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On high-dimensional testing for common principal components model *

Koji Tsukuda� and Shun Matsuura�

In this presentation, a high-dimensional statistical test procedure for the common principal compo-
nents (CPC) hypothesis on two population covariance matrices was discussed. The CPC hypothesis means
that the population covariance matrices Σx and Σy can be simultaneously diagonalized; that is to say,
there exists an orthogonal matrix U such that both U⊤ΣxU and U⊤ΣyU are diagonal. Testing the CPC
hypothesis was firstly considered by Flury [2], and has been studied in several works; see, for example,
Boente, Pires, and Rodrigues [1] and Hallin, Paindaveine and Verdebout [3, 4]. Unlike these studies, we
considered the case where sample sizes are smaller than the number of observed variables.

Our approach is based on the asymptotic normality of

M =
1

p2
√
nanbncnd

tr(Ta(na)Tb(nb)Tc(nc)Td(nd)),

that is the trace of the product of four p× p independent Wishart matrices Ta(na),Tb(nb),Tc(nc),Td(nd)
with respective degrees-of-freedom na, nb, nc, nd and respective scale matrices Σa,Σb,Σc,Σd, under a
high-dimensional asymptotic regime

na, nb, nc, nd ≍ pδ, 0 < δ < 1.

The test statistic is shown to be asymptotically distributed as the standard normal distribution under
the null hypothesis. It is also shown that the asymptotic power of the test goes to 1 under the alternative
hypothesis. The performances of the test for finite samples are numerically examined.

This presentation was based on the article [5].

*This work is supported by JSPS KAKENHI (grant number: 18K13454,20K11713,21K13836)
�Faculty of Mathematics, Kyushu University
�Faculty of Science and Technology, Keio University
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A two sample Behrens-Fisher problem for factor models in high
dimensions

Takahiro Nishiyamaa, Masashi Hyodob and Tatjana Pavlenkoc

a Department of Business Administration, Senshu University
b Faculty of Economics, Kanagawa University

c Department of Mathematics, KTH Royal Institute of Technology

Let xgi “ pxgi1, . . . , xgipqJ „ Fg be iid p-dimensional random vectors collected from

the ith subject in the gth population, where Fg denotes the distribution function for gth

population, i P t1, . . . , ngu, g P t1, 2u. A factor model assumes that for each g P t1, 2u, the

observable vector xgi is decomposable into a latent factor and an idiosyncratic component

as follows:

xgi “ µg ` Bgzgi ` Ψ1{2
g ϵgi, (1)

where µg P Rp is a deterministic intercept vector, zgi “ pzgi1, . . . , zgidgqJ is the dg-

dimensional latent factor vector, and ϵgi “ pϵgi1, . . . , ϵgipqJ is the p-dimensional error

vector which is uncorrelated with the latent factor. In what follows, we assume that

dg P N is a fixed number. Further, Bg “ pbg1, . . . ,bgpqJ denotes the loading matrix

where for each j P t1, . . . , pu, bgj “ pbgj1, . . . , bgjdgqJ P Rdg is a non-random vector, and

Ψg “ diagpψg1, . . . , ψgpq is the non-random p ˆ p diagonal matrix whose elements are

ψg1 ą 0, . . . , ψgp ą 0. For the latent vector zgi and error vector ϵgi, we further assume

that zgiℓ are iid with Epzgiℓq “ 0, Epz2giℓq “ 1 and Epz4giℓq “ κzg ă 8, and ϵgij are iid with

Epϵgijq “ 0, Epϵ2gijq “ 1 and Epϵ4gijq “ κϵg ă 8 for g P t1, 2u, i P t1, . . . , ngu, j P t1, . . . , pu

and ℓ P t1, . . . , dgu. Structural assumptions of the model (1) imply that

Epxgiq “ µg, covpxgiq “ BgB
J
g ` Ψg :“ Σg,

where Σg P Rpˆp
ą0 and Rpˆp

ą0 denotes the space of real, symmetric, positive definite, p ˆ p

matrices.

By using the data generated by (1), we designed a high-dimensinal test procedure for

testing

H : µ1 “ µ2, A : µ1 ‰ µ2. (2)

The proposed test will be valid for high-dimensional, non-normal, unbalanced data under

two-sample Behrens-Fisher setting for the low-dimensional factor model.

Recently, a number of useful two-sample tests have been proposed for high-dimensional

settings. Nevertheless, their applicability relies on a critical assumption, that is, requiring

elements of xgi to be weakly dependent. Being expressed in terms of the latent factor

model (1) and assuming the common covariance matrix Σ, the weak dependence is equiv-

alent to an assumption stated as trpΣ4q{tr2pΣ2q Ñ 0, when p Ñ 8; see e.g. assumption



(3.6) in Chen and Qin (2010). This assumption is crucial for establishing the asymptotic

normality of the test statistic proposed by Chen and Qin (2010); see Theorem 1 of their

paper. However, besides of being difficult to verify in practice, the regularity assumptions

imposed on the covariance structure in e.g. Bai and Saranadasa (1996) and Chen and

Qin (2010) can be easily violated in covariance models where the eigenvalues of Σg are

dominated by few top ones. This is precisely the type of covariance structure underlying

xgi: under the low-dimensional latent factor model (1), the first dg eigenvalues of Σg are

considerably larger than than the rest. So, Ma et al (2015) proposed the mean difference

test for the model (1) under homoscedastisity. However, an assumption of common covari-

ance matrix is a very strong assumption which is hard to be practically verified in p " ng

settings, this in turn limits the applicability of the procedure developed by these authors.

We do not assume that Σ1 “ Σ2; out test statistics, along with their limit properties are

studied under heteroscedasticity, i.e. solves a general, two-sample Behrens-Fisher problem

for the latent factor model (1).

For this problem, we defined the data-driven test statistic as

TFA “
n

p

"

}x1 ´ x2}
2 ´

1

n1

{trpΨ1q ´
1

n2

{trpΨ2q

*

,

where, for g P t1, 2u, xg “ p1{ngq
řng

i“1 xgi and {trpΨgq “ trpSgq ´
ř

pdg
ℓ“1 λℓpSgq. Here,

λℓpSgq is the ℓth largest eigenvalue of matrix Sg “ t1{png ´ 1qu
řng

i“1pxgi ´ xgqpxgi ´ xgqJ

and pdg is a consistent estimator of dg based on the ER method proposed by Ahn and

Horenstein (2013). Besides, we derived the limiting null distribution of TFA under some

assumptions and constructed test procedure for testing p2q. Also, we compared, through

simulations, the performance of the proposed test and existing procedures suitable for a

two-sample, Behrens-Fisher problem in high-dimensional data in terms of size control and

power.
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On the asymptotic result of Kronecker envelope

principal component analysis in high dimension low

sample size data

Shao-Hsuan Wang
(Graduate Institute of Statistics, National Central University)

Abstract

In the analysis of high dimensional data, the Kronecker envelope principal component
analysis (KEPCA) serves as an efficient alternative to the classical PCA at pre-processing
steps. We derive the consistency and the asymptotic normality of Kronecker envelope
PCA in High dimension low sample size (HDLSS) setting and compare it with classical
PCA. Face database example is used to demonstrate our method.
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Double data piling and negatively ridged classifiers

in high dimensions

Sungkyu Jung
(Department of Statistics, Seoul National University)

Abstract

Data piling refers to the phenomenon that training data vectors from each class project
to a single point for classification. While this interesting phenomenon has been a key to
understanding many distinctive properties of high-dimensional discrimination, the theo-
retical underpinning of data piling is far from properly established. In this work, high-
dimensional asymptotics of data piling is investigated under a spiked covariance model,
which reveals its close connection to the well-known ridged linear classifier. In particular,
by projecting the ridge discriminant vector onto the subspace spanned by the leading
principal component directions and the maximal data piling vector, we show that a neg-
atively ridged discriminant vector can asymptotically achieve data piling of independent
test data, essentially yielding a perfect classification. The second data piling direction is
obtained purely from training data and shown to have a maximal property. Furthermore,
asymptotic perfect classification occurs only along the second data piling direction. This
interesting phenomenon is shown to also occur in multi-category classification problems,
in which the second data piling subspaces are estimated by negatively ridged discriminant
subspaces. We demonstrate that negative ridge parameters can be optimal in classification
of well-known image and microarray datasets.
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Using the classical Growth Curve model in

non-standard situations

Dietrich von Rosen
(Department of Energy and Technology, Swedish University of Agricultural Sciences)

Abstract

More than fifty years ago the Growth Curve model (GMANOVA) was introduced. It
is a multivariate bilinear regression model which under a normality assumption belongs
to the curved exponential family. The model is of great interest since explicit maximum
likelihood estimators exist. In the presentation we will focus on estimation based on the
likelihood. Four different types of models will be discussed via the Growth Curve model
and all types are connected to high-dimensional problems.

The first case is a discussion of the Growth Curve model when the number of inde-
pendent observations are less than the number of repeated measurements. It turns out
that the Moore-Penrose generalized inverse of a singular Wishart matrix can be used.
Unfortunately, moments for the Moore-Penrose inverse are not available if the dispersion
matrix is unstructured and we discuss what to do in this situation.

The second case which will be considered is about estimation in Partial Least Squares
(PLS). PLS is often connected with different algorithms. In this talk, when estimating
parameters, we will set up a model which gives the same result as algorithms. In PLS a
Krylov space plays a central role.

The third case which will be discussed is when in the Growth Curve model there are
rank restrictions on the mean parameters of the model. When there are a huge number
of background variables this type of model can be useful. If one can imagine that there
are a few number of latent processes which govern the background variables the rank
restrictions make sense.

In the fourth case we extend the third one by also allowing for rank restrictions on
the dispersion matrix. Rank restrictions on an unknown dispersion matrix has not been
studied much and we will show how the mathematics for finding estimators can be carried
out. However, there are still many open problems connected to the interpretability of the
results and connected to the decision of the rank on both the mean parameters and the
dispersion of the model.
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Asymptotic properties of high-dimensional

kernel PCA and its applications

Yugo Nakayamaa, Kazuyoshi Yatab and Makoto Aoshimab

aGraduate School of Informatics, Kyoto University
bInstitute of Mathematics, University of Tsukuba

1 Introduction

In this talk, we considered the kernel principal component analysis (KPCA) for high-dimension,
low-sample-size (HDLSS) data. We proposed clustering by using asymptotic properties of the
KPCA and applied it to outlier detection.

2 Asymptotic properties of high-dimensional kernel PCA

Suppose there are independent and d-variate populations, Πi, i = 1, 2, having an unknown
mean vector µi and unknown covariance matrix Σi for each i. Suppose we have a d× n data
matrix X = (x1, ...,xn), where xjs are independently taken from Π1 or Π2. Let

ni = #
{
j|xj ∈ Πi for j = 1, ..., n

}
,

where #A denotes the number of elements in a set A. Note that n = n1 + n2. We assume
that n and nis are independent of d, and ni ≥ 1 for i = 1, 2. For the sake of simplicity, we
assume that tr(Σ1) ≤ tr(Σ2) and

xj ∈ Π1, j = 1, ..., n1, xj ∈ Π2, j = n1 + 1, ..., n. (1)

In this section, we consider asymptotic properties of the KPCA with the linear kernel
k(xj ,xj′) = x⊤

j xj′ in the HDLSS context that d → ∞ while n is fixed. Let K be an n × n

gram matrix with the (j, j′) element k(xj ,xj′). Let P n = In − n−11n1
⊤
n , where In denotes

the n-square identity matrix and 1n = (1, ..., 1)⊤. We define the (centroid) gram matrix by

K0 = P nKP n.

Note that rank(K0) ≤ n− 1. Let λ̂1 ≥ · · · ≥ λ̂n−1 be the eigenvalues of K0. Then, we define
the eigen-decomposition of K0 by

K0 =

n−1∑
i=1

λ̂iûiû
⊤
i ,

1



where ûi = (ûi1, ..., ûin)
⊤ denotes a unit eigenvector corresponding to the λ̂i. The ith (nor-

malized) PC score of xj is given by sij =
√
nûij . Since the sign of an eigenvector is arbitrary,

we assume that (1⊤n1
,−1⊤n2

)û1 ≥ 0 without loss of generality.
We assume the following condition:

(A-i) Var(∥x− µi∥2|x ∈ Πi) = O{tr(Σ2
i )} as d → ∞ for i = 1, 2.

Note that E(∥x − µi∥2|x ∈ Πi) = tr(Σi) for i = 1, 2. If Πis are Gaussian, it holds that
Var(∥x − µi∥2|x ∈ Πi) = 2tr(Σ2

i ) for i = 1, 2, so that (A-i) naturally holds. Let ∆µ =
∥µ1 − µ2∥2 and ∆Σ = |tr(Σ1) − tr(Σ2)|, where ∥ · ∥ denotes the Euclidean norm. Here, we
assume the following conditions:

(A-ii) tr(Σ2
i )/∆

2
µ = o(1) as d → ∞ for i = 1, 2.

(A-iii) lim sup
d→∞

∆Σ

n1∆µ
< 1 when n2 ≥ 2.

Nakayama et al. (2021) gave the following result.

Theorem 2.1. Assume (A-i) to (A-iii). Then, it holds that as d → ∞

s1j =

{√
n2/n1 + oP (1), j = 1, ..., n1,

−
√

n1/n2 + oP (1), j = n1 + 1, ..., n.
(2)

Thus from Theorem 2.1, one can classify xjs into two groups by the sign of the first PC
scores.

Remark 1. If ∆µ/∆Σ is small, we do not recommend to use the linear kernel. In such case,
you can use the Gaussian kernel k(xj ,xj′) = exp(−∥xj − xj′∥2/γ), where γ > 0. Note that
the Gaussian kernel can draw information about heteroscedasticity via the difference of Σis.

We considered applying the proposed clustering method to outlier detection. We set
n1 = 1 and x1 is regarded as an outlier. From (2), under some regularity conditions, it holds
as d → ∞

s1j =

{√
n− 1 + oP (1), j = 1,

−1/
√
n− 1 + oP (1), j = 2, ..., n.

Thus by using the first PC scores, one can detect the outlier.
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Estimating preferential attachment in growing networks

Thong Pham∗1, Paul Sheridan2, and Hidetoshi Shimodaira3,1

1RIKEN Center for AIP
2Tupac Bio, Inc.

3Kyoto University

We consider the problem of estimating the preferential attachment (PA) function Ak from
empirical data that does not contain any information about the growth process of the network.
Consider a growing network that grows from time-step t = 1 to T and denote its snapshot at time-
step t by Gt. Traditionally, the estimation of Ak is often considered when the growth process of the
network can be observed at at least two time-steps [6, 5, 7]. However, what if we cannot observe
anything about the growth process and have to content ourselves with only the one snapshot
GT ? When it comes to estimating PA in general growing networks without time-resolved data,
no satisfactory methods exist. All existing methods assume either unrealistic network types or
unnecessarily restrictive functional forms for Ak [1, 4, 2, 3].

We propose a method called PAFit-oneshot to nonparamterically estimate the PA function of a
growing network from its final snapshot, GT , alone [9]. Our method does not assume any functional
form for the PA function, and can be applied to any real-world network snapshot.

Our method can be summarized as follows. From Theorem 1 in [9], one gets the basic equation:

Ak ≈
E
∑

j>k nj(T )

Enk(T )
, (1)

where nk(t) is the number of degree k nodes at time-step t. If one estimates E
∑

j>k nj(T ) and
Enk(T ) by

∑
j>k nj(T ) and nk(T ), one arrives at the baseline estimator:

Âbaseline
k =

∑
j>k nj(T )

nk(T )
, (2)

which is the estimator of Gao et al. [4]. However, there is a severe underestimation of Ak in the
region of large k by this method (see Fig. 1 of [9]). We call this underestimation the waterfall
artefact.

The root of the waterfall artefact is that nk(T ) is a poor estimator of Enk(T ) when k is large.
Given GT , we only estimate the Ak values for the degrees k observed in GT , which means nk(T )
is positive a priori. Therefore, nk(T ) is actually an estimator for the conditional expectation
E [nk(T ) | nk(T ) > 0], which is equal to Enk(T )/P(nk(T ) > 0). Surprisingly, the presence of this
bias, let alone a proposed correction for it, has never been discussed in the literature.

∗Corresponding author. Email: thong.pham@riken.jp
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To remove this bias, we need to estimate pk = P(nk(T ) > 0), the probability that k exists
in GT . This resembles the problem of selective inference. Selective inference typically considers
model selection in a regression setting and adjusts the bias of regression coefficients for the selected
predictors; one must correct for the effect of choosing the predictor. In our problem, model selection
is equivalent to choosing over which values of k to use to estimate Ak, which is where k exists in
GT . Correcting for pk leads us to the following equation:

Ak ≈
∑

j>k nj(T )

nk(T )pk
. (3)

Starting from initial rough estimations of pk and Ak, our method iteratively improves these
estimations using Monte Carlo simulations (see Fig. 6 of [9]). The proposed method is implemented
in the R package PAFit [8].
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Grouped generalized estimating equations for

heterogeneous longitudinal data

Tsubasa Ito1 and Shonosuke Sugasawa2

1M&D Data Science Center, Tokyo Medical and Dental University

2Center for Spatial Information Science, The University of Tokyo

Longitudinal data in which responses (repeated measurements) within the same

subject are correlated is appeared in many scientific applications such as biomedical

statistics and social science. For analyzing longitudinal data, it is typically difficult

to correctly specify the underlying correlation structures among response variables

within the same subject, and one of the standard approaches is the generalized esti-

mating equations (GEE) developed by Liang and Zeger (1986), which uses “working”

correlation structures specified by users. The advantage of the GEE approach is that

the estimator is still consistent even when the working correlation is misspecified.

However, the existing GEE methods assumes homogeneous regression coefficients

that are common to all the subject, which could be restrictive in practical appli-

cations since there might be potential heterogeneity among subjects or clusters as

confirmed in several applications.

In this work, we extend the standard GEE analysis to take account of potential

heterogeneity in longitudinal data. Specifically, we develop grouped GEE analysis

by adopting the grouping approach that is widely adopted in literatures for panel

data analysis. We assume that subjects in longitudinal data can be classified to a

finite number of groups, and subjects within the same group share the same regres-

sion coefficients, that is, the regression coefficients are homogeneous over subjects in

the same groups. Since the grouping assignment of subjects are unknown, we treat

it as unknown parameters and estimate them and group-wise regression coefficient



simultaneously. Given the grouping parameters, the standard GEE can be performed

to obtain group-wise estimators of regression coefficients. On the other hand, given

the group-wise regression coefficients, we consider estimating the grouping parame-

ters using a kind of Mahalanobis distance between response variables and predictors

with taking account of potential correlations via working correlation matrix. In other

words, we employ the working correlation not only in performing GEE analysis in

each group but also estimating the grouping assignment. We will show that the

grouped GEE method can be easily carried out by a simple iterative algorithm simi-

lar to k-means algorithm that combines the existing algorithm for the standard GEE

and simple optimization steps for grouping assignment. Moreover, we adopt the cross

validation to carry out data-dependent selection of the number of groups.

We derive the statistical properties of the grouped GEE estimator in an asymp-

totic framework where both n (the number of subjects) and T (the number of repeated

measurements) tend to infinity, but we here allow T to grow considerably slower than

n, namely, n/T ν → 0 for some large ν. Hence, our method can be applicable when T

is much smaller n as observed in many applications using longitudinal data. As the-

oretical difficulties of the grouped estimation in longitudinal data analysis, the true

correlations within the same subject can be considerably high, so the existing theo-

retical argument assuming negligibly small correlations imposed typically by mixing

conditions for the underlying true correlations is no more applicable. To overcome

the limitation of the existing theoretical argument, we consider grouping assignment

using a kind of Mahalanobis distance with working correlation, and we will show

that such grouping strategy leads to consistent estimation of the grouping parame-

ters as long as the working correlation is relatively close to the true one. Therefore,

even when the underlying correlations within the same subject is not weak, we can

successfully estimate the grouping parameters using a reasonable working correlation

matrix. Then, we will also establish consistency and asymptotic normality of the

grouped GEE estimator of the regression coefficients, and also provide a consistent

estimator of asymptotic variances.
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1 Introduction

In high dimensional data analysis, especially in differential gene expression analysis, detecting

difference of a huge number of features between two groups is essential problem. Each

individual is assigned to one of two groups according to difference in conditions, e.g., whether

they have been treated or not. In situations where one can assume a random assignment, the

two groups are different due to the condition alone, and thus a pure comparison is possible.

As in Potter (2003) and Heller et al. (2009), however, the random assignment is not feasible

in gene data analysis where the condition may be cancer or non-cancer. In this case, the

difference between the two groups may stem from variables other than the condition of

interest, and hence such confounding variables need to be adjusted appropriately. Moreover,

gene data are not necessary continuous values, but can be binary or count.

This talk provides an unified inference on high dimensional parameter for the comparison

of two groups. Suppose we have p dimensional response vector Y = (Y1, . . . , Yp)
T , q dimen-

sional confounding vector X = (X1, . . . , Xq)
T with X1 = 1 for intercept, and an indicator

variable D ∈ {0, 1} introducing the difference in conditions. Assume that

E(Yj |D,X) = h
(
Dτ ∗j +XTθ∗

j

)
, j = 1, 2, . . . , p, (1)

P(D = 1 |X) = 1/(1 + exp(−XTγ∗)), (2)

where τ ∗j ∈ R,θ∗
j ∈ Rq, γ∗ ∈ Rq and h(·) is a known differentiable inverse link function. The

first equation (1) models the dependence between Yj and (D,X) under a general framework

to deal with various type of responses. For instance, h(·) would be identity function when

Yj is continuous and would be exp(·) when Yj is count. The second (2) assumes the logistic

model for D. Finally, suppose we have n i.i.d. observations {(Yi, Di,Xi)}ni=1 following (1)

and (2) and consider the high dimensional setting where p is greater than n, but q is smaller.



In (1) the parameter τ ∗j represents the effect of D on Yj, and thus the high dimensional

parameter vector τ ∗ = (τ ∗1 , . . . , τ
∗
p )

T is of interest. Under the strong ignorability, τ ∗ can also

be regarded as a causal parameter. This talk provides an inference on τ ∗ under the high

dimensional asymptotic framework (n, p) → ∞.

2 Proposed methodology

Applying the maximum likelihood estimation to each Yj as the generalized linear regression,

we can obtain an estimator of τ ∗j . In the case where X is confounded, however, the MLE of

τ ∗j is not efficient since it ignores the model (2). Chernozhukov et al. (2018) and Vansteelandt

and Dukes (2020) provide an efficient score function of τ ∗j given by

Si(τj ;θ
∗
j ,γ

∗) =
Yij − h(Diτj +XT

i θ
∗
j )

h′(Diτj +XT
i θ

∗
j )

(Di − πi(γ
∗)), (3)

where πi(γ
∗) = 1/(1 + exp(−XT

i γ
∗)). The nuisance parameters (θ∗

j ,γ
∗) can be estimated

by MLE or other methods and plugged into the score function above, but we need the cross-

fitting approach (Chernozhukov et al. (2018)) to control the asymptotic behavior of (3) with

estimated nuisance parameters.

Based on the estimate τ̂j and its variance estimate σ̂2
j by the cross-fitting, this talk gives

a maximum type test statistics for the global hypothesis H0 : τ ∗ = 0. A multiple testing

procedure with controlling the false discovery rate is also provided.
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1. Galaxy Formation and Evolution 

Matter in the early Universe was almost uniform, and a slightly dense region grew by gravity, 

finally into a galaxy. It was attempted to develop a theory to deal with the star formation and 

associated history of heavy element synthesis, under an assumption that a galaxy has formed from a 

single, huge gas cloud. While the research in this direction was once completed in the first half of 

1980s, this was not the end of the studies of galaxy evolution. Cosmological research that has 

progressed in parallel has revealed that galaxies merge and grow. This indicates that the galaxy 

evolution is a very complicated process that strongly depends on the density of the surrounding 

galaxies and the gas density. In order to formulate the galaxy evolution, it is necessary to determine 

such a huge system of equations. Though astrophysicists have constructed the governing equations 

from the physical laws from the first principle before, such a method is not realistic anymore when 

the quantity space exceeds 10 dimensions. Galaxy surveys as of the 21st century provides hundreds 

of physical quantities for hundreds of millions of galaxies, typical big data in both quality and quantity 

indeed. The feature space of the galaxy to be analyzed exceeds 100 dimensions. Therefore, the 

characterization of the galaxy evolution is no longer possible by the traditional method relying on 

physical intuition. 

 
2. Galaxy Manifold 
2.1 Rise, fall, and revival of the galaxy manifold 

From 1970s to the mid-1980s, classical multivariate analysis methods such as the principal 

component analysis (PCA) were used to combine physical quantities of galaxies in a high-

dimensional space. Various (logarithmic) linear relations, so-called galactic scaling relations, have 

been discovered. Research to unify the scaling relations and find the fundamental relationships has 

led to the concept of galaxy manifolds. However, the galaxy manifold has once been almost forgotten 

because the classical PCA could treat only linear relations, and it remained a limited concept, though 

they are still useful for exploring (log)linear relations of galaxies.  

Recently, we discovered a galaxy manifold that expresses the basics of galactic evolution by the 

Fisher EM algorithm. Because of its strongly nonlinear spatial structure, it could have never been 

found in previous studies based on the classical PCA. To understand the manifold, a more 

sophisticated method beyond a mere classification is needed. We focused on a method known as the 

manifold learning, one of the latest methods of data science that is completely different from 



conventional methodologies 

2.2 Galaxy manifold constructed by manifold learning 

We adopt the algorithm Isomap and UMAP (Uniform Manifold Approximation and Projection). 

Isomap defines the neighboring points by using input-space distance and the distant points as a 

sequence of “short hops” between neighboring points. Isomap tries to find shortest paths in a graph 

with edges connecting neighboring data points. By construction, Isomap preserves the “surface 

density” of data points in the feature space. UMAP is based on differential geometry and algebraic 

topology. The algorithm is founded on three assumptions: 1) the data are uniformly distributed on a 

Riemannian manifold, 2) the Riemannian metric is locally constant (or can be approximated as such), 

and 3) the manifold is locally connected. From these assumptions it is possible to model the manifold 

with a fuzzy topological structure. Sine it defines the manifold so that the data points distribute as 

homogeneously as possible, it does not preserve the surface density of data points. UMAP also 

preserves some important structural properties, and it is more robust against noise than Isomap.  

Manifold learning algorithm can “unfold” a curved and/or rolled manifold in the feature space, and 

provide a local coordinate system on it. The resulting manifolds with local coordinates from Isomap 

and UMAP are presented in Fig. 1. From Figure 1, we clearly see that the galaxy manifold is two-

dimensional. We also stress that two different algorithms, Isomap and UMAP yield similar two-

dimensional manifolds. The difference of the two estimated manifolds is clearly seen in Fig. 1. Since 

Isomap preserves the density of data point cloud, we observe that the manifold has a density structure, 

i.e., dense and sparse regions on the manifold.  

Figure 1: The “unfolded” galaxy manifold by a 

manifold learning algorithm Isomap and UMAP. 

Left and right panels show the manifolds from 

Isomap and UMAP, respectively. Though the 

global shape is slightly different from each other, 

they share common features on the manifold.  

 

 

2.3 Result 

The galaxy manifold obtained with Isomap preserve this information and reveal the speed of galaxy 

evolution at various stages along the manifold. e.g., galaxies passes the green valley very fast. In 

contrast, the galaxy manifold obtained with UMAP is imposed uniformity on the galaxy data, leading 

to a more robust and representative description of the observed galaxy properties e.g., galaxies evolve 

continuously in the feature space, without a discontinuity or “jump” on their evolutionary tracks. Thus, 

the galaxy manifold provides a clue to the evolutionary path of galaxies on the manifold. The SFR 

and stellar mass fields do not show the same evolutionary path. This supports that the galaxy merger 

without star formation plays a significant role in the growth of stellar mass. Next step is to fully 

parametrize the evolution equation of galaxies. 
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Abstract 

 
In the past two decades, much attention has been paid for high-dimensional hypothesis testing. 

Several centralized or non-centralized L2-norm based test statistics have been proposed.  Most of 

them imposed  strong assumptions on the underlying covariance structure of the   high-dimensional 

data so that the associated test statistics are asymptotically normally distributed.  In real data analysis, 

however, these assumptions are hardly checked so that the resulting tests have a size control 

problem when the required assumptions are not satisfied.  To overcome this difficulty,  in this talk,  

we  investigate  a so-called  normal-reference test which can control the size well.  In the normal-

reference test,  the null distribution of a test statistic is approximated with that of a chi-square-type 

mixture which is obtained from the test statistic when the null hypothesis holds and when the 

samples are normally distributed. The distribution of the chi-square-type mixture can be well 

approximated by a  three-cumulant matched χ2-approximation with the approximation parameters 

consistently estimated  from the data. Two simulation studies demonstrate that in terms of size control, 

the proposed normal- reference test performs well regardless of whether  the data are nearly 

uncorrelated, moderately correlated, or highly correlated and it performs much better than two  

existing competitors. A real data example illustrates the proposed normal-reference test. 

 
KEY WORDS: χ2-type mixtures; high-dimensional data; three-cumulant matched  χ2-approximation; 

two-sample Behrens–Fisher problem. 
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Abstract

Principal component analysis (PCA) is a commonly used statistical tool for dimension
reduction. An important issue in PCA is to determine the rank, which is the number
of dominant eigenvalues of the covariance matrix. Among information-based criteria,
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
are the two most common ones. Both use the number of free parameters for assessing
model complexity, which requires the validity of the simple spiked covariance model. As a
result, AIC and BIC may suffer from the problem of model misspecification when the tail
eigenvalues do not follow the simple spiked model assumption. To alleviate this difficulty,
we adopt the idea of the generalized information criterion (GIC) to propose a model
complexity measure for PCA rank selection. The proposed model complexity takes into
account the sizes of eigenvalues and, hence, is more robust to model misspecification.
Asymptotic properties of our GIC are established under the high-dimensional setting,
where n goes to infinity and p/n goes to a constant c > 0. Our asymptotic results show
that GIC is better than AIC in excluding noise eigenvalues, and is more sensitive than
BIC in detecting signal eigenvalues. Numerical examples will be presented.
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