
(X, X̂λ) = argmin

λ∈Λ

[
2EFX(X ∨ X̂λ)−EFX(X̂λ)

]
.

Here, the set of admissible parameters Λ as well as the analytic form of g(λ,Xn) depend on the law PX ,
e.g., g(λ,Xn) =

∑n
j=1 λjXj for infinitely divisible laws of X or g(λ,Xn) = maxj=1,...,n λjXj for max–stable

X. Since g and FX are continuous, the constraint X̂λ
d
= X is equivalent to FX(X̂λ)

d
= U ∼ U(0, 1). Denote

Λg := {λ ∈ R
n : FX(X̂λ)

d
= U}. Should our prediction be law-preserving, the above optimization problem

rewrites
λ̂ := arg min

λ∈Λg

{
EFX(X ∨ X̂λ)

}
.

If the analytic form of Λ is given explicitly but Λg is hardly available, we modify the minimization

functional by adding a term which penalizes a difference between the law of FX(X̂λ) and U(0, 1):

λ̂ := argmin
λ∈Λ

{
2EFX(X ∨ X̂λ)−EFX(X̂λ) + γ

[
EF 2

X(X̂λ)−E[FX(X̂λ) ∨ Y ]
]}

,

where γ > 0 and Y is an independent copy of FX(X̂λ), which allows for an equivalent reformulation

λ̂ := argmin
λ∈Λ

{
2EFX(X ∨ X̂λ)−EFX(X̂λ) + γ

∫ 1

0

FY1(y) [FY1(y)− 2y] dy

}
.

Existence of the solution and consistency of the above predictors are discussed as well. A special case
of extrapolating heavy-tailed time series is considered in detail. Numerical examples predicting Gaussian,
α–stable and autoregressive heavy–tailed stationary time series round up the talk. We explore several
advantages of our excursion predictors using theoretical results and computational studies. Namely, they are
computationally fast, weakly consistent for stochastically continuous random fields, and work for random
fields without finite moments. In addition, they are robust with respect to the statistical estimation of the
c.d.f. FX . These results reveal a great potential for many real world applications.

References

[1] A. Das, V. Makogin, and E. Spodarev. Extrapolation of stationary random fields via level sets. Theory
of Probability and Mathematical Statistics, 106:85–103, 2022.

[2] V. Makogin. Prediction of random time series via the excursion metric. R code, Au-
gust 2022. https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/forschung/

Software/ExtrapolationGradient3.R.

[3] V. Makogin and E. Spodarev. Prediction of random variables by excursion metric projections. Preprint,
arXiv:2207.00447v2, September 2022. https://doi.org/10.48550/arXiv.2207.00447.

[4] M. D. Taylor. Separation metrics for real-valued random variables. Internat. J. Math. Math. Sci.,
7(2):407–408, 1984.

2



Expected Euler characteristic heuristic for smooth Gaussian

random fields with inhomogeneous marginals

Satoshi Kuriki
The Institute of Statistical Mathematics

10-3 Midoricho, Tachikawa, Tokyo 190-8562, Japan

kuriki@ism.ac.jp

Abstract

Expected Euler characteristic (EC) heuristic is a method for approximating the tail

probability of the maximum of a Gaussian random field. In this talk, we provide an ex-

pected Euler characteristic formula for the approximate tail probability and its relative

approximation error when the index set M is a closed manifold and the mean and variance

of the marginal distribution are not necessarily constant. When the variance is constant,

[TTA05] proved that the relative approximation error is exponentially small in a general

setting where the index set M is a stratified manifold. When the variance is not constant,

it is shown that only the subset Msupp of M , referred to as the supporting index set,

contributes to the maximum tail probability. The proposed tail probability formula is

an integral of the Euler characteristic density over Msupp, and its relative approximation

error is proven to be exponentially small as in the case of constant variance. These results

are generalizations of [KTT22], who addressed a restricted case of finite Karhunen-Loève

expansion by the volume-of-tube method. As an example, the tail probability formula

for the largest eigenvalues of noncentral Wishart matrices Wp(ν,Σ;Φ) and its relative ap-

proximation error are obtained. Numerical experience supports the high accuracy of the

expected Euler characteristic formulas regardless of whether the marginals are homoge-

neous or inhomogeneous.

Keywords: Borel’s inequality, Kac-Rice formula, noncentral Wishart distribution, volume-

of-tube method, Weyl’s tube formula.
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To make a rational decision, a decision maker must be able to anticipate the effects of a decision to
the outcomes of interest, before committing to that decision. For instance, before building a certain
facility in a city, e.g., a dam, policymakers and citizens must seek to understand its environmental
effects. In medicine, a doctor has some prior knowledge about the effects a certain drug will have on a
patient’s health, before actually prescribing it. In business, a company needs to understand the effects
of a certain strategy of advertisement to its revenue. One approach to addressing these questions is
counterfactual inference.

Counterfactual inference we consider in this work consists of the following three main ingredients.
Suppose that there exists a hypothetical subject (e.g., a patient in medical treatment), and let X
be covariates representing the features of the subject (e.g., age, weight, medical record, etc.), T be a
treatment indicator representing the treatment assigned to the subject (a drug of interest or a placebo),
and Y be the observed outcome representing the post-treatment quantity of interest (e.g., whether the
patient is recovered or not). Given certain realizations of these variables {(xi, ti,yi)}ni=1, in which each
index i represents the identity of a subject, an analyst wishes to know how the treatment affects the
outcome.

This problem is called counterfactual since for each subject i, we only observe the outcome yi

resulting from the assigned treatment ti and can never observe the outcome (say y′
i) that would

have been realized under an alternative treatment t′i �= ti. For example, if a patient receives an
active treatment (e.g., a drug of interest), we can never observe the outcome from the same patient
under a control treatment (e.g., a placebo). This is known as the fundamental problem of causal
inference [9] and also as bandit feedback in the bandit literature [5]. One way to partially address
this issue is a randomized experiment [6], in which treatments are randomly assigned to subjects.
Although considered a gold standard, in practice randomization can be too expensive, time-consuming,
or unethical. In most cases, therefore, analysis about treatment effects needs to be done on the basis
of observational data {(xi, ti,yi)}ni=1 in which the treatment assignment ti may depend on covariates
xi and possibly on some hidden confounders; this setting is commonly known as observational studies
[14, 17].

A fundamental framework for observational studies is the potential outcome framework [13, 16].
It provides a clear notation for potential outcomes, i.e., the outcomes that would have been observed
under different treatments, and elucidates the conditions required for making a valid inference about
treatment effects. The framework has been studied extensively in statistics, and has a wide range
of applications in biomedical and social sciences; see, e.g., [10]. Moreover, important applications of
machine learning such as off-policy evaluation for online advertisement and recommendation systems
can be reformulated under this framework [18, 11].

In this work, we propose a novel approach to counterfactual inference that addresses the above
challenges, which we term counterfactual mean embedding (CME). Our approach is built on kernel
mean embedding [1, 19, 12], a framework for representing probability distributions as elements in a
reproducing kernel Hilbert space (RKHS), so that each element representing a distribution maintains
all of its information. We define an element representing a counterfactual distribution, for which we
propose a nonparametric estimator. Notable advantages of the proposed approach are summarized as
follows:

1. The proposed estimator can be computed based only on linear algebraic operations involving
kernel matrices. Being a kernel method, it can be applied to not only standard domains (such
as the Euclidean space), but also more complex and structured covariates and/or outcomes such
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as images, sequences, and graphs, by using off-the-shelf kernels designed for such data [7]; this
widens possible applications of counterfactual inference in general. Thus our work offers more
flexibility than the existing approaches by [15] and [4], who focused on estimating the cumulative
distribution functions of counterfactual distributions by assuming real-valued outcomes.

2. The proposed estimator can be used for computing a distance between the counterfactual and
controlled distributions, thereby providing a way of quantifying the effect of a treatment to the
distribution of outcomes; we define this distance as the maximum mean discrepancy (MMD)
[2, 8] between the counterfactual and controlled distributions. It also provides a way to sample
points from a counterfactual distribution based on kernel herding [3], a kernel-based deterministic
sampling method.

3. The proposed estimator is nonparametric, and has theoretical guarantees. Specifically, we prove
the consistency of the proposed estimator under a very mild condition, and derive its convergence
rates under certain regularity assumptions involving kernels and underlying distributions. Both
results hold without assuming any parametric assumption.
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Let X1, . . . , Xn be independent random vectors in Rd with mean 0 and covariance matrix Σ. Set

Sn =
1√
n

n∑
i=1

Xi.

It is well-known by the central limit theorem (CLT) that the law of Sn can be approximated by N(0,Σ),
the d-dimensional normal distribution with mean 0 and covariance matrixΣ, under some regularity assump-
tions, particularly when d is fixed. This approximation is ubiquitous in statistics because it gives a basis
of asymptotically valid construction of confidence intervals and hypothesis testing. Recently, motivated
by the growing interest in high-dimensional data analysis, it is of great interest to develop CLTs for Sn in
high-dimensional settings such as d = dn tends to infinity as n → ∞.
For statistical application, we need the following convergence for a sufficiently rich classA of Borel sets

in Rd:
ρn(A) := sup

A∈A
|P(Sn ∈ A)− P(Z ∈ A)| → 0,

where Z ∼ N(0,Σ). If A = Cd is the class of convex Borel sets in Rd, it is known that such convergence is
generally impossible unless d = o(n). In the pathbreaking work of Chernozhukov et al. (2013, 2017), they
showed that one can prove ρn(A) → 0 under mild moment assumptions even when d � n if A = Rd is
the class of rectangles in Rd. Moreover, the class Rd is sufficiently rich in the sense that the convergence
ρn(Rd) → 0 justifies many uniform inference procedures; see Chernozhukov et al. (2013), Belloni et al.
(2018) and Chernozhukov et al. (2022a).
In the original work of Chernozhukov et al. (2017), the authors have shown that

ρn(Rd) = O

((
log7(dn)

n

)1/6
)

under some moment assumptions, and this convergence rate was conjectured to be optimal with respect to
the dependence on n. However, the recent work of Chernozhukov et al. (2022b) has showed that this rate
can be improved to

ρn(Rd) = O

((
log5(dn)

n

)1/4
)

(1)
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under the same assumptions. This improvement poses the question of whether further improvement of this
rate is possible, especially whether we can achieve the Berry–Esseen rate n−1/2 while keeping the poly-log
dependence on d. In this talk, we will review the recent progress in this problem.
The convergence rate (1) is obtained without assuming the invertibility of Σ, and it is known that a

Berry–Esseen type bound is generally not achievable when Σ is degenerate (cf. Senatov (1986)). Therefore,
it is natural to assume the invertibility of Σ in order to improve (1). In this direction, Chernozhukov et al.
(2021) have shown that

ρn(Rd) = O

⎛
⎝
√
log3 d
n

logn

⎞
⎠

when the smallest eigenvalue of Σ is lower bounded and coordinates of Xi are uniformly bounded. It is

known that the rate
√
log3 d
n gives a lower bound for the minimax optimal convergence rate for ρn(Rd). In

the meantime, the recent work of Fang & Koike (2022) found that, ifX1, . . . , Xn are i.i.d. and log-concave,
the rate n−1/2 is achievable while keeping the poly-log dependence on d without any restriction on Σ. To
be precise, they have shown that

ρn(Rd) = O

⎛
⎝ψd

√
log3(dn)

n

⎞
⎠ ,

where ψd is the so-called KLS constant, which is known to be (at most) of order O(log3.3336 d) and conjec-
tured to be bounded by a universal constant (see Jambulapati et al. (2022)).
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A Modelling Framework for Regression with Collinearity

Takeaki KARIYA ,  Nagoya University of Commerce and Business,
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This study addresses a fundamental, yet overlooked, gap between the standard theory 
and empirical practices in the OLS regression . To fill it, introducing a new concept 
“accommodation”, this paper formulates a novel conceptual framework for developing 
our own model selection process in empirical modelling for given (X) with collinearity 
in X.  With no use of , the new process enables us to find a class of effective and 
collinearity-resilient models. In fact, it directly controls not only the sampling variance 
of each OLSE, which includes Variance Inflation Factor, but also the individual power 
property of each t-test on regression coefficient, which includes what we call “Power 
Deflation Factor” as a collinearity factor. And to materialize our model selection 
process, two computational algorithms are proposed.  

Consequently, it will provide an advance model-screening process and serve as an 
empirical platform for pre-selecting a class of effective models that well accommodate  
with both collinearity and inefficiency controlled in advance. In such a class of models 
we can freely use such statistical measures and procedures with use of   as  OLS 
estimation, t-value, coefficient of determination, stepwise model selection, etc.  

More specifically, within the traditional OLS (Ordinary Least Squares) framework in 
the linear regression model, 

(1.1)      with  and ,

we aim to formulate a conceptual framework for developing our model selection 
process, called XMOSEP, by connecting the OLS sampling theory with methodology of 
empirically effective modelling. Here,  is assumed to be given, contain all possible 
variables for analysis and to be used as they are. As its vast literature shows,   itself does 
not have a capacity to identify the collinearity structure of    and avoid the ill-effect even 
if  is really generated from it, though hybrid remedies have been provided. Our 
XMOSEP stands for X-based model selection process and with no use of , it enables us 
to obtain a class  of empirically effective and collinearity-resilient models, which is 
called “  -accommodating class of models”, where y here simply denotes “dependent 
variable” symbolically. In the class  y will come into its own capacity to enable 
empirically effective and reliable modelling via frequently used variable and model 
selection procedures (VMOSEPs) that use . 

These VMOSEPs include such measures and procedures as those using t-value, F-
value, adjusted coefficient of determination and so on.  In fact, without controlling 
strong collinearity in advance, those procedures will not lead us to empirically effective 
models in practice within the OLS framework.  While, whether or not   is used in the 
model selection, VMOSEPs and XMOSEP, which are called commonly MOSEPs,  are 
regarded as a process of replacing  in (1.1) by a “better” submatrix  where data (X) is 
given. Our XMOSEP connects the sampling variances of individual OLSEs in 
estimation and the power performances of individual t-tests with a practical process of 
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making empirically effective modelling, so that standard errors of estimates and power 
of t-tests are controlled against collinearity and inefficiency, where inefficiency is 
implied by large individual sampling variances (IndSVs). 

In the OLS framework, as is well known, if the initial model in (1.1) is supposedly 
“true” with rank(X) =K,   is the best linear unbiased estimator (BLUE) in the  
nonnegative definite ordering, in which no shrinkage-type estimator will beat the OLS 
estimator in risk matrix. This optimality holds no matter how strong the collinearity in X 
may be, implying no collinearity effect on this basic optimality of  .  However, in 
empirical modelling, it is often the case that a final model  is selected via a MOSEP 
together with various diagnostics including t- or F- tests and variance analysis. Then  is 
not only different from X  (1.1) but also it may depend on analyst’s view.  The final 
OLS model  thus selected faces a conflict in claiming its BLUE-ness and effectiveness 
of the diagnostic results, because  is not X. In Section 3, this problem will be overcome 
by defining  the model in (1.1) as a “bundle model”. After all, a finally selected model 
via a MOSEP will have to be regarded as the model having generated y in any empirical 
analysis, so long as  y is regressed on  .

Key words: OLS, model selection process, collinearity effect, empirically modelling, t-
test
Kariya and Hayashi’ s portion of this work was supported by JSPS KAKENHI Grant 
Number 21K01431.  Kurata’s portion is partially supported by JSPS KAKENHI Grant 
Number 19K11853.
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SPATIAL REGRESSION DISCONTINUITY DESIGNS12

Takuya Ishiharaa, Daisuke Kurisub, Yasumasa Matsudaa and Masayuki Sawadac

We propose a mean squared error optimal estimator for regression discontinuity (RD) designs

with a vector of running variables. For the estimator, we show the asymptotic normality of a

multi-dimensional local polynomial estimator with dimension-specific bandwidths. We illustrate

our results for two-dimensional cases. Consider a non-parametric regression model

Yi = m(Xi) + εi, E[εi|Xi] = 0, i = 1, . . . , n, Yi ∈ R and Xi = (Xi,1, Xi,2)
′ ∈ R

2

for a sequence of i.i.d. random vectors {(Yi, Xi)}ni=1. A pair of running variables Xi = (Xi1, Xi2)
′

is a geographical location on a map. The location Xi determines treatment Di. Specifically, Di =

1{Xi ∈ T } where T is a subset of the support of Xi.

Let c be a particular point on the boundary of T , our target parameter is θ := limx→c,x∈T m(x)−
limx→c,x∈T C m(x). Under appropriate conditions (Hahn et al., 2001, Keele and Titiunik, 2015, for

example), θ is the average treatment effect for the units at the boundary point c.

Local linear estimation such as Calonico et al. (2014) is dominant for RD designs because of its

intuitive construction from the identification strategy that compares units around the boundary.

However, existing local linear estimators are limited to a uni-variate running variable, and multi-

dimensional case is available only in a non-kernel procedure such as Imbens and Wager (2019).

Consequently, empirical practices often imposes that m(·) is a function of the Euclidean distance

from a point or the boundary. We provide a local linear estimator without such a strong restriction.

Consider the local linear estimator β̂+ = (β̂+
0 , β̂

+
1 , β̂

+
2 )

′ solving the following problem

β̂+ = arg min
(β0,...,β2)′∈R3

n∑
i=1

(Yi − β0 − β1(Xi,1 − c1)− β2(Xi,2 − c2))
2Kh (Xi − c) 1{Xi ∈ T }

where Kh(Xi − c) = K
(

Xi,1−c1
h1

,
Xi,2−c2

h2

)
and each hj is a sequence of positive constants (band-

widths) such that hj → 0 as n → ∞. Similarly, let β̂− be the estimator using 1{Xi ∈ T c}
1

2Prepared for 3rd TIU workshop on 2022 October 12 through 14.
aGraduate School of Economics and Management, Tohoku University
bGraduate School of International Social Sciences, Yokohama National University
cInstitute of Economic Research, Hitotsubashi University
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subsample. Our spatial RD estimator is β̂+
0 − β̂−

0 .

Unlike Masry (1996) who study the asymptotic property of the local polynomial estimator with

a common bandwidth h1 = h2, we show the asymptotic normality of the local polynomial estima-

tor with heterogeneous bandwidth. Furthermore, following Imbens and Kalyanaraman (2012), we

propose a procedure to choose the pair of bandwidths h1 �= h2 by minimizing the asymptotic mean

squared error at the cutoff normalized to c = 0 without loss of generality.

{h2
1(∂11m

+(0)K+
11 − ∂11m

−(0)K−
11) + h2

2(∂22m
+(0)K+

22 − ∂22m
−(0)K−

22)

+ h1h2(∂12m
+(0)K+

12 − ∂12m
−(0)K−

12)}2 +
1

nh1h2

σ2(0)

f(0)
e′1S

−1KS−1e1

where e1 = (1, 0, 0)′, ∂lkm+(0) = limx→0,x∈T ∂lkm(x), ∂lkm
−(0) = limx→0,x∈T C ∂lkm(x), S,K and

K+
11,K−

11,K+
12,K−

12,K+
22 and K−

22 are constants determined by the kernelK(·), σ2(0) is the conditional

variance of the error term at the cutoff, and f(0) is the density at the cutoff.

However, for a particular shape of m, there exists a pair (h1, h2) such that the asymptotic

bias is zero, and consequently the bandwidths cannot be determined. For a product kernel K(x) =

K1(x1)K2(x2), we resolve this issue by rotating the axis so thatK2 becomes the one-sided triangular

kernel K2(x) = 2(1−x)1{0 ≤ x ≤ 1}. In Monte Carlo simulation, we demonstrate that our spatial

RD estimator outperforms the conventional RD estimator with the shape restriction. We apply our

procedure to Ehrlich and Seidel (2018) data for a spatial RD evaluation of a place-based policy.

REFERENCES

Calonico, S., M. D. Cattaneo, and R. Titiunik (2014): “Robust Nonparametric Confidence Intervals for

Regression-Discontinuity Designs,” Econometrica, 82, 2295–2326.

Ehrlich, M. v. and T. Seidel (2018): “The Persistent Effects of Place-Based Policy: Evidence from the West-

German Zonenrandgebiet,” American Economic Journal: Economic Policy, 10, 344–374.

Hahn, J., P. Todd, and W. V. d. Klaauw (2001): “Identification and Estimation of Treatment Effects with a

Regression-Discontinuity Design,” Econometrica, 69, 201–209.

Imbens, G. and K. Kalyanaraman (2012): “Optimal Bandwidth Choice for the Regression Discontinuity Esti-

mator,” The Review of Economic Studies, 79, 933–959.

Imbens, G. and S. Wager (2019): “Optimized Regression Discontinuity Designs,” The Review of Economics and

Statistics, 101, 264–278.

Keele, L. J. and R. Titiunik (2015): “Geographic Boundaries as Regression Discontinuities,” Political Analysis,

23, 127–155.

Masry, E. (1996): “Multivariate regression estimation local polynomial fitting for time series,” Stochastic Processes

and their Applications, 65, 81–101.



Shrinkage Methods for Treatment Choice 
 

Takuya Ishihara       Daisuke Kurisu 
 

 

This paper studies the problem of determining whether or not to treat individuals based on 
observed covariates. In this problem, the most common decision rule is the conditional empirical 
success (CES) rule proposed by Manski (2004), which is a rule assigning individuals to treatments 
that yield the best experimental outcomes conditional on observed covariates. The CES rule uses 
only the average treatment effect (ATE) estimate conditional on each covariate value. In contrast, 
a common method in statistical estimation problem is to shrink unbiased but noisy preliminary 
estimates toward the average of these estimates and it is well known that shrinkage estimators 
have smaller mean squared error than unshrunk estimators. In this study, we assume that the 
dispersion of the conditional ATEs (CATEs) is bounded and propose the shrinkage rule that is a 
rule assigning individuals to treatments based on shrinkage estimators. We select the shrinkage 
factor by minimizing an upper bound of the maximum regret. By considering the treatment rule 
for individuals that uses not only each CATE but also the CATEs of other individuals, it is possible 
to incorporate information across individuals. This allows the proposed shrinkage rule to perform 
as well as or better than existing treatment rules in the sense of regret and to be more flexible to 
the heterogeneity of the individuals. In addition, we compare the shrinkage rule with other rules 
when the parameter space is correctly specified and misspecified. 

The contributions of this paper are threefold. First, our approach is attractive from a 
computational point of view. Computation of the exact minimax regret rule often becomes 
challenging in the context of statistical treatment choice. Indeed, when the parameter space is 
restricted and the number of the possible covariate values is large, it is difficult to obtain the 
shrinkage rule that minimizes the maximum regret. To overcome this problem, we propose the 
shrinkage rule that minimizes tractable upper bound of the maximum regret. Because in this 
approach, each shrinkage factor is obtained by optimizing over a single parameter, the proposed 
shrinkage rule is easy to compute. 

Second, we compare the maximum regrets of the shrinkage, CES, and pooling rules when the 
parameter space is correctly specified. As an alternative to the CES and shrinkage rules, one could 
consider using the pooling rule that determines whether or not to treat the individuals based on 
the average of the CATE estimates. Because the CES and pooling rules are special cases of 
shrinkage rules, the proposed shrinkage rule is expected to outperform these two rules. However, 
because the proposed shrinkage rule does not minimize the exact maximum regret, its maximum 



regret may be larger than that of the CES and pooling rules. Hence, it is important to compare 
these maximum regrets. If the dispersion of the standard errors of estimated CATEs is small 
compared to the dispersion of the CATEs, then the proposed shrinkage rule has a smaller 
maximum regret than the CES rule. We also show that the maximum regret of the shrinkage rule 
is always less than twice that of the pooling rule. Furthermore, when the dispersion of CATEs is 
sufficiently small or large, the shrinkage rule is no worse than the pooling rule. 

Third, we evaluate the maximum regret of the shrinkage rule when the parameter space is 
misspecified. Because the minimax decision rule depends on the parameter space, the choice of 
the parameter space is important in practice. For example, Armstrong and Kolesar (2018) and 
Armstrong and Kolesar (2021) consider the minimax estimation and inference problem for the 
treatment effects and show that it is not possible to choose the parameter space automatically in 
a data-driven way. Hence, it is important to analyze the decision rule under misspecification of 
the parameter space. We investigate the performance of the shrinkage rule and show that our 
results are robust against misspecification of the parameter space. To the best of our knowledge, 
this is the first study that considers misspecification of the parameter space in the treatment choice 
problem. 
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Forecasting Stock Returns with Conditional
Quantile-level Dependence

Stanley Iat-Meng Ko∗ Sung Y. Park†

Finance practitioners and researchers have long attempted to forecast the equity pre-
mium, which is essential for asset pricing, portfolio construction and so on. Rozeff (1984),
Fama and French (1988) and Campbell and Shiller (1988a) formally study the predictability
of the dividend-price ratio for stock returns. Since then, various predictors have been de-
veloped and studied; for example, the dividend-earnings ratio (Campbell and Shiller, 1988b;
Lamont, 1998), yields on treasury and corporate bonds (Keim and Stambaugh, 1986; Camp-
bell, 1987; Fama and French, 1989), and book-to-market ratio (Kothari and Shanken, 1997;
Pontiff and Schall, 1998), among many others. Welch and Goyal (2008) comprehensively
summarizes various stock return predictors and extensively examines their forecasting per-
formance. They conclude that most predictors forecast poorly both in-sample and out-of-
sample. Moreover, the prevailing mean model (average historical return) simply provides
better forecasts; see also Butler, Grullon and Weston (2005). Recent studies have utilized
financial economic theory to improve the forecastability of predictors. Using the same set
of predictors, Campbell and Thompson (2008) and Pettenuzzo, Timmermann and Valka-
nov (2014) propose a constrained forecasting method in which the restrictions on mean and
variance suggested by investment theory are imposed.

In this paper, we propose a novel approach to forecasting stock excess returns using
conditional quantile levels. We define the “optimal forecasting quantile level” as the cor-
responding conditional quantile value that is the closest to the true yt. To illustrate the
idea, we consider a hypothetical time series and its conditional quantiles at t = 1, . . . , 8 in
Figure 1. For illustrative purposes, we only consider five quantiles, at 0.05, 0.25, 0.5, 0.75,
and 0.95. The red circles denote the quantiles of returns at different times. The realized
returns are plotted as triangles at each time. The quantile levels with blue dots are the
closest to the true yt, which we call the “optimal forecasting quantile level”, α̃t. In this
example, the optimal forecasting quantile-level sequence or trajectory is thus 0.5 → 0.95 →
0.25 → 0.75 → 0.75 → 0.05 → 0.5 → 0.75.

∗Graduate School of Economics and Management, Tohoku University, Sendai, Japan. Tel: +81 022-795-
6288. Email: stanleyko@tohoku.ac.jp.

†School of Economics, Chung-Ang University, Seoul, Korea. Tel: +82-2-820-5622. Email:
sungpark@cau.ac.kr.
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Figure 1: Hypothetical optimal forecasting quantile levels.
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We discover an interesting phenomenon that the α̃t sequence forms a stationary time
series with stable autocorrelation. Specifically, there is significant lag-5 autocorrelation in
α̃t of the monthly equity premium of S&P 500, and significant lag-7 autocorrelation in the
quarterly data. However, the autocorrelation of α̃t disappears in the annual data. This
provides us a way to forecast excess return by exploring the time series property of the
optimal forecasting quantile levels. Typically, we first forecast the future optimal forecast-
ing quantile level, based on the past optimal levels; for example, for the monthly return,
ˆ̃αt = γ̂0+ γ̂1α̃t−5. Then we forecast the excess return using quantile regression at ˆ̃αt; that is,
ŷt|t−1 ≡ q̂ ˆ̃αt,t+1|t. We show that a time varying risk premium adjustment is implied by our
method. In the empirical study, we show that the proposed two-step approach outperforms
other methods in forecasting the equity premium. Our empirical results demonstrate the
superiority of our method for forecasting the monthly and quarterly equity premium. Using
the conventional out-of-sample R2 performance measure, we show extraordinary robust pre-
dictive power for our method in different sample periods. Our method also achieves better
prediction performance under the alternative absolute loss measure.
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    Issues in Spatial Processes with Long Range Dependence

    

    Peter M Robinson

    

    London School of Economics

    

    Abstract

    

    We discuss issues of statistical inference for spatial processes with 'long range dependence'.  Long 
range dependence, or strong dependence, in time series is a topic that has been quite extensively 
studied in recent years.  After a number of probabilistic contributions and empirical studies, serious 
treatment of issues of statistical inference could be said to have begun in the mid-1980s, with 
activity then increasing through the 1990s and this century.  Predominately this literature has 
focussed on observations that are regularly-spaced over time, and the bulk of the theoretical 
development has been in terms of asymptotic statistical theory, with the number of observations 
regarded as diverging, finite-sample theory proving mathematically intractable, even under the 
precise distributional assumptions that are typically not required in a large-sample treatment.  

    Parametric, semiparametric and nonparametric models have all featured.  The major 
characteristic feature of a long range dependent covariance stationary time series process is that its 
autocovariance function decays so slowly with increase in lag length as not to be summable, or, 
nearly equivalently, its spectral density diverges, typically at zero frequency, while some 
nonstationary processes, such as ones with a unit root can, a fortiori, be regarded as having even 
longer memory.  By contrast, 'short range dependent' time series typically have autocovariances that 
are summable and spectral density that is more or less smooth (for example a stationary 
autoregressive moving average (ARMA) has exponentially decaying autocovariance and analytic 
spectral density), though for some relevant purposes a short range dependent process is sometimes 
defined as merely having spectral density that is positive and finite at zero frequency.

    Spatial data have long attracted the attention of statisticians, and the configurations of some such 
data, especially some arising in such fields as meteorology, cosmology and agriculture, can be 
viewed as generalisations of the typical regularly-spaced time series one mentioned above.  In 
particular, they constitute observations in M≥2 dimensions, (where M=1 in the time series case). 

    This brings to mind regularly spaced agricultural plots on a field. In fact, `spatial long range 
dependence' goes back at least to the agriculturally-motivated paper of Smith (1938), which is also a 
very early reference relative to the literature on time series long range dependence.  It is interesting 
that Smith (1938) thought of a power law decay: this might seem natural to one coming to the 
subject unschooled in time series modelling which, after World War II, stressed exponential decay, 
as in ARMA modelling.



    Since then, many papers on 'spatial long range dependence' have appeared, but the topic has not 
been developed as systematically or comprehensively as 'long range dependent time series'.  Some 
distinctive issues arising in the 'spatial' case, all of which have been studied far more under short 
range dependence than long range dependence, are:

        1.  Is there isotropy or not?  If not, we might model each dimension separately, or with some 
interaction, and possibly with a different memory parameter for each dimension.

        2.  Is sampling regularly or irregularly spaced?  Whereas in time series regular spacing has been 
predominately studied, irregular spacing is perhaps more likely to be found with spatial data.

        3.  Should modelling be unilateral or multilateral?  For time series unilateral modelling, 
reflecting one-sided transition from past to future, is usually natural, but this is not the case with 
spatial data, where, for example, the dimensions might be latitude and longitude.

        4.  The edge effect. In estimating lagged quantities there is loss of information at the boundary 
of the observation region, which has negligible effect when M=1, but increasing, and damaging, 
effect as M increases unless corrected for.

    We discuss the following topics:

    1. Inference on location and regression with long range dependent errors.

    2. Inference on second-order properties of long range dependent stationary processes.

    3. Miscellaneous topics: nonstationary processes, irregular spacing, adaptive estimation, 
nonparametric regression.

    We do not consider 'spatial autoregressive'-type ('SAR') models (which depend on a user-chosen 
weight matrix of geographic or economic inverse distances); these do not fit into our framework and 
typically possess a kind of short range dependence.

    



On estimation of
fractional Browninan fields and sheets

Yoshihiro Yajima
University of Tokyo(Emeritus Professor)
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Abstract

Originally a Gaussian semiparametric estimator is an approximate likelihood estimator in a frequency domain
for long memory models of stationary and nonstationary time series(Robinson(1995); Velasco(1999)). We
apply it to fractional Brownian fields(FBF) and Brownian sheet(FBS) observed on a regular grid and derive
its asymptotic properties. They are Gaussian random fields and used to model many physical processes in
space. The estimator is consistent and has the limiting normal distribution as the sample size goes to infinity.

Keywords:spatio-temporal models; fractional Brownian field; fractional Brownian sheet.

1. Introduction FBF is a popular model for intrinsic stationary random fields(ISRFs). Let {X(s) : s ∈ Rd}
be a random field. If {X(s)} satisfies that for any fixed h(∈ Rd), the increment Zh(s) = X(s+ h)−X(s)
is a stationary random field, {X(s)} is called an ISRF. Then {X(s)} is characterized by

E(X(s+ h)−X(s)) = 0,

Var(X(s+ h)−X(s)) = 2γ(h),

where 2γ(h) is the variogram function(see Chilès & Delfiner (2012); Cressie (1993)). Hereafter we also assume
that X(0) = 0.
For λ and h, let (λ,h) be the inner product and ‖ λ ‖ be the norm.
Then if 2γ(h) is a continuous function on Rd satisfying γ(0) = 0, it has the spectral representation

2γ(h) =

∫
Rd

1− cos((λ,h))

(2π)d
G(dλ) +Q(h), (1)

where Q(h)(≥ 0) is a quadratic form and G(λ) is a positive, symmetric measure such that ‖ λ ‖2 G(λ) is
continuous at the origin and ∫

Rd

‖ λ ‖2
1+ ‖ λ ‖2G(dλ) < ∞. (2)

(See Chilès& Delfiner (2012); Cressie(1993); Solo (1992); Yaglom (1957).)
Hereafter we assume that Q(h) ≡ 0 and G(λ) is absolutely continuous with density g(λ). Then (1) and (2)
reduce to

2γ(h) =

∫
Rd

1− cos((λ,h))

(2π)d
g(λ)dλ,

and ∫
Rd

‖ λ ‖2
1+ ‖ λ ‖2 g(λ)dλ < ∞,

respectively.
An interesting special class of ISRF’s that is often applied to empirical data analysis in space is a fractional
Brownian field(FBF)(see Adler (1981); Mandelbrot& Van Ness (1968);Yaglom (1957); Zhu& Stein (2002) and
the references therein). FBF has 2γ(h) = C ‖ h ‖2H , which is equivalent to

g(λ) =
CHKH

‖ λ ‖d+2H
,

where
KH = πd/222H+dΓ((d+ 2H)/2)/Γ(1−H), 0 < H < 1,

1



and C is a scale parameter and H is a smoothness parameter with larger values corresponding to smoother
surfaces.
The other popular random field is FBS. FBS is a Gaussian random field and its covariance is defined by

Cov(X(s), X(t)) = C
d∏

i=1

(sHi
i + tHi

i − |si − ti|Hi), 0 < Hi < 1.

where s = (s1, · · · , sd)′ and t = (t1, · · · , td)′.
2.Theoretical results Hereafter for simplicity of calculation and notation we assume that d = 2. For FBF,
we also denote λ by (λ1, λ2) and g(λ) by g(λ1, λ2) respectively.
First we consider FBF.

Assumption 1 g(λ1, λ2) is expressed by

g(λ1, λ2) =‖ λ ‖−2H−2 go(λ1, λ2), 0 < H < 1,

where go(λ1, λ2) is a nonnegative with go(0, 0) > 0, symmetric , go(λ1, λ2) = go(−λ1,−λ2), twice continuously
differentiable function for −∞ < λ1, λ2 < ∞ and is bounded with bounded first and second order partial
derivatives.

Theorem 1 Under Assumption 1 and additional conditions, GSE Ĥn converges to H0(the true parameter)
in probability as n → ∞ and for p ≥ 2, m1/2(Ĥn −H0) converges to N(0, 1) in distribution as n → ∞ where
m is the number of the discrete Fourier transforms used to construct the estimator and p is the order of the
data taper..

Next we have the following result for FBS.

Theorem 2 Assume p ≥ 3. Under some assumptions, GSE Ĥin(i = 1, 2)converges to Hi0(the true parame-
ters) in probability as n → ∞ and m(Ĥ1n−H10, Ĥ2n−H20)

′ converges to N(0, I2) in distribution as n → ∞
where m2 is the number of the discrete Fourier transforms used to construct the estimator.
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Joint circular distributions in view of higher order spectra of time series and copula
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     Abstract
Circular data analysis is emerging as an important component of statistics. For this 
half century, various circular distributions have been proposed, e.g., von Mises 
distribution, wrapped Cauchy distribution, among other things.
Also, regarding the joint distribution, Wehrly and Johnson(1980) proposed a bivariate 
circular distribution which is related to a family of Markov processes on the circle.
Because the sample space is on a circle, various new statistical methods have been 
developed. In this talk we provide a new look at circular distributions in view of 
spectral distributions of time series because the typical circular distributions 
correspond to spectral densities of time series models. For example, autoregressive 
AR(1) spectral density corresponds to wrapped Cauchy distribution, and von Mises 
distribution corresponds to exponential spectral density (Bloomfield(1973)), etc.
Furthermore we introduce a class of joint circular distributions from the higher order 
spectra of time series, which can describe very general joint circular distributions. 
Hence we can develop the statistical inference for dependent observations on the 
circle. We present a family of distributions on the circle derived from the ARMA 
spectral density. It is seen that the proposed family includes some existing circular 
families as special cases. For these special cases, the normalizing constant and 
trigonometric moments are shown to have simple and closed form. We develop the 
asymptotic optimal inference theory based on the local asymptotic normality (LAN) 
on the circle. Because the observations are permitted to be dependent, the theory 
opens a new paradigm in the estimation for joint circular distributions. Because we 
introduced very general joint circular distributions, we can discuss the problem of 
copula for them.
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