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Tests for high-dimensiomal covariance structures
under the SSE model

Aki Ishii a, Kazuyoshi Yatab and Makoto Aoshimab

a Department of Information Sciences, Tokyo University of Science
b Institute of Mathematics, University of Tsukuba

1 Introduction

In this talk, we consider testing the high-dimensional intraclass covariance matrix. We produce a new test
statistic for each covariance structure by using the extended cross-data-matrix (ECDM) methodology. We
show that the test statistic is an unbiased estimator of its test parameter. We prove that the test statistic has
a consistency property and establishes the asymptotic normality. We propose a new test procedure for the
high-dimensional intraclass covariance matrix and evaluate its asymptotic size and power theoretically.

Suppose we take samples,xj = (x1j , . . . , xpj)T , j = 1, . . . , n, of sizen (≥ 4), which are inde-
pendent and identically distributed (i.i.d.) as ap (≥ 2)-variate distribution. We assume thatxj has an
unknown mean vectorµ and unknown (positive-semidefinite) covariance matrixΣ. Let σ = tr(Σ)/p.
Let σij be the(i, j) element ofΣ for i, j = 1, . . . , p. We assume thatσjj ∈ (0,∞) as p → ∞
for all j. For a function,f(·), “f(p) ∈ (0,∞) asp → ∞” implies that lim infp→∞ f(p) > 0 and
lim supp→∞ f(p) < ∞. Then, it holds thatσ ∈ (0,∞) asp → ∞. Let ρ =

∑p
i̸=j σij/{σp(p − 1)}.

Note that

1T
p Σ1p

p
= σ{1 + ρ(p − 1)} (1.1)

andρ ∈ [−(p − 1)−1, 1], where1p = (1, . . . , 1)T . We denote the identity matrix of dimensionp by Ip.
In this paper, we consider testing

H0 : Σ = Σ∗ vs. H1 : Σ ̸= Σ∗, (1.2)

whereΣ∗ is a candidate (positive-semidefinite) covariance matrix. ForΣ∗ we consider the following co-
variance structures: (i) identity matrix, (ii) scaled identity matrix, (iii) diagonal matrix, and (iv) intraclass
covariance matrix. Let

ΣS = σIp, ΣD = diag(σ11, . . . , σpp) and ΣIC = σ{(1 − ρ)Ip + ρ1p1T
p }.

Let
Σ0 = Σ − Σ∗ and ∆ = ∥Σ0∥2

F = tr(Σ2
0),

where∥ · ∥F is the Frobenius norm. Note that∆ = 0 underH0 and∆ > 0 underH1. We regard∆ as a
test parameter and construct a test procedure for (1.2) by using an estimator of∆.

In the current paper, we take a different nonparametric approach and produce a new test statistic
for (1.2). We utilize the extended cross-data-matrix (ECDM) method developed by Yata and Aoshima
[2] which is an extension of the cross-data-matrix methodology created by Yata and Aoshima [1]. The
ECDM method is a nonparametric method to produce an unbiased estimator for a function ofΣ at a low
computational cost even for ultra high-dimensional data.

2 Unbiased estimator of∆

Let Aj be ap× p known idempotent matrix with rankrj (≥ 1) for j = 1, . . . , q, such that
∑q

j=1 rj = p

and
∑q

j=1 Aj = Ip, wherer1 ≤ · · · ≤ rq when q ≥ 2. Note that tr(Aj) = rj , A2
j = Aj and



AjAj′ = O for all j (̸= j′). Let κj (≥ 0) be an unknown scalar such that tr(ΣAj) = rjκj for all j.
Hereafter, we assume thatΣ∗ has the following structure:

Σ∗ = κ1A1 + · · · + κqAq. (2.1)

Note that tr(Σ2
∗) =

∑q
j=1 rjκ

2
j and∆ = tr(Σ2) − tr(Σ2

∗), so that tr(Σ2) ≥ tr(Σ2
∗). One can summarize

as follows:

(I) A1 = Ip, κ1 = σ, r1 = p andq = 1 whenΣ∗ = ΣS;

(II) Aj = diag(0, . . . , 0, 1, 0, . . . , 0) whosej-th diagonal element is1, κj = σjj , rj = 1 for all j and
q = p whenΣ∗ = ΣD;

(III) A1 = 1p1T
p /p, A2 = Ip − 1p1T

p /p, κ1 = σ{1 + (p − 1)ρ}, κ2 = σ(1 − ρ), r1 = 1, r2 = p − 1
andq = 2 whenΣ∗ = ΣIC.

We note that tr(ΣAj)2/rj = rjκ
2
j for all j.

We first give an unbiased estimator of∆ by using the ECDM method. Letn(1) = ⌈n/2⌉ and
n(2) = n − n(1), where⌈x⌉ denotes the smallest integer≥ x. Let

V n(1)(k) =

{
{⌊k/2⌋ − n(1) + 1, . . . , ⌊k/2⌋} if ⌊k/2⌋ ≥ n(1),

{1, . . . , ⌊k/2⌋} ∪ {⌊k/2⌋ + n(2) + 1, . . . , n} otherwise;

V n(2)(k) =

{
{⌊k/2⌋ + 1, . . . , ⌊k/2⌋ + n(2)} if ⌊k/2⌋ ≤ n(1),

{1, . . . , ⌊k/2⌋ − n(1)} ∪ {⌊k/2⌋ + 1, . . . , n} otherwise

for k = 3, . . . , 2n−1, where⌊x⌋ denotes the largest integer≤ x. Let#S denote the number of elements
in a setS. Note that#V n(l)(k) = n(l), l = 1, 2, V n(1)(k) ∩ V n(2)(k) = ∅ andV n(1)(k) ∪ V n(2)(k) =
{1, . . . , n} for k = 3, . . . , 2n − 1. Also, note thati ∈ V n(1)(i+j) andj ∈ V n(2)(i+j) for i < j (≤ n).
Let

x(1)(k) = n−1
(1)

∑
j∈V n(1)(k)

xj and x(2)(k) = n−1
(2)

∑
j∈V n(2)(k)

xj

for k = 3, . . . , 2n − 1. Let un(l) = n(l)/(n(l) − 1) for l = 1, 2,

yij(1) = xi − x(1)(i+j) and yij(2) = xj − x(2)(i+j)

for all i < j. We note thatun(l)E(yij(l)y
T
ij(l)) = Σ for l = 1, 2, andyij(1) andyij(2) are independent

for all i < j. For example, Yata and Aoshima [2] gave an estimator of tr(Σ2) as

Wn =
2un(1)un(2)

n(n − 1)

n∑
i<j

(yT
ij(1)yij(2))

2 (2.2)

by the ECDM method. Then, it holds thatE(Wn) = tr(Σ2). We also give an unbiased estimator of
tr(Σ2

∗) by using the ECDM method.
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On error bounds for high-dimensional asymptotic distribution
of L2-type test statistic

Takahiro Nishiyamaa, Masashi Hyodob and Tatjana Pavlenkoc

a Department of Business Administration, Senshu University
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c Department of Mathematics, KTH Royal Institute of Technology

This talk was concerned with the canonical testing problem in modern statistical infer-

ence, namely the two-sample test for equality of means of independent multivariate popu-

lations with very large dimensions. Precisely, let xgk = (xg1k, . . . , xgpk)
>, k ∈ {1, . . . , ng},

be ng iid random vectors with xgk » Np(µg, Σg), g ∈ {1, 2}, where µg ∈ Rp, Σg ∈ Rp×p
>0 ,

represent the usual parameters.

We are interested in testing the hypothesis H : ‖µ1 ¡µ2‖ = 0, vs. A : ‖µ1 ¡µ2‖ > 0

where ‖ ¢ ‖ denotes L2-norm. The best-known test procedure which accommodates high-

dimensional data and allows for Σ1 6= Σ2 is the L2-type test statistics introduced by Chen

and Qin (2010) (hereafter called for Ch-Q test):

Tn = ‖x1 ¡ x2‖2 ¡
2∑

g=1

tr(Sg)/ng,

where n = n1 + n2, xg and Sg are the sample mean and sample covariance matrix of

gth population. To the unbiasedness property of Tn, Chen and Qin (2010) quantified its

variance

σ2
n = var(Tn) =

2∑
g=1

2tr(Σ2
g)

ng(ng ¡ 1)
+

4tr(Σ1Σ2)

n1n2

,

under H, and show that the distribution of Tn admits a normal limit after appropriate

rescaling. We first presented a theoretical analysis of this problem which requires under-

standing of the rate of convergence of Tn to its normal limit, and then introduced two

new approximations which are more accurate in the asymptotic regime where both n and

p tend to infinity.

To provide the intuition behind the approximations which we propose, let ψ
eTn

(t)

denote the characteristic functions of T̃n = Tn/σn. Also, let λr(Λ) be the r-th largest

eigenvalue of the matrix Λ = (n/n1)Σ1 + (n/n2)Σ2 and let ∆ = λ1(Λ)2/tr(Λ2).

Then we obtained the characteristic function of T̃n as

ψ
eTn

(t) ≈ e¡t2/2 + a(it)3e¡t2/2 (1)

where a = 4b/(3σ3
n) and

b =
2∑

g=1

(ng ¡ 2)tr(Σ3
g)

n2
g(ng ¡ 1)2

+
3tr(Σ2

1Σ2)

n2
1n2

+
3tr(Σ1Σ

2
2)

n1n2
2

.



By this result, the normal approximation of T̃n is immediately achieved, that is F
eTn

(t) =

Φ(t) + o(1), as ∆ = 0. On the other hand, inverting the right side of (1) term by term

provided the approximating distribution of T̃n of the form F2(x) = Φ(x) + a(1¡ x2)φ(x),

where φ(x) denotes the density of Φ(x).

Another avenue of research delivers a χ2-approximation of T̃n; this look on the problem

is motivated by the work of Buckley and Eagleson (1988) and Zhang (2005). Let Gd(¢)
denote the cumulative distribution function of χ2-distribution with d degrees of freedom.

Then we could approximate F
eTn

(x) by F3(x) = Gd(
√

2dx + d).

To establish the rate of convergence, we obtained the explicit bounds for the Kol-

mogorov distance between the distribution of T̃n and its approximations Φ(x), F2(x), and

F3(x).

Theorem 1. The distribution of T̃n satisfies the following properties under H:

(i) For any n1, n2, p, Σ1, Σ2 such that ∆ < 1/8,

sup
x∈R

|F
eTn

(x) ¡ F2(x)| · 3∆

2πω

{
2 +

8!1/4

8(1 ¡ 8∆)2

}
+

8∆(2 + ω)

9πω2
.

(ii) For any n1, n2, p, Σ1, Σ2 such that ∆ < 1/8,

sup
x∈R

|F
eTn

(x) ¡ F3(x)| · 3∆

2πω

{
2 +

8!1/4

8(1 ¡ 8∆)2

}
+

{10 + 3(1 ¡ 8∆)¡2}∆
2π

.

(iii) For any n1, n2, p, Σ1, Σ2 such that ∆ < 1/6,

sup
x∈R

|F
eTn

(x) ¡ Φ(x)| · 2∆1/2

2πω

{
3
√

π +
6!1/4

√
2

3(1 ¡ 6∆)3/2

}
,

where ω is omega constant which is a mathematical constant defined by ω exp(ω) = 1, and

ω ≈ 0.56714.

Based on Theorem 1, we established convergence rate of the proposed approximations.

Also, we proposed the Ch-Q test with the proposed approximations rests on the adjusted

α-quantiles, q2(α) = zα + 4b(z2
α ¡ 1)/(3σ3

n) and q3(α) = (χ2
d(α) ¡ d)/(2d)1/2. Besides, we

evaluated empirical quantiles of T̃n to assess the accuracy of the proposed approximations

q2(α) and q3(α), and the sizes of the proposed tests for some selected parameters.
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Financial Risk Management with High-Frequency Data

Hiroumi Misaki 1

1 Introduction

Methods for estimating covariance and correlation between multiple asset prices have been

investigated intensively in the field of financial econometrics. In recent decades, daily

covariance and correlations have been estimated directly using high-frequency financial

data or tick-by-tick data. The estimation object is integrated covariance, which is a natural

measure of the covariation of multivariate high-frequency asset prices. Kunitomo and

Sato [1, 2, 3] proposed a statistical method called the separating information maximum

likelihood (SIML) estimator.

The methods used to estimate the integrated volatility and covariance (subsequently,

correlation) from high-frequency data are called realized measures. In this presentation,

we first compare the accuracy of realised measures using a number of computer simulations

in univariate case. Second, we introduce a brief result when we combine high-frequency

covariance estimation with optimal portfolio selection methods.

2 Robustness of the SIML estimation

We compare the accuracy of realised measures using a number of computer simulations.

We consider a simple realised volatility (RV), a 5-minute RV, a subsampled 5-minute RV,

a two-scale estimator (TS), a realised kernel (RK), a pre-averaging estimator (PA) and a

separating information maximum likelihood estimator (SIML).

We use several non-linear transformation models to obtain the form of the market

microstructure noise. We perform 132 cases of simulation in total.

Our findings are as follows. RV and RV5 are dominated by RV5ss in all cases. If this

simplest class of realised measures is used, subsampling is recommended. RV5ss is heavily

biased when the market microstructure noise or/and round-off is large. TS, RK and PA

are reasonable in most cases, but we have observed some drawbacks in the case of a large

round-off with a small noise and a small adjustment with a large noise case. TS is also

problematic in the SSAR model with large noise.

SIML is not biased irrationally in any case; therefore we can conclude that SIML is

sufficiently robust to the form of the market microstructure noise. We have also found

that SIML is the only realised measure to maintain the consistency in all simulations.

Then, we can conclude that SIML is a reasonable choice in practice when we do not know

the exact form of the market microstructure noise, particularly for assets that are actively

traded.

1 Faculty of Engineering, Information and Systems, University of Tsukuba, Tennodai 1-1-1, Tsukuba
City, Ibaraki 305-8577, JAPAN, hmisaki@risk.tsukuba.ac.jp



3 Portfolio selection

Meucci [4] derived the principal portfolios using principal component analysis. The di-

versification index is defined as the dispersion of the diversification distribution, based on

its entropy. We maximize the diversification index to obtain the optimal weight w∗ to

construct the risk diversified portfolio.

We compare the following six methods to construct the risk diversified portfolios:

(i) Naive. An equally weighted portfolio, i.e., wi = 1/N .

(ii) OC-125. An analogy of the conventional method of the intraday case; Σ̃t are

obtained by 125-day moving average of outer product of open to close returns.

(iii) SIML-1. We use the previous day’s SIML estimate for asset allocation in the

current day: Σ̃t = Σ̂t−1.

(iv) SIML-5. We use the averages of previous estimates: Σ̃t = (Σ̂t−1 + · · ·+ Σ̂t−5)/5

to moderate the estimation errors using a single day.

(v) SIML-22. One-month version of SIML-5: Σ̃t = (Σ̂t−1 + · · ·+ Σ̂t−22)/22.

(vi) SIML-0. We use the estimates of the covariance matrix of the same day to carry

out portfolio optimization: Σ̃t = Σ̂t.

We selected 10 assets from the stock market. We find that the risk diversified port-

folio is feasible when combining with high-frequency covariance estimation. However, the

performances of the portfolios with SIML estimation are not always better than the naive

portfolio. Therefore, a prudent choice of prediction method of covariance matrices is

recommended.
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High-dimensional analysis of the piecewise deterministic
Markov process for Bayesian inference

Kengo Kamatani (Osaka University, JST CREST)

In this talk, we review the recent results of piecewise deterministic Markov processes for
Bayesian inference in a high-dimension context. Suppose we wish to sample from a probability
distribution

Πpdxq “ expp´Hpxqqdx px P Rdq

where H : Rd Ñ R is a continuously differentiable function. For the Bayesian context, this
probability distribution is the posterior distribution of interest. If we have an i.i.d. sample from
Π, we can approximate Π-integral of any function fpxq by the law of large numbers

1

M

M
ÿ

m“1

fpXmq ÝÑ
ż

Rd

fpxqΠpdxq. (0.1)

In most of the cases, direct i.i.d. sampling is impossible or computationally very expensive. For
these cases, the Markov chain Monte Carlo method is useful which originated with the classic
paper by Metropolis et al. (1953) almost 70 years ago. The Markov chain Monte Carlo method
is designed to construct an ergodic Markov kernel P which is Π-invariant. If a Markov chain
X1, X2, . . . is generaetd from the Markov kernel P then the law of large numbers (0.1) is satisfied.
The Markov chain Monte Carlo is now a gold standard for Bayesian inference.

Recently, its continuous process version, the Markov process Monte Carlo method is of
substantial interest for Monte Carlo analysis. Known Markov process Monte Carlo methods rely
on an auxiliary variable trick which uses an auxiliary variable v with a probability density ν
on Ξ and considers the joint probability distribution µ :“ Πpdxq b νpdvq as an extended target
distribution on Z “ Rd ˆ Ξ. The original target distribution is a marginal distribution of the
extended target distribution. Since Brownian motion does not have an absolutely continuous
path, we can not simulate processes driven by Brownian motion exactly. For our Monte Carlo
analysis, exact sampling is necessary. Therefore, the Markov processes of interest should not
have a Brownian part. Known processes consist of a deterministic part and a pure jump part.
These processes are known as the piecewise deterministic Markov processes.

Here we follow Azaïs et al. (2014) for the expression of the piecewise deterministic Markov
processes. The processes are constructed by characteristics pφ,λk, Qk : l “ 1, . . . ,Kq. The flow
φ : Z ˆ R Ñ Z is a one-parameter group of homeomorphism, that is, φ is continuous, φp¨, tq is
a homeomorphism for each t P R and φpφp¨, sq, tq “ φp¨, s ` tq. For each k “ 1, . . . ,K, the jump
rate λk : Z Ñ R` determines the jump time of pure jump processes, and Qk is a Markov kernel
on Z. Let Λkpz, tq “

şt

0
λkpφpz, sqqds.

The Markov process is defined by the following way. Suppose zp0q “ pxp0q, tp0qq P Z. Let
T1, . . . , TK be independent processes with PpTk ě tq “ expp´Λkpz, tqq. Let T˚ “ mink“1,...,K Tk.
If Tk “ T˚, then Z is generated from Qkpφpz, T˚q, ¨q and set

Xptq “

"

φpzp0q, tq for t ă T˚

Z for t “ T˚.
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After T˚, the process evolves in the same way with starting value Z. There are several choices
of characteristics. We introduce three piecewise deterministic Markov processes.

Two popular piecewise deterministic Markov processes use the same flow φ defined by x1ptq “
vptq and v1ptq “ 0. The Zig-Zag sampler proposed by Bierkens et al. (2019) uses d Markov
kernels Q1, . . . , Qd with d jump rates λ1, . . . ,λd. For each i “ 1, . . . , d, the Markov kernel is a
deterministic kernel Qi defined by a map px, vq ÞÑ px, Fipvqq where Fi is an operator which flips
the sign of the i-th coordinate of x. The jump rate is defined by λippx, vqq “ maxt0, BiHpxqviu.

The bouncy particle sampler proposed by Peters and de With (2012), Bouchard-Côté
et al. (2018) uses two Markov kernels Qbounce and Qref with corresponding jump rates λbounce

and λref . The kernel Qbounce is a deterministic kernel defined by a map px, vq ÞÑ px,κpx, vqq
where

κpx, vq “ v ´ 2
x∇Hpxq, vy
}∇Hpxq}2

∇Hpxq

and λbouncepx, vq “ maxt0, x∇Hpxq, vyu. The jump rate λref is a positive constant, and Qref is a µ-
invariant Markov kernel. For our analysis, for simplicity, we assume Qrefppx, vq, dpy, wqq “ νpdwq.

We review some recent results on asymptotic properties of the above deterministic Markov
processes such as Bierkens et al. (2018), Andrieu et al. (2018), Deligiannidis et al. (2018).
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A Cauchy family derived by the Möbius transformations

of the sphere

Shogo Kato∗,a and Peter McCullagh b

a The Institute of Statistical Mathematics, Japan
b Department of Statistics, University of Chicago, USA

1 A Cauchy family on the sphere

This paper discusses a family of distributions on the unit sphere Sd ⊂ Rd+1 with probability
density function

f(y;µ, ρ) =
Γ{(d+ 1)/2}
2π(d+1)/2

(
1− ρ2

1 + ρ2 − 2ρµT y

)d
, y ∈ Sd, (1)

with respect to surface area, where µ ∈ Sd is the location parameter, ρ ∈ [0, 1) is the concentra-
tion parameter, and Sd = {x ∈ Rd+1 ; ∥x∥ = 1} denotes the unit sphere in Rd+1. The circular
case (d = 1) is well-known as the wrapped Cauchy or circular Cauchy family; see, e.g., Kent
& Tyler (1988) and McCullagh (1996). In this paper, the distribution (1) is called the Cauchy
distribution on the sphere or the spherical Cauchy distribution.

McCullagh (1996) showed that the wrapped Cauchy family is closed under conformal maps
preserving the unit circle which are called the Möbius transformations on the unit circle, and
that there are similar induced transformations on the parameter space. Related results about
the Cauchy family on the real line and on the Euclidean space have been given by McCullagh
(1992) and Letac (1986), respectively. To our knowledge, however, there has been no literature
about the association between the Möbius transformations and the spherical Cauchy family
(1). Since there have been various statistical applications of the wrapped Cauchy family and/or
the Möbius transformations in directional statistics (McCullagh, 1996; Downs & Mardia, 2002;
Downs, 2003; Jones, 2004; Kato, 2010; Kato & Jones, 2010; Kato & Pewsey, 2015; Uesu el al.,
2015), it is potentially useful to consider the Cauchy family on the sphere and its relationship
with the Möbius transformations.

2 Some properties of a Cauchy family on the sphere

This paper presents some properties of the Cauchy family on the sphere, especially, those related
to the Möbius transformations. The Möbius transformation is defined by

MR,ψ(x) = R

{
1− ∥ψ∥2

∥x̃+ ψ∥2
(x̃+ ψ) +

}
, x ∈ Rd+1 \ {0,−ψ/∥ψ∥2}. (2)

where x̃ = x/∥x∥2, ψ ∈ Rd+1\Sd, and R is a (d+ 1)× (d+ 1) rotation matrix. Also, we define
MR,ψ(0) = Rψ, MR,ψ(−ψ/∥ψ∥2) = ∞ and MR,ψ(∞) = Rψ/∥ψ∥2. The Möbius transforma-

tion (2) is a bijective conformal map which maps Rd+1
onto itself, where Rd+1

denotes the
∗Address for correspondence: Shogo Kato, The Institute of Statistical Mathematics, 10-3 Midori-cho,

Tachikawa, Tokyo 190-8562, Japan. E-mail: skato@ism.ac.jp
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(d + 1)-dimensional compactified Euclidean space Rd+1 ∪ {∞}. For any ψ ∈ Rd+1 \ Sd, the
transformation (2) maps the unit sphere Sd onto itself.

The spherical Cauchy family is closed under the Möbius transformations (2) on the sphere,

and the transformed parameter is given by the Möbius transformation (2) on Rd+1
. The statis-

tical benefits of this property include: (i) an efficient algorithm for random variate generation;
(ii) a simple pivotal statistic for parametric inference; (iii) straightforward calculation of proba-
bilities of a region; (iv) closed form expression for the maximum likelihood estimator for n ≤ 3;
and (v) straightforward calculation of the Fisher information matrix. A method of moments
estimator can be expressed in simple form. A simple algorithm for maximum likelihood estima-
tion is available. The likelihood for the spherical Cauchy is equivalent to that for the t-family
with a certain degree of freedom which is related to the spherical Cauchy via stereographic pro-
jection. An asymptotically efficient estimator is presented which our simulation study suggests
outperforms the method of moments estimator and the maximum likelihood estimator in certain
settings. Comparing the densities of the spherical Cauchy and von Mises–Fisher, the spherical
Cauchy density takes greater values around the mode and antimode and smaller values in the
other area of the sphere. (See, e.g., Section 9.3.2 of Mardia & Jupp, 1999, for the definition and
properties of the von Mises–Fisher family.) The advantages of the spherical Cauchy over the
von Mises–Fisher in terms of properties include the closure under the Möbius transformations
and the related properties, while the von Mises–Fisher compares favourably with the spher-
ical Cauchy in terms of its membership in the exponential family, straightforward maximum
likelihood estimation and well-developed theory of hypothesis testing.

The preprint version (Kato & McCullagh, 2018) of this paper includes details of the prop-
erties of the spherical Cauchy family discussed above.
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Data Beyond the Euclidean Space

Jörn Schulz

Department of Electrical Engineering and Computer Science,
University of Stavanger, Stavanger, Norway

Complex data such as non-Euclidean or a mixture of Euclidean and non-
Euclidean data has gained growing attention recently. However, only few
methods are available to do sensitive statistical inferences on these types of
data and only little is known about their asymptotic properties. In the fol-
lowing, we assume that the non-Euclidean data lives on a smooth manifold
and in particular we will focus on directional data, i.e. data on the hyper-
sphere Sd “ tx P Rd`1 : xTx “ 1u and data on polyspheres pS2qd. Examples
of these data types are i.) shape representations including directions such as
skeletal representations that live on Sd1 ˆ pS2qd2 (Hong et al. (2016); Pizer
et al. (2013); Schulz et al. (2016)), ii.) dihedral angles of protein structures
on pS1ˆ S1qd (Eltzner et al. (2017)) or iii.) to analyze temporal sequences of
molecules on Sd (Dryden et al. (2019)). Especially, in examples i.) and ii.)
we have usually a high dimension low sample size setting, i.e. d " n where
n is the sample size and d is the dimension.

A crucial step in the analysis in all these applications is principal nested
spheres (PNS) (Jung et al. (2012)), a method for decomposition and dimen-
sion reduction of directional data on Sd. In opposite to principal component
analysis, PNS is a backward dimension reduction method. In each step,
a submanifold of successively lower dimension, containing the largest total
variance, is fitted to the data. A submanifold can be either a small-sphere
or a great sphere, i.e. a sphere with radius r ă π{2 or r “ π{2. The choice
of a small or a great sphere is a critical question in the PNS procedure. The
fitting of a small sphere to the data might result in an overfitting, e.g. if
the data is concentrated around a point at Sd. We will discuss a new testing
procedure that outperforms alternative testing methods during a simulation
study and the analysis of skeletal 3D models of hippocampi. The proposed
method is based on a measure of multivariate kurtosis for directional data.
Given a suitable decomposition of the data, statistical inference by hypothesis
testing (Schulz et al. (2016)), classification (Hong et al. (2016)) or clustering
(Dryden et al. (2019)) might be performed.

In addition, we will briefly review and discuss some recent works on
asymptotic results within this framework.
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                                        Ping-Shou Zhong 
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Title: Change point detection and identification for high dimensional 
dependent data 
 
Abstract: High-dimensional functional data appear in practice when 
a dense number of repeated measurements are taken on a large 
number of variables for a relatively small number of experimental 
units. The spatial-temporal dependence and high-dimensional nature 
of the data structure make statistical analysis and computation a 
challenge. This talk will introduce computationally efficient procedures 
to detect and identify change points among covariance matrices from 
high-dimensional functional data. The change point detection 
procedure is presented in the form of a hypothesis test, and the 
asymptotic distributions of the proposed test statistics are established 
under an asymptotic framework with “large p, large T and small n”, 
where p is data dimension, T is the number of repeated 
measurements and n is the sample size. We also propose change-
point estimators for both single and multiple change points. These 
estimators are proven to be consistent under a mild set of conditions. 
The rate of convergence of the estimator depends on the data 
dimension, sample size, number of repeated measurements, and 
signal-to-noise ratio. Computation efficiency is carefully studied to 
address the challenges due to the large number of repeated 
measurements and high-dimensionality. Simulation results 
demonstrate that the size of the detection procedure is well controlled 
at the nominal level, and the locations of multiple change points can 
accurately be identified. We apply the proposed approach to find 
event boundaries in a continuous movie by identifying change points 
among functional connectivity using functional MRI data. 



 

 

Towards a sparse, scalable, and stably positive definite 

(inverse) covariance estimator 

 

Joong-Ho (Johann) Won 

Department of Statistics, Seoul National University 

 

 

Abstract: High-dimensional covariance estimation and graphical 

model selection is a contemporary topic in statistics and machine 

learning, and has widespread applications. The problem is 

notoriously difficult in high dimensions as the traditional 

estimate is not even positive definite, let alone sufficiently 

stable. An important line of research is to shrink the spectrum 

to yield stable well-conditioned estimators. A separate line of 

research has considered sparse estimation using nonsmooth 

regularization methods and provides interpretable models with 

fewer parameters. Though an estimator which is both stable and 

sparse is often desirable in numerous downstream applications, 

obtaining such estimators is inherently challenging in modern 

high-dimensional regimes due to the very different nature of the 

two approaches. In this talk we propose a unifying and scalable 

framework which addresses this problem. Our general methodology 

takes an arbitrary covariance loss functions (such as the ones 

which have been proposed in the literature) and yields estimates 

that are both spectrally regularized and sparse. The framework 

leads to an enriched class of estimators which are 

computationally tractable and enjoy good asymptotic properties. 

In addition, when the covariance loss function is orthogonally 

invariant, we further demonstrate that a solution path algorithm 

can be derived, involving a series of ordinary differential 

equations. The path algorithm is attractive because it provides 

the entire family of estimates for all possible values of the 

regularization parameter, at the same computational cost of a 

single estimate with a fixed parameter. An important finding is 



that an iterative path algorithm can be devised even when the 

loss function is not orthogonally invariant, utilizing modern 

operator splitting techniques. We illustrate the efficacy of our 

approach on both real and simulated data. 

 

This is a collaboration with Sang-Yun Oh (UC Santa Barbara) and 

Bala Rajaratnam (UC Davis).  



A Two-Stage Dimension Reduction Method and  

its Applications on Highly Contaminated Image Sets 

 

I-Ping Tu 

Institute of Statistical Science, Academia Sinica, Taiwan 

 

Abstract 

 

Principal component analysis (PCA) is arguably the most popular dimension 

reduction method for vector type data. When applied on image data, PCA 

demands the images to be portrayed as vectors. The resulting computation is 

heavy because it would solve an eigenvalue problem of a covariance matrix 

whose size equals the square of the pixel number. To mitigate the computation 

burden, multi-linear PCA that uses column and row basis with a Kronecker 

product to compose the matrix structure was proposed, for which the success 

was demonstrated on face image sets. However, when we apply MPCA on the 

particle images of the single particle cryo-electron microscopy (cryo-EM) 

experiments, the results are not satisfying. Here, we propose a dimension 

reduction method called Two Stage Dimensional Reduction (2SDR) where we 

first apply MPCA to extract its projection scores, and then apply PCA on these 

scores to further reduce the dimension. Tests using single particle cryo-EM 

benchmark experimental data sets demonstrate that 2SDR reduce huge 

computation costs compared to PCA, and show 2SDR can reconstruct better 

quality images than MPCA. Further application of 2SDR on a cryo-EM 

micrograph data set significantly reduces the noise to clearly reveal the 

individual particles. Remarkably, the de-noised particles boxed out from the 

micrograph allow subsequent structural analysis to reach a high-quality 3D 

density map. This is a joint work with Szu-Chi Chung, Po-Yao Niu, Su-Yun 

Huang and Wei-Hau Chang. 



  Sample covariance matrices from "bad populations" 

 

Jeff Yao  

 

Department of Statistics and Actuarial Science, 

The University of Hong Kong 

 

 

 Recent spectral analysis of large covariance matrices is largely based 

on the celebrated Marcenko-Pastur law and subsequent applications of 

the theory to high-dimensional inference involve central limit theorems 

for the corresponding eigenvalue statistics. However it has recently 

appeared that there are some important multivariate populations with 

strongly dependent coordinates for which the exiting theories do not 

apply.  High-dimensional mixtures are one of such "bad populations".  In 

this talk, I will describe this phenomenon and then present some 

alternative results for the case of high-dimensional mixtures. 



Direct estimation of conditional averaging treatment

effect in high dimensions

Shota Katayama

Keio University, Japan

The estimation of conditional average treatment effect (CATE) is a general and funda-

mental problem in observational studies. Such estimation problem is essential for policy

evaluation, personalized medicine, offline or online marketing and advertising. Usually, to

identify CATE, one requires the strong ignorability condition which says that outcomes and

treatment assignment is independent conditional on covariates. In other words, only the

covariates we collect affect both of outcomes and treatment assignment. If we fail to collect

such a covariate, the strong ignorability does not hold. Clearly, a large number of covariates

tends to meet the strong ignorability, although it is uncheckable condition from observa-

tions. With advances of information technology and database system, it would be plausible

to consider the high dimensional covariates.

In this talk, we consider the estimation of CATE in high dimensions. Following the

Neyman–Rubin’s potential outcome framework (Rubin, 1974, Neyman et al., 1990), assume

that there is a potential outcomes (Yi(0), Yi(1)) for each sample i ∈ {1, 2, . . . , n}. Let Ti ∈
{0, 1} be the assignment indicator. Then, Yi(0) ∈ R is the potential outcome when the

sample i is assigned to the control (Ti = 0) and Yi(1) ∈ R is the potential outcome when it

is assigned to the treatment (Ti = 1). Assume that we have n independent and identically

distributed examples {(Xi, Ti, Yi(Ti))}ni=1 where Xi ∈ Rp is the covariates with possibly high

dimensions, that is, p ≫ n. Our goal is to estimate the conditional average treatment effect

(CATE) given by

τ ∗(x) = E
{
Yi(1)− Yi(0) |Xi = x

}
.

To identify the CATE, we assume the following strong ignorability condition.

Assumption 1. {Yi(0), Yi(1)}⊥⊥Ti |Xi

Moreover, we assume the linearity for the potential outcomes.

Assumption 2. E
{
Yi(0) |Xi = xi

}
= xTi β

∗
0 and E

{
Yi(1) |Xi = xi

}
= xTi β

∗
1.



From Assumption 2, we have τ ∗(x) = xT (β∗
1 − β∗

0) and we can estimate β∗
1 from the

treated examples and can estimate β∗
0 from the control examples under Assumption 1. Since

the covariates Xi is high dimension, a natural approach would be applying the Lasso pro-

posed by Tibshirani (1996) for each treated and control examples, i.e.,

β̂t = argmin
β∈Rp

1

2

∑
Ti=t

(Yi −XT
i β)

2 + λt∥β∥1, t = 0, 1,

where Yi = Yi(Ti). Thus, we obtain the estimator of CATE as τ̂(x) = xT (β̂1−β̂0). However,

such the procedure estimate β∗
0 and β∗

1 separately. The treated (control) outcomes are

predicted by treated (control) covariates. Hence, if x is coming from the distribution of

X |T = 1, then xT β̂1 would be accurate but xT β̂0 be not. Moreover, the non-zero elements

of β̂1 and β̂0 usually do not imply zero elements of β̂1 − β̂0 even when the corresponding

elements of β∗
1 − β∗

0 are zero.

Our goal is to construct a direct estimation procedure for θ∗ = β∗
1−β∗

0 via the well-known

consequence of the strong ignorability condition, given by

τ ∗(x) = E
[
Yi

{
Ti

e(x)
− 1− Ti

1− e(x)

} ∣∣∣∣Xi = x

]
,

where e(x) = P(Ti = 1 |Xi = x) is the propensity score function at x. Thus, θ∗ can

be estimated by regressing the appropriately weighted outcomes on the covariates. The

propensity score is unknown in most cases. An approach to estimate it in high dimensions

may be generalized linear regression with sparse regularization (see, e.g., Fan and Li (2001)

and Van de Geer (2008)), but it may lead to an biased estimator for θ∗ when the propensity

score function is misspecified.

In this talk, inspired by Athey et al. (2018), a two-step estimation procedure of θ∗ is

proposed. The first step obtains weightings for outcomes without specifying the propensity

score and then Lasso is applied to the weighted outcomes. The weights are computed by the

alternating direction method of multipliers (ADMM) with smoothing technique by Nesterov

(2005).
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Short and medium-term load forecasting with high accuracy is essential to decision

making in a trade on electricity markets. Among various electricity markets, the day-

ahead (or spot) market is popular in many electricity exchanges, including Japan Electric

Power Exchange (JEPX) (http://www.jepx.org/english/index.html). In the day-

ahead market, the contracts for the delivery of electricity on the following day are made,

and the transaction is typically carried out in 30 minutes interval; the suppliers must

forecast the loads in 30 minutes interval. In this paper, we consider the problem of

forecasting electricity consumption, which can be used for the day-ahead market.

The electricity demand is mainly determined by past electricity consumption and

external effect, such as weather information. To incorporate the weather information into

the regression model, we may use the weather forecast in 30 minutes interval. In general,

however, the weather forecast information are obtained per not 30 minutes but daily;

for example, only maximum temperature or average humidity is available. Therefore,

ordinary linear regression may not perform well.

In this paper, we introduce statistical modeling which elaborately captures the nonlin-

ear structure of the weather factor with limited weather forecast information. We use the

varying coefficient model with basis expansion, in which the coefficients are assumed to

be different depending on time intervals. The effect of weather variables is expressed as a

nonlinear function using basis expansions to capture the yearly seasonal effect of weather

information. For interpretation of the estimated model, we eliminate the effect of weather

from the past consumption data. Our regression model turns out to be a linear regression

model, so that we can apply the least-squares estimation.
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In least-squares estimation, however, we found that the regression coefficients con-

cerning the effect of past electricity consumption often become negative, which makes

the interpretation of the estimated model difficult. To handle this issue, we employ

the non-negative least squares (NNLS; [1], for example) estimation, where we impose a

constraint that the regression coefficients are nonnegative. Furthermore, we employ the

post-selection inference to construct the prediction interval after the model selection based

on [2] and [3].
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Consistency of the objective general index

in high dimensional settings

Takuma Bando∗, Tomonari Sei∗ and Kazuyoshi Yata†

1 Introduction

Rankings are often determined by multivariate data. For example, the world

university ranking provided by [3] is based on five attributes of universities:

teaching, research, citations, industry income and international outlook. For

a happiness index of prefectures in Japan [2], 65 attributes are used to make

a ranking of 47 prefectures. In heptathlon of athletics, the scores of seven

events are unified into an overall score. These rankings are, after some

transformations, based on a weighted sum of variables.

We focus on the weights. In [1], an objective weight is proposed via diag-

onal scaling of the sample covariance matrix. The resultant index called the

objective general index (OGI) has positive correlation with all the variables

and is invariant with respect to scale transformation of the data.

In some applications like the happiness ranking mentioned above, the

number of variables is often large and comparable with the sample size. In

other words, we have to deal with high-dimensional data for ranking. If

we use the objective general index for such a data, a reliable estimator will

be required. The aim of this paper is to study consistency of the weight

determined from a random sample.

2 Problem setting and main results

The objective general index is one of possible general indices for multivariate

data. We consider a weighted sum w⊤x of an observation x ∈ Rp as a

∗The University of Tokyo
†University of Tsukuba



general index, where w ∈ Rp is a weight vector. Each variate xi is assumed

to have a meaning that “larger is better” without loss of generality. Then

it is natural to suppose that every coordinate of w is positive.

Let n > p and consider a random sample x(1), . . . ,x(n) ∈ Rp according

to the multivariate normal distribution N(0,Σ) with covariance matrix Σ ∈
Rp×p. Denote the sample covariance matrix by S = n−1

∑n
t=1 x(t)x

⊤
(t).

Definition 1 ([1]). The objective weight w is defined by a solution of

Σw =
1

w
, w ∈ Rp>0. (1)

Similarly, the sample objective weight ŵ is defined by

Sŵ =
1

ŵ
, ŵ ∈ Rp>0. (2)

The weighted sum w⊤x of an observation x ∈ Rp using the objective weight

w is called the objective general index (OGI).

We consider a high-dimensional setting in that the dimension p grows

with the sample size n. Denote the entries of Σ as (σij)
p
i,j=1.

Theorem 1. Suppose that Σ1 = 1. Then there exists a constant C > 0

such that

P(∥ŵ − 1∥ ≥ ε) ≤ 4p exp

(
− nCε2

(maxi σii)p2

)
(3)

for any ε > 0 and any n ≥ n0 with some n0 = n0(ε). In particular, if

maxi σii = O(1) and (p2 log p)/n = o(1) as n → ∞, then ŵ is strongly

consistent in the sense that ∥ŵ − 1∥2 converges to 0 almost surely.
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