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Tests of high-dimensional mean vectors under the SSE model

Aki Ishii a, Kazuyoshi Yatab and Makoto Aoshimab

a Department of Information Sciences, Tokyo University of Science
b Institute of Mathematics, University of Tsukuba

1 Introduction

We considered statistical inference on mean vectors in the high-dimension, low-sample-size (HDLSS) con-
text. Letx1, . . . ,xn be a random sample of sizen(≥ 4) from a p-variate distribution with an unknown
mean vectorµ and unknown covariance matrixΣ. In the HDLSS context, the data dimensionp is very
high andn is much smaller thanp. We define the eigen-decomposition ofΣ by Σ = HΛHT , where
Λ = diag(λ1, ..., λp) is a diagonal matrix of eigenvalues,λ1 ≥ · · · ≥ λp ≥ 0, andH = [h1, ...,hp] is
an orthogonal matrix of the corresponding eigenvectors. We write the sample mean vector and the sample
covariance matrix asx =

∑n
j=1 xj/n andS =

∑n
j=1(xj − x)(xj − x)T /(n − 1).

In this talk, we discussed the one-sample test:

H0 : µ = µ0 vs. H1 : µ ̸= µ0, (1.1)

whereµ0 is a candidate mean vector. We assumeµ0 = 0 without loss of generality. One should note that
Hotelling’sT 2-statistic is not available becauseS−1 does not exist in the HDLSS context. [6, 7] considered
the test whenX is Gaussian. WhenX is non-Gaussian, [5] considered the test. Let us consider the following
eigenvalue condition:

λ2
1

tr(Σ2)
→ 0 asp → ∞. (1.2)

Under (1.2),H0 and some regularity conditions, [5] and [1, 2] showed the asymptotic normality for their test
statistics.

[3] called the eigenvalue condition (1.2) the “non-strongly spiked eigenvalue (NSSE) model” and drew
attention that high-dimensional data do not fit the NSSE model on several occasions. In order to overcome
this inconvenience, [3] proposed the “strongly spiked eigenvalue (SSE) model” defined by

lim inf
p→∞

{ λ2
1

tr(Σ2)

}
> 0 (1.3)

and gave a data transformation technique from the SSE model to the NSSE model.

2 A new test procedure under the SSE model

Let Ψr = tr(Σ2) −
∑r−1

s=1 λ2
s =

∑p
s=r λ2

s for r = 1, ..., p. We assumed the following model:

(A-ii) There exists a fixed integerk (≥ 1) such that

(i) Whenk ≥ 2, λ1, ..., λk are distinct in the sense that

lim inf
p→∞

(λr/λs − 1) > 0 for 1 ≤ r < s ≤ k;

(ii) λk andλk+1 satisfy

lim inf
p→∞

λ2
k

Ψk
> 0 and

λ2
k+1

Ψk+1
→ 0 asp → ∞.



Note that (A-ii) is one of the SSE models. According to [3, 4], we considered transforming the data from the
SSE model to the NSSE model by using the projection matrix

A = Ip −
k∑

j=1

hjh
T
j =

p∑
j=k+1

hjh
T
j .

We have thatE(Axj) = Aµ (= µ∗, say) and

Var(Axj) = AΣA =
p∑

j=k+1

λjhjh
T
j (= Σ∗, say).

Note that tr(Σ2
∗) = Ψk+1 andλmax(Σ∗) = λk+1, whereλmax(Σ∗) denotes the largest eigenvalue ofΣ∗.

Then, it holds that
λ2

max(Σ∗)/tr(Σ2
∗) → 0 asp → ∞ under (A-ii).

Thus, the transformed data has the NSSE model.
By using the transformed data, we consider the following quantity:

TDT = ∥Ax∥2 − tr(AS)
n

= 2
∑n

l<l′ x
T
l Axl′

n(n − 1)
= 2

∑n
l<l′

(
xT

l xl′ −
∑k

j=1 xjlxjl′
)

n(n − 1)
,

where
xjl = hT

j xl for all j, l.

We discussed the asymptotic null distribution and the power ofTDT. We applied the findings to the con-
struction of confidence regions on the mean vector under the SSE model. We further discussed multi-sample
problems under the SSE models. Finally, we demonstrated the new test procedure by using actual microarray
data sets.
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Comparison of financial volatility estimators:
RK, TS, PA and SIML

Hiroumi Misaki 1

In the recent decade, several estimation methods of volatility of financial asset prices

with high-frequency data have been developed to deal with the problem of market mi-

crostructure noise (MMN). Bandorff-Nielsen et al. (2008) proposed the realized kernel

(RK) method using autocovariances and kernels, which is widely used for empirical analy-

sis in academic literatures. The two-scale (TS) estimator by Zhang et al. (2005) combines

sparsely and densely (sub)sampled realized volatility to eliminate the bias. Jacod et al.

(2009) developed pre-averaging (PA) approach for the estimation problem with MMN.

Kunitomo and Sato (2011, 2013) have proposed the separating information maximum

likelihood (SIML) method. Misaki and Kunitomo (2015) and Kunitomo, Misaki and Sato

(2015) have further investigated the properties of the SIML estimation with the data that

is randomly sampled and includes MMN. The analytical investigations and the batch of

simulations have shown that the SIML estimator has reasonable asymptotic properties as

well as finite sample properties.

Although some alternative methods have been proposed as described above, the relative

properties of these methods in actual market structures are yet to be assessed. Therefore,

in this presentation, we make a comparative study on RK, TS, PA and SIML.

We assume that the underlying continuous process X(t) (0 ≤ t ≤ 1) is that

X(t) = X(0) +

∫ t

0
σx(s)dB(s) (0 ≤ t ≤ 1),

where B(s) represents standard Brownian motion and σx(s) is the instantaneous volatility

function. The main statistical goal is to estimate the integrated volatility

σ2
x =

∫ 1

0
σ2
x(s)ds

of the underlying continuous process X(t) from the set of discretely observed prices y(tni )

that are generated by y(tni ) = h
(
X(tni ), y(t

n
i−1), u(t

n
i )
)
, where u(tni ) is market MMN.

We investigate the finite sample properties of the five estimators for the integrated

volatility based on a set of simulations. Generally, we can assume deterministic volatility

function σ2
x(s) = σ(0)2

[
a0 + a1s+ a2s

2
]
where ai (i = 0, 1, 2) are constants and σx(s)

2 > 0

for s ∈ [0, 1]. In this case the integrated volatility is given by

σ2
x =

∫ 1

0
σx(s)

2ds = σx(0)
2
[
a0 +

a1
2

+
a2
3

]
.

1 Faculty of Engineering, Information and Systems, University of Tsukuba, Tennodai 1-1-1, Tsukuba
City, Ibaraki 305-8577, JAPAN, hmisaki@risk.tsukuba.ac.jp



We use several non-linear transformation models for the form of MMN in addition to

the standard ‘addtive plus noise’ model: h(x, y, u) = x+ u. Each model corresponds to

Model 1 h(x, y, u) = gη(x+ u),

Model 2 h(x, y, u) = y + b(x− y),

Model 3 h(x, y, u) = y + gη(x− y + u),

Model 4 h(x, y, u) = y + gη(x− y) + u,

Model 5 h(x, y, u) = y + u+

 b1(x− y) if x ≥ y

b2(x− y) if y < x
,

where gη(x) = η [x/η], and b, b1, b2 are constants, respectively.

In the Tables we show the some of simulation results except for PA. Figures of MSE

for each estimator are attached. As we can see from the Figures, the RK is severely biased

to the round-off errors when the noise is small, whereas the TS is sensitive to the linear

price adjustment when the noise is relatively large. The SIML and LSIML are not the

best in most of the cases including the standard one, but they seem to have robustness to

the form of noise, compared to the other estimators. We have shown the more findings at

the session.

References

[1] Barndorff-Nielsen, O., P. Hansen, A. Lunde and N. Shephard (2008), “Designing realized ker-
nels to measure the ex-post variation of equity prices in the presence of noise,” Econometrica,
Vol.76-6, 1481-1536.

[2] Jacod, J., Y. Li, P. A. Mykland, M. Podolskij and M. Vetter (2009), “Microstructure noise in
the continuous case: The pre-averagin approach,” Stochastic Processes and their Applications,
Vol. 119, 2249-2276.

[3] Kunitomo, N., H. Misaki and S. Sato (2015), “The SIML Estimation of Integrated Covariance
and Hedging Coefficients with Micro-market noises and Random Sampling,” Asia-Pacific
Financial Markets, Vol. 22, 3, 333-368.

[4] Kunitomo, N. and S. Sato (2011), “The SIML Estimation the Integrated Volatility of Nikkei-
225 Futures and Hedging Coefficients with Micro-Market Noise,”Mathematics and Computers
in Simulations, Elsevier, 81, 1272-1289.

[5] Kunitomo, N. and S. Sato (2013), “Separating Information Maximum Likelihood Estima-
tion of the Integrated Volatility and Covariance with Micro-Market Noise,” North American
Journal of Economics and Finance, Vol. 26, 282-309.

[6] Misaki, H. and N. Kunitomo (2015), “On robust properties of the SIML estimation of volatil-
ity under micro-market noise and random sampling,” International Review of Economics &
Finance, 40, 265-281.

[7] Zhang, L. , P. Mykland and Ait-Sahalia, Y., (2005), “A tale for two time scale : determining
integrated volatility with noisy-high frequency data,” Journal of the American Statistical
Association, Vol. 100(472), 1394-1411.



Robust and sparse Gaussian graphical modelling under

cell-wise contamination

Shota Katayama1, Hironori Fujisawa2 and Mathias Drton3

1Tokyo Institute of Technology, Japan
2The Institute of Statistical Mathematics, Japan

3University of Washington, USA

Let Y = (Y1, . . . , Yp)
T be a p-dimensional random vector representing a multivariate

observation. The conditional independence graph of Y is the undirected graph G = (V,E)

whose vertex set V = {1, . . . , p} indexes the individual variables and whose edge set E

indicates conditional dependences among them. More precisely, (i, j) ̸∈ E if and only if Yi

and Yj are conditionally independent given YV \{i,j} = {Yk : k ̸= i, j}. For a Gaussian vector,

the edge set E corresponds to the support of the precision matrix. Indeed, it is well known

that if Y follows a multivariate Gaussian distribution Np(µ,Σ) with mean vector µ and

covariance matrix Σ, then (i, j) ̸∈ E if and only if Ωij = 0, where Ω = Σ−1.

Inference of the conditional independence graph sheds light on direct as opposed to in-

direct interactions and has received much recent attention (Drton and Maathuis, 2017). In

particular, for high-dimensional Gaussian problems, several techniques have been developed

that exploit available sparsity in inference of the support of the precision matrix Ω. Mein-

shausen and Bühlmann (2006) suggested fitting node-wise linear regression models with ℓ1

penalty to recover the support of each row. Yuan and Lin (2007), Benerjee et al. (2008) and

Friedman et al. (2008) considered the graphical lasso (Glasso) that involves the ℓ1 penal-

ized log-likelihood function. Cai et al. (2011) proposed the constrained ℓ1 minimization for

inverse matrix estimation (CLIME), which may be formulated as a linear program.

In fields such as bioinformatics and economics, data are often not only high-dimensional

but also subject to contamination. While suitable for high dimensionality, the above men-

tioned techniques are sensitive to contamination. Moreover, traditional robust methods may

not be appropriate when the number of variables is large. Indeed, they are based on the

model in which an observation vector is either without contamination or fully contaminated.

Hence, an observation vector is treated as an outlier even if only one of many variables



is contaminated. As a result these methods down-weight the entire vector regardless of

whether it contains ‘clean’ values for some variables. Such information loss can become fatal

as the dimension increases. As a more realistic model in high dimensional data, Alqallaf et

al. (2002) considered cell-wise contamination: the observations X1, . . . ,Xn with p variables

are generated by

Xi = (Ip −Ei)Yi +EiZi, i = 1, . . . , n. (1)

Here, Ip is the p× p identity matrix and each Ei = diag(Ei1, . . . , Eip) is a diagonal random

matrix with the Eij’s independent and Bernoulli distributed with P (Eij = 1) = εj. The

random vectors Yi and Zi are independent, and Yi ∼ Np(µ,Σ) corresponds to a clean

sample while Zi makes contaminations in some elements of Xi.

Our goal is to develop a robust estimation method for the conditional independence

graph G of Yi from the cell-wise contaminated observations Xi. Techniques such as node-

wise regression, Glasso and CLIME process an estimate of the covariance matrix. Our

strategy is thus simply to apply these procedures using a covariance matrix estimator that

is robust against cell-wise contamination. However, while many researchers have considered

the traditional ‘whole-vector’ contamination framework (see, e.g., Maronna et al., 2006),

there are fewer existing methods for cell-wise contamination. Specifically, we are aware of

three approaches, namely, use of alternative t-distributions Finegold and Drton (2011), use

of rank correlations (Loh and Tan, 2015; Öllerer and Croux, 2015), and a pairwise covariance

estimation method by Tarr et al. (2016) who adopt an idea of Gnanadesikan and Kettenring

(1972). In contrast, in this talk, we provide a robust covariance matrix estimator via γ-

divergence as proposed by Fujisawa and Eguchi (2008). The γ-divergence can automatically

reduce the impact of contaminations, and it is known to be robust even when the number

of contaminations is large.



Estimation of spatiotemporal effects by the fused lasso for densely sam-

pled spatial data using body condition data set from common minke whales
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Hiroko Solvang4, Nils Øien4, Tore Haug4

1Graduate School of Education, Hiroshima University, 2Graduate School of Science, Hiroshima

University, 3Research & Development Center, Osaka Medical College,
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Samples evenly distributed all over the population are not always available for real data

analysis. As an example of a spatial data, a data from common mink whales in Norwegian

water provides values showing their body conditions with whaling locations such as longitudes

and latitudes. Though whales are distributed all over the Norwegian water, whaling locations

are almost the same every year, therefore samples are dense at particular locations. The space

to be analyzed is subdivided into several, and we estimate the spatial effect by using fused lasso

with combining spatial effects from subdivided space.

Let y and ε be n-dimensional vectors obtained by stacking the vectors of response variables

and error variables of the j-th space, respectively, i.e., y = (y′
1, . . . ,y

′
m)′ and ε = (ε′1, . . . , ε

′
m)′,

and let X and B be n× k and n× b matrices obtained by stacking the matrices of explanatory

variables and basis functions of the j-th space, respectively, i.e., X = (X ′
1, . . . ,X

′
m)′ and B =

(B′
1, . . . ,B

′
m)′. As a whole of space, the additive model is written such as

y = Xβ +Bα+Rµ+ ε,

where µ = (µ1, . . . , µm)′ and R is an n×m matrix defined by

R =


1n1 ⊗ e′1

...

1nm ⊗ e′m

 .

Here, ej is the m-dimensional vector of which the j-th element is 1 while all the other elements

are 0, and ⊗ indicates the Kronecker product of the two matrices.

Yanagihara (2012) shows that choosing the smoothing parameters in the penalized smoothing

spline is equivalent to choosing the ridge parameters in the generalized ridge regression using

the matrix of transformed basis function values as the matrix of explanatory variables. And

then Yanagihara (2018) considers optimization of the ridge parameters in generalized ridge

1



regression by minimizing a model selection criterion, i.e., generalized cross-validation (GCV).

From Yanagihara (2012, 2018), estimates of α and β after optimizing smoothing parameters by

GCV are given by

α̂γ = QγVγD
−1/2
γ zγ , β̂γ = (X ′X)−1X ′(y −Rµ̂−Bα̂γ),

respectively, where zγ = (z1, . . . , zγ)
′, and Vγ is a γ × γ diagonal matrix as

Vγ = diag(νγ,1, . . . , νγ,γ), νγ,j = I
(
z2j > s2γ,a∗γ

)(
1−

s2γ,a∗γ
z2j

)
(j = 1, . . . , γ),

where the γ is optimized by the GCV.

The penalized residual sum of squares (PRSSλ) for the adaptive fused lasso is given by

PRSSλ(µ|f̂) = ∥y −Xβ̂ −Bα̂−Rµ∥2 + λ

m∑
j=1

∑
ℓ∈Dj

wjℓ|µj − µℓ|,

where λ is the non-negative regularization parameter. The spatial effect µ is estimated by

minimizing PRSSλ as

µ̂λ = arg min
µ∈Rm

PRSSλ(µ|f̂).

The above minimization problem can be solved by the coordinate descent algorithm in Friedman

et al. (2007).

There is the geographic distribution of the five International Whaling Commission (IWC)

management areas. We subdivide each areas to have about 300 samples, and estimate µ̂ of

subdivided areas. If the µ̂ of a subdivided area is equal to the one of its neighbor area, the

subdivided area and the neighbor are united. From the fused lasso estimation result, the sub-

divided areas are narrowed down the 11 spaces, and whales have the thickest blubber in the

northernmost space.
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A high-dimensional quadratic classifier after feature selection

Kazuyoshi Yata and Makoto Aoshima
Institute of Mathematics, University of Tsukuba, Ibaraki, Japan

1 Introduction

A common feature of high-dimensional data is that the data dimension is high, however, the
sample size is relatively low. This is the so-called “HDLSS” or “largep, smalln” data situation,
herep is the data dimension andn is the sample size.In this paper, we mainly focus on the case
when “n/p → 0”. Suppose we have independent andp-variate two populations,πi, i = 1, 2,
having an unknown mean vectorµi = (µi1, ..., µip)

T and unknownpositive-definite covariance
matrixΣi for eachi. Let

µ12 = µ1 − µ2 = (µ121, ..., µ12p)
T .

We assumelim supp→∞ |µ12j| < ∞ for all j. Note thatlim supp→∞ ||µ12||2/p < ∞, where|| · ||
denotes the Euclidean norm. Letσi(j) be thej-th diagonal element ofΣi for j = 1, ..., p (i =
1, 2). We assume thatσi(j) ∈ (0,∞) asp → ∞ for all i, j. For a function,f(·), “f(p) ∈
(0,∞) as p → ∞” implies that lim infp→∞ f(p) > 0 and lim supp→∞ f(p) < ∞. Here,
“ lim infp→∞ f(p)” and “lim supp→∞ f(p)” are the limit inferior and the limit superior off(p),
respectively. Then, it holds that tr(Σi)/p ∈ (0,∞) asp → ∞ for i = 1, 2. We do not as-
sumeΣ1 = Σ2. The eigen-decomposition ofΣi is given byΣi = H iΛiH

T
i , whereΛi =

diag(λi1, ..., λip) is a diagonal matrix of eigenvalues,λi1 ≥ · · · ≥ λip > 0, andH i = [hi1, ..., hip]
is an orthogonal matrix of the corresponding eigenvectors. We have independent and identically
distributed (i.i.d.) observations,xi1, ..., xini

, from eachπi, wherexik = (xi1k, ..., xipk)
T , k =

1, ..., ni. We assumeni ≥ 2, i = 1, 2. We estimateµi andΣi by

xini
= (xi1ni

, ..., xipni
)T =

ni∑
k=1

xik/ni

andSini
=
∑ni

k=1(xik −xini
)(xik −xini

)T /(ni − 1). Let sini(j) be thej-th diagonal element of
Sini

for j = 1, ..., p (i = 1, 2). Letx0 = (x01, ..., x0p)
T be an observation vector of an individual

belonging to one of the two populations. We assumex0 andxijs are independent. Let

nmin = min{n1, n2} and m = min{p, nmin}.

Note that the divergence condition “p → ∞, n1 → ∞ andn2 → ∞” is equivalent to “m → ∞.
Let |M | be the determinant of a square matrixM . Whenπis are Gaussian,the Bayes

optimal rule (the minimum-error rate discriminant function)is given as follows: One classifies
the individual intoπ1 if

(x0 − µ1)
TΣ−1

1 (x0 − µ1) − log |Σ2Σ
−1
1 | < (x0 − µ2)

TΣ−1
2 (x0 − µ2) (1.1)

1



and intoπ2 otherwise. Sinceµis andΣis are unknown, one usually considers the following
typical classifier:

(x0 − x1n1)
T S−1

1n1
(x0 − x1n1) − log |S2n2S

−1
1n1

| < (x0 − x2n2)
T S−1

2n2
(x0 − x2n2).

The classifier usually converges to the Bayes optimal classifier whennmin → ∞ while p is
fixed or nmin/p → ∞. However, in the HDLSS context, the inverse matrix ofSini

does not
exist. WhenΣ1 = Σ2, Bickel and Levina (2004) considered an inverse matrix defined by
only diagonal elements of the pooled sample covariance matrix. WhenΣ1 ̸= Σ2, Dudoit et al.
(2002) considered an inverse matrix defined by only diagonal elements ofSini

. Aoshima and
Yata (2011) considered using{tr(Sini

)/p}−1Ip instead ofS−1
ini

from a geometrical background
of HDLSS data and proposed geometric classifiers. Here,Ip denotes the identity matrix of
dimensionp. Chan and Hall (2009) and Aoshima and Yata (2014, 2018) considered distance-
based classifiers and Aoshima and Yata (2014) gave the misclassification rate adjusted classifier
for multiclass, high-dimensional data whose misclassification rates are no more than specified
thresholds.

In this talk, we considered classifiers by the diagonal elements ofSini
. We provided a

DQDA type classifier by feature selection and show that it has the consistency property even
whennmin/p → 0.
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High-dimensionality Adjusted Asymptotically Loss Efficient GCp Criterion

in Normal Multivariate Linear Regression Models

Hirokazu Yanagihara
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1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8626, Japan

The multivariate linear regression model is one of basic models of multivariate analysis.

This model is introduced in many multivariate statistical textbooks (see e.g., Srivastava, 2002,

chap. 9; Timm, 2002, chap. 4), and even now is widely used in chemometrics, engineering,

econometrics, psychometrics, and many other fields, for the predication of multiple responses to

a set of explanatory variables. Let Y = (y1, . . . .yn)
′ be an n× p matrix of p response variables,

and let X = (x1, . . . ,xn)
′ be an n×k matrix of non-stochastic k explanatory variables, where n

is the sample size. In order to ensure the possibility of estimating the model and the existence

of a variable selection criterion, we assume that rank(X) = k (< n) and n − p − k − 1 > 0.

Suppose that j denotes a subset of ω = {1, . . . , k} containing kj elements, and Xj denotes the

n×kj matrix consisting of the columns of X indexed by the elements of j, where kA denotes the

number of elements of a set A, i.e., kA = #(A). For example, if j = {1, 2, 4}, then Xj consists of

the first, second, and fourth columns of X. We then consider the following multivariate linear

regression model with kj explanatory variables as the candidate model:

Y ∼ Nn×p(XjΘj ,Σj ⊗ In), (1)

where Θj is a kj × p unknown matrix of regression coefficients, and Σj is a p × p unknown

covariance matrix. We identify the candidate model by the the set j and call the candidate

model in (1) the model j. Especially, the model with Xω (namely X) is called the full model.

We will assume that the data are generated from the following true model:

Y ∼ Nn×p(Xj∗Θ∗,Σ∗ ⊗ In), (2)

where j∗ is a set of integers indicating the subset of explanatory variables in the true model,

Θ∗ is a kj∗ × p matrix of true regression coefficients, and Σ∗ is a p × p true covariance matrix

with rank(Σ∗) = p. We call the model in (2) the true model j∗. Henceforth, for simplicity, we

represent Xj∗ and kj∗ as X∗ and k∗, respectively.

In this paper, we focus on a variable selection method by minimizing a generalized Cp (GCp)

criterion, which is called a GCp-minimization method, when p may be large but still smaller



than n. The GCp criterion is defined by adding a positive constant value α times the number of

parameters in the mean structure to the minimum value of the residual sum of squares (RSS).

The GCp criterion in an univariate linear regression model was proposed by Atkinson (1980)

and that in a multivariate linear regression model was proposed by Nagai et al. (2012). The

family of GCp criteria contains many widely known variable selection criteria, e.g., Mallows

Cp criterion proposed by Sparks et al. (1983) (the original Cp was proposed by Mallows, 1973,

under the univariate linear regression model), the modified Cp (MCp) criterion proposed by

Fujikoshi and Satoh (1997), which is the completely bias-corrected version of Cp criterion. Since

we deal with the multivariate linear regression model of which the dimension p may be large,

the following asymptotic framework is used for assessing an asymptotic property of a variable-

selection method:

• Large-sample and high-dimensional (LSHD) asymptotic framework: n and p/n approach ∞
and c0 ∈ [0, 1), respectively. For simplicity, we will write it “n→ ∞, p/n → c0”.

It should be emphasized that we do not care about whether p goes to ∞ or not in the above

asymptotic framework. Suppose that regression coefficients of the ath explanatory variable

(a ∈ j∗) and diagonal elements of the true covariance matrix are corresponding to sequences

{β∗a,i}i=1,2,... and {ψ∗

i }i=1,2,..., respectively. These mean that new elements are added to current

regression coefficients and diagonal elements of the true covariance matrix when p increases.

There are two important properties of a variable selection method by minimizing a variable

selection criterion. One is a consistency property that a selection probability of the true model

by a variable selection criterion goes to 1 asymptotically, the other is an efficiency property

that a ratio of a loss function of a selected model by a variable selection criterion and the

minimum loss function goes to 1 asymptotically (see e.g., Shibata, 1980, 1981; Shao, 1997).

Recently, Yanagihara (2016) clarified a sufficient condition of α of GCp criterion in (1) to satisfy

a consistency property under the LSHD asymptotic framework. An aim of this paper is to derive

a sufficient condition of α of GCp criterion in (1) to satisfy an efficiency property under the LSHD

asymptotic framework. Then, we can propose asymptotically loss efficient GCp criterion even

under high-dimensionality of p. The asymptotically loss efficient GCp criterion is defined by the

following α:

α(β) =
2n

n− p
+ β, β > 0 s.t. lim

n→∞,p/n→c0

√
pβ = ∞ and lim

n→∞,p/n→c0

p

n
β = 0. (3)



Fixed support positive-definite modification of
covariance matrix estimators via linear shrinkage
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Abstract

In this work, we study the positive definiteness (PDness) problem in covariance
matrix estimation. For high dimensional data, many regularized estimators are
proposed under structural assumptions on the true covariance matrix including
sparsity. They are shown to be asymptotically consistent and rate-optimal in esti-
mating the true covariance matrix and its structure. However, many of them do not
take into account the PDness of the estimator and produce a non-PD estimate. To
achieve the PDness, researchers consider additional regularizations (or constraints)
on eigenvalues, which make both the asymptotic analysis and computation much
harder. In this paper, we propose a simple modification of the regularized covariance
matrix estimator to make it PD while preserving the support. We revisit the idea of
linear shrinkage and propose to take a convex combination between the first-stage
estimator (the regularized covariance matrix without PDness) and a given form
of diagonal matrix. The proposed modification, which we denote as FSPD (Fixed
Support and Positive Definiteness) estimator, is shown to preserve the asymptotic
properties of the first-stage estimator, if the shrinkage parameters are carefully se-
lected. It has a closed form expression and its computation is optimization-free,
unlike existing PD sparse estimators. In addition, the FSPD is generic in the sense
that it can be applied to any non-PD matrix including the precision matrix. The
FSPD estimator is numerically compared with other sparse PD estimators to un-
derstand its finite sample properties as well as its computational gain. It is also
applied to two multivariate procedures relying on the covariance matrix estimator

1



— the linear minimax classification problem and the Markowitz portfolio optimiza-
tion problem — and is shown to substantially improve the performance of both
procedures.

Key words: Covariance matrix; fixed support; high dimensional estimation; linear
minimax classification problem; linear shrinkage; mean-variance portfolio optimiza-
tion; precision matrix; positive definiteness.
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Greedy Active Learning Algorithm for Logistic Regression Models 

 

Ray‐Bing Chen 
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We study a logistic model‐based active learning procedure for binary classification 

problems, in which we adopt a batch subject selection strategy with a modified 

sequential experimental design method. Moreover, accompanying the proposed 

subject selection scheme, we simultaneously conduct a greedy variable selection 

procedure such that we can update the classification model with all labeled training 

subjects. The proposed algorithm repeatedly performs both subject and variable 

selection steps until a prefixed stopping criterion is reached. Our numerical results 

show that the proposed procedure has competitive performance, with smaller 

training size and a more compact model compared with that of the classifier trained 

with all variables and a full data set. We also apply the proposed procedure to a 

well‐known wave data set (Breiman et al., 1984) and a MAGIC gamma telescope data 

set to confirm the performance of our method. 



 

Inference for LSHD Time Series Models and Applications to Sensor Monitoring 

and Financial Engineering 
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In data science applications such as sensor monitoring or financial portfolio 

optimization the available data for modeling, computations and analysis of the 

covariance matrix has often be done in a low-sample-size-high-dimensional (LSHD) regime. 

Especially, if the dimension is larger than the sample size, classic methods fail and 

need to be replaced by procedures which are designed for high-dimensional data. 

 

Methods for testing and change detection in the covariance matrix can be based on recent 

results on LSHD asymptotics of bilinear forms of the sample covariance matrix. This 

approach allows us to detect and infer changes in averages of covariances of variables 

or in the variance of projections. The theoretical results hold without the need to 

constraint the dimension relative to the sample size. For the statistical estimation 

of unknowns one often needs a (large) learning sample. To circumvent this, we propose 

in-sample estimators not requiring a learning sample.  

 

Simulations show that the proposed methods work reliable for realistic mathematical 

models. As a real world application the method is applied to analyze monitoring data 

from ozone sensors. The sensor data is compressed by projecting it onto sparse principal 

directions obtained by a sparse principal component analysis (SPCA). It turns out that 

the SPCA automatically learns the spatial locations of the sensors and leads to a spatial 

segmentation. Analyzing the projections for a change-point provides a mean to detect 

changes in the spatial dependence structure of the sensor network measuring ozone. 



 
 

Do We Necessarily Have More Cost-Effective 
Information with Big Data?* 
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Abstract 

It is a normally held belief that more data provide more information without mentioning what kind of 
information one may be looking for. Such a feeling is widespread especially in the face of big data movement. 
In order to hold a reasonable discourse, pros and cons both, I begin working under a certain stochastic models 
of one kind or another and then try to grasp what additional useful information may entail as more data come in.  

I will illustrate situations where a sentiment that more data may amount to more information is actually 
nearly valid. But, I will also show that the same belief may not be entirely justified in other situations where the 
relative gain in information is not very substantial as one utilizes more available data. Indeed, the relative gain 
in information may go down with more data accrued. 

In this presentation, I will share preliminary ideas and show some analysis to validate my thoughts. It is 
my earnest belief that there must be more to it than just using more and more available data simply because they 
are out there!    
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In regression analysis, many analysts use the (penalized) least squares estimation, which

aims at minimizing the mean squared prediction error [5]. On the other hand, the relative

(percentage) error is often more useful and/or adequate than the mean squared error. For

example, in econometrics, the comparison of prediction performance between different stock

prices with different units should be made by relative error; we refer to [9] and [11] among others.

Additionally, the prediction error of photovoltaic power production or electricity consumption

is evaluated by not only mean squared error but also relative error (see, e.g., [10]).

In relative error estimation, we minimize a loss function based on the relative error. An

advantage of using such a loss function is that it is scale free or unit free. Recently, several

researchers have proposed various loss functions based on relative error [9, 11, 1, 8, 2, 3]. In

practice, a response variable y(> 0) can turn out to be extremely large or close to zero. For

example, the electricity consumption of a company may be low during holidays and high on

exceptionally hot days. These responses may often be considered to be outliers, to which the

relative error estimator is sensitive because the loss function diverges when y → ∞ or y → 0.

Therefore, a relative error estimation that is robust against outliers must be considered. Re-

cently, Chen et al. [2] discussed the robustness of various relative error estimation procedures by

investigating the corresponding distributions, and concluded that the distribution of least prod-

uct relative error estimation (LPRE) proposed by [2] has heavier tails than others, implying that

the LPRE might be more robust than others in practical applications. However, our numerical

experiments show that the LPRE is not as robust as expected, so that the robustification of the

LPRE is yet to be investigated from the both theoretical and practical viewpoints.

To achieve a relative error estimation that is robust against outliers, this paper employs the

γ-likelihood function for regression analysis by Kawashima and Fujisawa [7], which is constructed

by the γ-cross entropy [4]. An analysis of electricity consumption data is presented to illustrate

the usefulness of our procedure. For detail of the theoretical properties, algorithms, and Monte

Carlo simulations, please refer to Hirose and Masuda [6].
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1 Summary

We claim that diagonal scaling of a sample covariance matrix is asymptoti-

cally inconsistent if the ratio of the dimension to the sample size converges to

a positive constant, where the population is assumed to be Gaussian with a

spike covariance model. Our non-rigorous proof relies on the replica method

developed in statistical physics. In contrast to similar results known in the

literature on principal component analysis, strong inconsistency is not ob-

served. Numerical experiments support the derived formulas.

2 Main results

Let x(1), . . . ,x(n) be independent and identically distributed according to

the p-dimensional Gaussian distribution with mean vector 0 and covariance

matrix Σ ∈ Rp×p. Denote the (uncentered) sample covariance matrix by

S = (1/n)
∑n

t=1 x(t)x
⊤
(t). We assume n ≥ p, which implies that S is positive

definite with probability one, unless otherwise stated.

Let R+ be the set of positive numbers. By a diagonal scaling theorem,

there exists a unique vector ŵ ∈ Rp
+ such that

ŴSŴ1 = 1, (1)

where Ŵ = diag(ŵ) and 1 = 1p = (1, . . . , 1)⊤. In other words, all row sums

of the scaled matrix ŴSŴ are unity.

1This study was supported by Kakenhi Grant Numbers JP17K00044 and JP26108003.
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Let w0 be the population counterpart of ŵ, which means W0ΣW01 = 1,

W0 = diag(w0). If p is fixed and n → ∞, a standard argument of asymptotic

statistics shows that ŵ converges almost surely to the true parameter w0

because S converges to Σ. However, if p is getting large as well as n, then

the limiting behavior of ŵ is not obvious. We are interested in the behavior

of ŵ if αp := n/p converges to some α ∈ [1,∞) as p → ∞.

In principal component analysis, this type of high-dimensional asymp-

totics has been deeply investigated. In particular, the angle between the first

eigenvectors of S and Σ converges to a non-zero value. Furthermore, the

limit becomes π/2 if α is less than a threshold. We call these phenomena

inconsistency and strong inconsistency, respectively.

We obtained similar conclusions for the diagonal scaling problem, at least

numerically. The following formula is derived with the help of the replica

method from statistical physics. See [1] for details.

Claim 1. Let Σ = I. Suppose that αp = n/p converges to some α ∈ [1,∞)

as p → ∞. Then we have

lim
p→∞

ŵ⊤w0

∥ŵ∥∥w0∥
=

1− 3
8α√

1− 1
2α

. (2)

The right-hand side falls within (5
√
2/8, 1).

We also established formulas for a class of covariance matrices

Σ = Ω
11⊤

p
+ I, (3)

where Ω is a positive constant expressing the signal-to-noise ratio.
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Statistical Inference with Unnormalized Models
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Abstract

In this talk, we propose a class of estimators for unnormalized models, and show that our estima-
tors have the property of the efficiency in the parametric inference. The key concept of our method
is the density-ratio matching under Bregman divergences. This is the joint work with T. Takenouchi
of Future University Hakodate/RIKEN AIP, and M. Uehara and X.-L. Meng of Harvard University.

Statistical inference with parametric statistical models is an important issue in the fields of machine
learning and statistics. The maximum likelihood estimation (MLE) or its variants is often used for the
parameter estimation. However, the direct application of the MLE to, say, the Boltzmann machine[6] is
not tractable. A difficulty comes from the calculation of the normalization constant. Its computational
cost is of the exponential order in the variable dimension. The problem of computational cost is common
to many probabilistic models, and several solutions for the estimation of unnormalized models have been
suggested; see Markov Networks[3], the Boltzmann machine (with hidden variables)[6, 1, 2], models in
independent component analysis[7], truncated distribution[8], exponential-polynomial distribution[4], and
references therein.

When the normalization constant in a parametric model is not computationally tractable, we need
to deal with unnormalized statistical model, p(x; θ), θ ∈ Θ. Here, the integral of the probability density∫
p(x; θ)dx is not necessarily equal to one, i.e., it may depend on the parameter θ. An approach for the

statistical inference with unnormalized models is to approximate the unnormalized model by a tractable
model by the mean-field approximation, which considers a model assuming independence of variables [9].
Another approach such as the contrastive divergence [5] avoids the exponential time calculation by the
Markov Chain Monte Carlo (MCMC) sampling.

In this talk, we propose a class of estimators for unnormalized models. Our method does not require
calculation of the normalization constant. The proposed estimator is defined by minimization of Bregman
divergence in which density-ratio matching is used. Our approach works for statistical models with both
discrete and continuous random variables. We show that in many case our estimator achieves the Fisher
efficiency and also possesses the convex property in the parameter for the unnormalized exponential family.
So far, estimators for unnormalized model rarely achieves the fisher efficiency except the estimator based
on the pseudo-spherical divergence on discrete sample space[10]. Our estimator is regarded as an extension
of [10] to the model on the continuous sample space. We show that not only pseudo-spherical divergence
but other Bregman divergences yield efficient estimators for unnormalized models. Some theoretical
background and numerical experimenters will be shown in the presentation. The paper including the
content of the presentation is now in preparation[11].
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