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Asymptotic properties of kernel k-means
for high dimensional data

Kento Egashira®, Kazuyoshi Yata’, Makoto Aoshima’

“Department of Information Sciences, Tokyo University of Science
'Institute of Mathematics, University of Tsukuba

Cluster analysis can be divided into two types: hierarchical and partitional. Hier-
archical clustering groups data into dendrograms based on their cluster similarities
determined by a preset linkage function. A dendrogram enables the observation of
the process of merging or dividing clusters. For discussions on hierarchical cluster
analyses, see the works of Everitt et al. [4] and Hastie et al. [6], among others. Par-
titional clustering, as its name suggests, divides data into a pre-determined number
of clusters. K-means can be given on behalf of partitional clustering. Notably, k-
means has been approved as a useful tool for analyzing microarray gene expression
data. A characteristic of such data is that the number of variables was consider-
ably larger than the sample size, giving high-dimensional, low-sample-size (HDLSS)
scenarios. Substantial work on HDLSS asymptotic clustering has been performed
in recent years. For example, Liu et al. [8] proposed a two-way split statistical-
significance-of-clustering (SigClust) method for HDLSS data. Ahn et al. [1] pro-
posed hierarchical divisive clustering for high-dimensional asymptotics. Huang et al.
[5] modified SigClust using a soft thresholding approach. Kimes et al. [7] proposed
a method for sequentially testing the statistical significance of hierarchical cluster-
ing by controlling the family-wise error rate in HDLSS settings. Yata and Aoshima
[10] presented the consistency properties of sample principal component scores and
applied them to clustering in high-dimensional settings. Nakayama et al. [9] inves-
tigated HDLSS clustering using kernel principal component analysis. Borysov et al.
[2] studied the behaviors of hierarchical clustering under several asymptotic settings
from a moderate dimension for HDLSS; however, the theoretical assumptions were
considered to be strict for HDLSS data owing to several simultaneous asymptotic
settings. Egashira et al. [3] explores practical assumptions to indicate the behav-
ior of hierarchical clustering and obtained theoretical results in multiclass settings.
Given this background, asymptotic properties of k-means in the HDLSS settings
seems to have not been studied sufficiently.

In this talk, we investigated k-means when both the dimension and sample size
approach infinity at first. Then, we explored kernel k-means in the HDLSS context
theoretically. Especially, we mensioned kernel k-means with gaussian kernel function
and compared performance of it to conventional k-means in the multiclass HDLSS
context.



References

1]

2]

3]

[10]

Ahn, J., Lee, M.H., Yoon, Y.J. (2012). Clustering high dimension, low sample
size data using the maximal data piling distance. Statistica Sinica, 22, 443—-464.

Borysov, P., Hannig, J., Marron, J.S. (2014). Asymptotics of hierarchical clus-
tering for growing dimension. Journal of Multivariate Analysis, 124, 465—-479.

Egashira, K., Yata, K., Aoshima, M. (2023). Asymptotic properties of hierar-
chical clustering in high-dimensional settings. Journal of Multivariate Analysis,
199, 105251.

Everitt, B.S., Landau, S., Leese, M. (2001). Cluster Analysis. Arnold, New
York.

Huang, H., Liu, Y., Yuan, M., Marron, J.S. (2015). Statistical Significance of
Clustering using Soft Thresholding. Journal of Computational and Graphical
Statistics, 24, 975-993.

Hastie, T., Tibshirani, R., Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition, Springer,
New York.

Kimes, P.K., Liu, Y., Neil, H.D., Marron, J.S. (2017) Statistical significance for
hierarchical clustering. Biometrics, 73, 811-821.

Liu, Y., Hayes, D.N., Nobel, A., Marron, J.S.(2008). Statistical significance of
clustering for high-dimension, low-sample size data. Journal of the American
Statistical Association, 103, 1281-1293.

Nakayama, Y., Yata, K., Aoshima, M. (2021). Clustering by principal compo-
nent analysis with Gaussian kernel in high-dimension, low-sample-size settings.
Journal of Multivariate Analysis, 185, 104779.

Yata, K., Aoshima, M. (2020). Geometric consistency of principal component
scores for high-dimensional mixture models and its application. Scandinavian
Journal of Statistics, 47, 899-921.



Broken-stick components retention rule for equi-correlated

normal population (=)

TR —
20234 12H9H

WRATT DARBHEE B > 7'V > ZIERIIR, KEBLOB TR & Cl, ZROMOMHBENEE RS, ZD XD
IR TR T F A ORT OB E EAHBETY C 2 o#fET 2 2 252 5. REMBRHEE HEL LTI,
BAfEE (thresholding) O, 5 VXA FT—=2poRFREZS I 2L —2a ¥y LT, COXRY & s
2HEDND 5. BEZE L LTI, Guttman-Kaiser rule % adjusted correlation thresholding [6] 23® D, #%&
D¥Ial—a k3R FEHEERE E LT, [EHHY72 broken-stick rule <o, JHEIZfH 2415 parallel
analysis [3] 23® 5. BIEIES > I 2L — a VIZXZRFHEEERS, E7F—XE2HWTRS LIS T
Z7-. BEEOBGERIE T (8], (6], [2] R EHMEEEL TW 553, broken-stick rule % parallel analysis OFi
(A5 B BRI S T [5).

% Z T broken-stick rule DIFHMR D= DICKD XS RFELX B X Tz, CORZZEBOMA S HE
DER p € [0,1) ZHBEAREE UTHRD p KoTEFEER (FHBERBEREMIZ 82T %) ITEH
L, ¥4 X n @% > FoH > 7T C 123 % broken-stick rule OFER D, HLBI 88 VeAH &
n,p — 00, p/n — ¢ >0 COMBEIFR TSIz, 2D X57% C Dt KIEMMERIE, TEIF
TRHHREMEAT p IS 2R 2 BIR 2 H:D [7]. Tk, p D 0 £72FIET, Guttman-Kaiser rule DR
ZEENAHERRS (2] 2 H 7z X 512, broken-stick rule OMIFRZEEN AR R 2 Z e 2 HE L L.

ARRFZE T, BRI A B W T, FHEBEERSENOEARERETY C 0F _ZEAME (1 -
p)(1 4 /e)? ICEERTINHRT % Z L 2 L. ZDiECiE, BIREHIEA TOIEE R AR Y P L%
FEOREA T BATYI S DEHED A [4], S & C OMuARIBEMR [1], B X, Weyl OAFREFERZH WL, Z0HE
FEEEICET 2mEL, C ORKEAMHEDOHH [1] £ b, broken-stick rule 25 C 2> &M 3 2 KT DO EE 23,
HHE p > 0 D REIBUCEMERTINR T 2 Z e 25GEEHTZ 72, ZOEHEIC L D, broken-stick rule 1%, FHAHES
REMIETH % equi-correlation block DEEEEZ TW5 Z L BMATE /2. XHIG L Z 5 BG4, binary
multiple sequence alignment @7 — & [9] %, Fama-French 100 portfolios D7 — & [6] O FAHBRE DK
PS> 7)) ¥ ZRERIINCTHERR T & 2.

L, YRV LATRRILT 74 F ¥ ADQEMRHBRD & 5 7346fi% Ule: @HEY > 7V ¥ 7R
T, BRI & DRSS E W, Bl 2L -0k R AW, RFE 7 LV ORTF O 2 HEE S 2 DIz [10]
@ Shrinkage Principal Orthogonal complEment Thresholding (S-POET) &\ 5 BEIESEHTH 5.

EBIT, YVRIYLATRHE - FIRDO 7V — 7%, — IR R84 7 EHEE 7 LVOERSEATY O EH
RIS 2991 B HARAE RS, LI EnEsE AN O A B3 2 #5527 L, S-POET 1 noise
reduction PCA [11, 12] IZBfRL TV 2 L fEfE L 7-.

K ED 5 Yata & Aoshima < Fan OFERD, AR OHGmEICERE TH L2 Z e 2Lz /20 VK



DU LTIEANFICHR RS S ERAMAZE.

BE R

[1] Y. Akama. Correlation matrix of equi-correlated normal population: fluctuation of the largest eigen-
value, scaling of the bulk eigenvalues, and stock market. Int. J. Theor. Appl. Finance, 26:2350000,
2023.

[2] Y. Akama and A. Husnagilati. A dichotomous behavior of Guttman-Kaiser criterion from equi-
correlated normal population. J. Indones. Math. Soc., 28(3):272-303, 2022.

[3] A. Buja and N. Eyuboglu. Remarks on parallel analysis. Multiv. Behav. Res., 27:509-540, 1992.

[4] T. Cai, X. Han, and G. Pan. Limiting laws for divergent spiked eigenvalues and largest nonspiked
eigenvalue of sample covariance matrices. Ann. Stat., 48(3):1255-1280, 2020.

[5] E. Dobriban and A. B. Owen. Deterministic Parallel Analysis: An Improved Method for Selecting
Factors and Principal Components. J. R. Stat. Soc. Ser. B Stat. Methodol., 81(1):163-183, 11 2018.

[6] J. Fan, J. Guo, and S. Zheng. Estimating number of factors by adjusted eigenvalues thresholding.
J. Am. Stat. Assoc., 117(538):852-861, 2022.

[7] J. Fan and T. Jiang. Largest entries of sample correlation matrices from equi-correlated normal
populations. Ann. Probab., 47(5):3321-3374, 2019.

[8] M. Gavish and D. L. Donoho. The optimal hard threshold for singular values is 4/v/3. IEEE Trans.
Inf. Theory, 60(8):5040-5053, 2014.

[9] A. A. Quadeer, R. H. Louie, K. Shekhar, A. K. Chakraborty, I. Hsing, and M. R. McKay. Statis-
tical linkage analysis of substitutions in patient-derived sequences of genotype la hepatitis C virus
nonstructural protein 3 exposes targets for immunogen design. J. Virol., 88(13):7628-7644, 2014.

[10] Weichen Wang and Jianging Fan. Asymptotics of empirical eigenstructure for high dimensional
spiked covariance. The Annals of Statistics, 45(3):1342 — 1374, 2017.

[11] Kazuyoshi Yata and Makoto Aoshima. Effective pca for high-dimension, low-sample-size data with
noise reduction via geometric representations. Journal of Multivariate Analysis, 105(1):193-215,
2012.

[12] Kazuyoshi Yata and Makoto Aoshima. Pca consistency for the power spiked model in high-
dimensional settings. Journal of Multivariate Analysis, 122:334-354, 2013.



Forecasting High-Dimensional Covariance
Matrices Using High-Dimensional Principal

Component Analysis

Hideto Shigemoto * Takayuki Morimoto T

November 17, 2023

Abstract

We modify the recently proposed forecasting model of high-
dimensional covariance matrices (HDCM) of asset returns using
high-dimensional principal component analysis (PCA). It is well-
known that when the sample size is smaller than the dimension,
eigenvalues estimated by classical PCA have a bias. In particular, a
very small number of eigenvalues are extremely large and they are
called spiked eigenvalues. High-dimensional PCA gives eigenvalues
which correct the biases of the spiked eigenvalues. This situation
also happens in the financial field, especially in situations where
high-frequency and high-dimensional data are handled. The research
aims to estimate the HDCM of asset returns using high-dimensional
PCA for the realized covariance matrix using the Nikkei 225 data,
it estimates 5- and 10-minute intraday asset-returns intervals. We
construct time-series models for eigenvalues which are estimated by
each PCA, and forecast HDCM. Our simulation analysis shows that
the high-dimensional PCA has better estimation performance than
classical PCA for the estimating integrated covariance matrix. In
our empirical analysis, we show that we will be able to improve the
forecasting performance using the high-dimensional PCA and make

a portfolio with smaller variance.

* Group Risk Management Department, Nomura Holdings, Inc., 2-2-2 Otemachi,
Chiyoda-ku, Tokyo 100-8130, Japan.

T Corresponding author: Department of Mathematical Sciences, Kwansei Gakuin Uni-
versity, 1, Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.

morimot@kwansei.ac. jp
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Summary

In this study, we constructed the HDCM forecasting models using high-
dimensional PCA. In particular, the previous studies show that to estimate
the latent factors, POET is used. However, it is known that when the dimen-
sion is greater than the sample size, the eigenvalues estimated by classical
PCA have biases. Therefore, in order to estimate the eigenvalues more accu-
rately, we adopted SPOET which corrects biases of empirical eigenvalues. In
addition, we combined eigenvalues and time-series models to forecast eigen-
values and covariance matrix.

In the simulation study, we generated the asset returns based on the esti-
mated HDCM as the integrated covariance matrix and it shows that SPOET
is also effective for the price process. Especially, the empirical eigenvalues of
SPOET were closer to the true values than those of POET.

In the empirical analysis, we constructed some forecasting models of
HDCM using a number of individual stocks traded on Nikkei 225. Almost
all our proposed models which use SPOET show better performance than
the other models which use POET. In addition, in terms of economic
performance, our models can generate a smaller variance than benchmarks
in most cases. This study applied SPOET discussed under the i.i.d. setting
to the continuous It6 semi-martingale setting for simulation study and

empirical analysis. Thus, theoretical results are needed in the future.

This study is partly supported by the Institute of Statistical Mathematics
(ISM) cooperative research program (2022-ISMCRP-2024), JSPS KAKENHI
Grant Number 21K01433, and Grant-in-Aid for JSPS Fellows Grant Number
22J10285. The views expressed in this study are those of the authors and do
not necessarily reflect the official views of Nomura Holdings, Inc. or Kwansei

Gakuin University.



A Geometric Algorithm for Contrastive Principal Component Analysis
in High Dimension

Shao-Hsuan Wang

Graduate Institute of Statistics, National Central University

Abstract: Principal component analysis (PCA) has been widely
used in exploratory data analysis. Contrastive PCA (Abid et al.
2018), a generalized method of PCA, is a new tool used to capture
features of a target dataset relative to a background dataset
while preserving the maximum amount of information contained in
the data. With high dimensional data, contrastive PCA becomes
impractical due to its high computational requirement of forming
the contrastive covariance matrix and associated eigenvalue
decomposition for extracting leading components. In this work,
we propose a geometric curvilinear—-search method to solve this
problem and provide a convergence analysis. Our approach offers
significant computational efficiencies. Specifically, it reduces
the time complexity from 0((nVm)p~2) to a more manageable 0((n
Vm)pr), where n, m are the sample sizes of the target data and
background data, respectively, p is the data dimension and r is
the number of leading components. Additionally, we streamline
the space complexity from 0(p”2), necessary for storing the
contrastive covariance matrix, to a more economical 0((nVm)p),
sufficient for storing the data alone. Numerical examples are
presented to show the merits of the proposed algorithm.



Feature learning via mean-field neural networks and
anisotropic features

Taiji Suzukil?

Joint work with Denny Wu?, Atsushi Nitanda?*, Kazusato Oko'+?
!Graduate School of Information Science and Technology, the University of Tokyo,
2RIKEN Center for Advanced Intelligence Project,
3Center for Data Science, New York University,
4Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology.

In this presentation, I have presented the feature learning perspective of mean-field neural
networks and compared it with kernel methods. Especially, I presented the generalization ability of
mean field neural network trained by mean field Langevin dynamics for learning k-sparse parity
functions. I summarize the technical details given in the presentation as follows.

1 Introduction

In this work, we bridge the aforementioned gap by presenting a simple and general framework to

establish sample complexity of MFLD in learning binary classification problems. We then apply

this framework to the sparse k-parity problem, and obtain improved rate of convergence for the
fully time- and space-discretized algorithm. More specifically, our contributions can be summarized
as follows.

e We present a general framework to analyze MFLD in the learning of binary classification tasks.
Our framework has two main ingredients: (i) an annealing procedure that applies to common
classification losses that removes the exponential dependence on regularization parameters in
the logarithmic Sobolev inequality, and (ii) a novel local Rademacher complexity analysis for the
distribution of parameters optimized by MFLD. As a result, we can obtain learning guarantees
for the mean-field neural network in discrete-time and finite-width settings.

e We apply our general framework to the k-sparse parity problem, and derived learning guarantees
with improved rate of convergence and dimension dependence. Specially, in the n < d? regime
we obtain exponentially converging classification error, whereas in the n =< d regime we achieve
linear dimension dependence. Note that this improves upon the NTK analysis (which gives a
sample complexity of n = (d*)) in that it “decouples” the degree k from the exponent in the
dimension dependence. Our theoretical results are supported by empirical findings.

2 Problem Setting

We consider a classification problem given by the following model:
Y =14(2) — 14.(2) € {£1}

where Z = (Zy,...,7Z) is the input random variable on R? and 14 is the indicator function
corresponding to a measurable set A € B(R?), i.e., 14(Z) =1if Z € A and 14(Z) =0if Z ¢ A.
Let Pz be the distribution of Z. We are given input-output pairs D,, = (2;,y;)}_; independently
identically distributed from this model as training data. Then, we construct a binary classifier
that predicts the label for the test input data as accurate as possible. To achieve this, we learn a
two-layer neural network model in the mean-field regime via the mean-field Langevin dynamics.
One important problem setting for our analysis is the k-sparse parity problem defined as follows.



Example 1 (k-sparse parity problem). Py is the uniform distribution on the grid {#1/v/d}* and
A={C=(Cr - Ca) € (VA [ G G > 0}

Mean-field two-layer network. Given input z, let h,(z) be one neuron in a two-layer neural
network with parameter x = (1, 22, x3) € R+ defined as

h.(z) = R[tanh(z" x1 + 22) + 2tanh(x3)]/3,

where R € R is a hyper-parameter determining the scale of the network. We place an extra tanh
activation for the bias term z3 € R because the boundedness of h; is required in the convergence
analysis. Let P be the set of probability measures on (RY, B(RY)) where d = d + 2 and B(R%)
is the Borel o-algebra on R? and P, be the subset of P such that its p-th moment is bounded:
E,[||X]|?] < oo (u € P). The mean-field neural network is defined as an integral over neurons h,

fu() = [ ha()u(da),

for 4 € P. To evaluate the performance of f,,, we define the empirical risk and the population risk
as
L(p) := 5 Y02 Lyifu(z:), L(w) == E[(Y fu(2))],

respectively, where £ : R — R>( is a convex loss function. In particular, we consider the logistic loss
(f,y) =log(1+exp(—yf)) for y € {£1} and f € R. To avoid overfitting, we consider a regularized
empirical risk F(u) := L(p) + AEx~,[A1] X]||?], where A\, \; > 0 are regularization parameters.
One advantage of this mean-field definition is that f, is a linear with respect to u, and hence the
functional L(u) becomes a convex functional. Let fi be the minimizer of F'(i). We put the following
assumption.

Assumption 1. There exists co > 0 and R > 0 such that the following conditions are satisfied:
e For some R, there exists p* € P such that KL(v, 1*) < R and L(p*) < £(0) — ¢o.

o For any A < co/R, the regularized expected risk minimizer ppy := argmin L(p) + AKL(v, 1)
satisfies Y fy ., (X) > co almost surely.

Type I: Perfect Classification with Exponentially Decaying Error Under the margin
assumption of f,« (Assumption 1), we have that f; also yields a Bayes optimal classifier. More
precisely, we have the following theorem.

Theorem 1. Suppose Assumption 1 holds. Let My = (¢* + 2(R + 1))/\. Moreover, suppose that
A < ¢o/R and

4R? . A _ _

then f; yields perfect classification, i.e., P(Y f(Z) > 0) = 1, with probability 1 — exp(—%@).

Type II: Polynomial Order Classification Error We can also obtain a result that has a
milder dependency on A and hence a better sample complexity.

Theorem 2. Suppose Assumption 1 holds. Let A < co/R and My = (¢* + 2(R+ 1))/A. Then, with
probability 1 — exp(—t), the classification error of f; is bounded as
P(Y f4(Z) < 0) < 2¢(co) 81 (44t +loglog,(8n*MoR)) + ! 4R+ A + €
i ) | —— oglo n — — €.
e P 51082 0 n 32R?n
We notice that the right hand side scales with O(1/(n))), which is better than O(1/(n)?)) in
Theorem 1; this implies that a sample size linear in the dimensionality is sufficient to achieve small
classification error. The reason for such improvement in the A-dependence is that the stronger
L*°-norm convergence is not used in the proof; instead, only the convergence of the loss is utilized.
On the other hand, this analysis does not guarantee a perfect classification.

1We present the axis-aligned setting for conciseness, but the same result holds under orthogonal transforms.



Statistical estimation with integral-based loss functions

Akifumi Okuno™?

TInst. Stat. Math., 2RIKEN AIP

This study considers statistical estimation problems using integral-based loss functions,
which encompass the following two specific applications.

(1) Robust estimation using density-power divergence discussed in Okuno (2023a). Therein,
they minimize the following robust loss function equipped with a parametric density py ar-
bitrarily specified by users (e.g., Gaussian mixture model, Gompertz model):
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Figure 1: Computational intractable models (Gompertz and Gaussian mixture) are estimated by
the proposed approach.

(2) Higher-order variation regularization discussed in Okuno (2023b). Therein, they minimize
the following penalized loss function equipped with a function f; arbitrarily specified by
users (e.g., neural network, generalized additive model):

1
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Figure 2: Single-layer perceptron (with L = 200 hidden units) trained with the proposed approach.



Due to the difficulty in evaluating the integral terms, much of the existing research has
concentrated on (i) straightforward models (e.g., normal density estimation, spline estimation)
where the explicit form of these integral terms can be obtained, or (ii) numerical integration,
which is computationally intensive. Notably, statisticians have long focused on optimization
with full-batch methods (e.g., Newton-Raphson method), and the obsession with full-batch meth-
ods has made computations challenging.

However, if we rewind the long history of research all the way back to the beginning, such
integral-based loss functions have been known to be simply minimized by stochastic gradient
descent (Robbins and Monro, 1951). To bridge the substantial, unseen gap between the practical
applications in statistics and the profound advancements in stochastic optimization theory, this
talk intentionally sheds light on the potential utility of the stochastic optimization techniques.
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NON-SPARSE HIGH-DIMENSIONAL STATISTICS AND ITS APPLICATIONS
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ABsTRACT. In this talk, we present several results in non-sparse high-dimensional statistics. Specif-
ically, the generalization and Bayesian estimation of high-dimensional linear regression models,
statistical inference for high-dimensional generalized linear models, and the regret analysis on con-
textual bandit problems applying high-dimensional linear models. The analysis in these studies uses
the theory of benign overfitting using spectrum, the risk analysis using the convex Gaussian minimax
theorem, and the statistical inference using approximate message propagation methods.

1. OUTLINE

1.1. Linear Regression. We consider a linear regression problem with p-dimensional covariates
and a parameter. Suppose that we observe i.i.d. n pairs {(X;, ¥;)}" | of a covariate X; € R” and a
target variable ¥; € R generated from the following linear model with the true parameter 6p € R”:

Yi = (Xi.00) + &, i = 1 ooon,

where &; is a centered noise variable. Let X = E[Xin.T] be a covariance matrix of the covariate.

The goal of this problem is to estimate the parameter 8y from the observations. Here, we consider
the high-dimensional setting, specifically, we consider p > n or where p = oo regardless of n.
Also, we do not impose the assumption of sparsity on the true parameter 6. In this setting, the
notion of benign overfitting is actively studied.

We investigate whether benign overfitting-like phenomena occur in situations in which we relax
key assumptions in this foundational model. [NI22] considers the case where the covariates are
dependent in the sample direction and shows that similar benign overfitting occurs depending on
the strength of the dependence. [WI23] develops an informative prior distribution that allows
for a Bayesian estimator and its distribution approximation that is valid even in non-sparse high
dimensions. [TI23] considers that the noise &; is dependent on the covariance and gives conditions
for the estimation error convergence, by utilizing the Gaussian minimax inequality.

1.2. Generalized Linear Regression. We next consider the generalized linear model (GLM):
for a pair (X,Y) of p-dimensional random features X and random responses Y, we consider the
following model

E[Y | X =x] =g(x"B), Vx € R?, (1)
1



where g : R — R is an inverse link function that monotonically increases, and 8 = (B1,...,8,)" €
R?” is an unknown deterministic coeflicient vector. Suppose that we observei.i.d. n pairs {(X;, ¥;)}!,
of a feature vector X; € R” and a target variable ¥; € Y that follow the GLM (1), where VY is a
response space, such as R, R,, {0, 1},{0,1,2,...}, and so on.

We consider the proportional high-dimensional regime: we are particularly interested in the
proportional limit of the coefficient dimension p and sample size n:

n,p — ooand p/n — Ik € (0, 00).

In this regime, for the logistic regression as the special case, statistical inference on 8 has been
actively studied without the sparsity of S.

[SUI23] develops a methodology for statistical inference for a broad class of GLMs, by deriving
the asymptotic normality of an estimator. This method is based on the analysis of a state evolution
equation by a vector approximate massage passiong (VAMP) and its application to statistical models.

1.3. Bandit with Linear Context. We study a bandit problem with K arms associated with a linear
model for its rewards with p-dimensional context vectors. For each round ¢ € [T] := {1,2,...,T}
andarmi € [K], we define a context X,(i) which is a p-dimensional zero-mean sub-Gaussian vector,
which is independent among rounds 7. An agent chooses an arm /() € [K] based on X,(i) of all
the arms k € [K], and then observes a reward that follows a linear model as shown in

y @) — <X(I(t)), 9“0) +&(1).

The unknown true parameters 8) for each arm i € [K] lie in a parameter space R”, and the
independent sub-Gaussian noise &(f) with zero mean and variance o> > 0. We define i*(7) :=
argmaxe | (X,(i), D) as the (ex ante) optimal arm at round .

Our goal is to design an algorithm that maximizes the total reward, which is equivalent to
minimizing the following expected regret. [KI23] considers the high-dimensional setting p > n or
p = oo without the sparsity, then derive a novel explore-then-commit strategy to achieve minimize
the expected regret.
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1. Introduction: Galaxy Formation and Evolution with Big Data

Matter in the early Universe was almost uniform, and a slightly dense region grew by gravity, finally into a galaxy.
It was attempted to develop a theory to deal with the star formation and associated history of heavy element synthesis,
under an assumption that a galaxy has formed from a single, huge gas cloud. While the research in this direction
was once completed in the first half of 1980s, this was not the end of the studies of galaxy evolution. Cosmological
research that has progressed in parallel has revealed that galaxies merge and grow. This indicates that the galaxy
evolution is a very complicated process that strongly depends on the density of the surrounding galaxies and the gas
density. In order to formulate the galaxy evolution, it is necessary to determine such a huge system of equations.
Though astrophysicists have constructed the governing equations from the physical laws from the first principle
before, such a method is not realistic anymore when the quantity space exceeds 10 dimensions. It is a high time to

revolutionize the methodology for galaxy evolution studies.

2. Application of High-Dimensional Statistical Analysis to Astrophysical data

In astronomy, if we denote the dimension of data as d and the number of samples as n, we often meet a case with
n << d. Traditionally, such a situation is regarded as ill-posed, and there was no choice but to throw away most of
the information in data dimension to let d < n. The data with n << d is referred to as high-dimensional low sample
size (HDLSS). To deal with HDLSS problems, a method called high-dimensional statistics has been developed
rapidly in the last decade. We first introduce the high-dimensional statistical analysis to the astronomical community.

We apply two representative methods in the high-dimensional statistical analysis methods, the noise-reduction
principal component analysis (NRPCA) and automatic sparse principal component analysis (A-SPCA), to a
spectroscopic map of a nearby archetype starburst galaxy NGC 253 taken by the Atacama Large
Millimeter/Submillimeter Array (ALMA). The ALMA map is a typical HDLSS dataset. First, we analyzed the
original data including the Doppler shift due to the systemic rotation. The high-dimensional PCA could describe the
spatial structure of the rotation precisely. We then applied to the Doppler-shift corrected data to analyze more subtle
spectral features. The NRPCA and R-SPCA could quantify the very complicated characteristics of the ALMA
spectra. Particularly, we could extract the information of the global outflow from the center of NGC 253. This
method can also be applied not only to spectroscopic survey data, but also any type of data with small sample size

and large dimension. We are also trying to develop a method to analyze absorption line systems in the spectra of



distant radio quasars.

3. Galaxy Manifold

From 1970s to the mid-1980s, classical multivariate analysis methods such as the principal component analysis
(PCA) were used to combine physical quantities of galaxies in a high-dimensional space. Various (logarithmic)
linear relations, so-called galactic scaling relations, have been discovered. Research to unify the scaling relations
and find the fundamental relationships has led to the concept of galaxy manifolds. However, the galaxy manifold
has once been almost forgotten because the classical PCA could treat only linear relations, and it remained a limited
concept, though they are still useful for exploring (log)linear relations of galaxies.

Recently, we discovered a galaxy manifold that expresses the basics of galactic evolution by the Fisher EM
algorithm. Because of its strongly nonlinear spatial structure, it could have never been found in previous studies
based on the classical PCA. To understand the manifold, a more sophisticated method beyond a mere classification
is needed. We focused on a method known as the manifold learning, one of the latest methods of data science that
is completely different from conventional methodologies.

We adopt the algorithm Isomap and UMAP (Uniform Manifold Approximation and Projection). Isomap defines
the neighboring points by using input-space distance and the distant points as a sequence of “short hops” between
neighboring points. [somap tries to find shortest paths in a graph with edges connecting neighboring data points. By
construction, Isomap preserves the “surface density” of data points in the feature space. UMAP is based on
differential geometry and algebraic topology. The algorithm is founded on three assumptions: 1) the data are
uniformly distributed on a Riemannian manifold, 2) the Riemannian metric is locally constant (or can be
approximated as such), and 3) the manifold is locally connected. From these assumptions it is possible to model the
manifold with a fuzzy topological structure. Sine it defines the manifold so that the data points distribute as
homogeneously as possible, it does not preserve the surface density of data points. UMAP also preserves some
important structural properties, and it is more robust against noise than Isomap. Manifold learning algorithm can
“unfold” a curved and/or rolled manifold in the feature space, and provide a local coordinate system on it. The
resulting manifolds with local coordinates from Isomap and UMAP are presented in Fig. 1. From Figure 1, we
clearly see that the galaxy manifold is two-dimensional. We also stress that two different algorithms, Isomap and
UMAP yield similar two-dimensional manifolds. Since Isomap preserves the density of data point cloud, we observe
that the manifold has a density structure, i.e., dense and sparse regions on the manifold.

The galaxy manifold obtained with Isomap preserve this information and reveal the speed of galaxy evolution at
various stages along the manifold. e.g., galaxies passes the green valley very fast. In contrast, the galaxy manifold
obtained with UMAP is imposed uniformity on the galaxy data, leading to a more robust and representative
description of the observed galaxy properties e.g., galaxies evolve continuously in the feature space, without a
discontinuity or “jump” on their evolutionary tracks. Thus, the galaxy manifold provides a clue to the evolutionary
path of galaxies on the manifold. The SFR and stellar mass fields do not show the same evolutionary path. This
supports that the galaxy merger without star formation plays a significant role in the growth of stellar mass. Next

step is to fully parametrize the evolution equation of galaxies.



Predictive Density Estimation for Two Ordered Normal Means
Under a-Divergence Loss

Yuan-Tsung Chang (Mejiro University) Nobuo Shinozaki (Keio University)
William, E. Strawderman (Rutgers University)

When the underlying loss metric is a-divergence, D(«), loss introduced by siszar (1967), we
consider stochastic and Pitman closeness domination in predictive density estimation problems
when there are restrictions given on two means. The underlying distributions considered are
normal location-scale models, including the distribution of the observables, the distribution of
the variable whose density is to be predicted, and the estimated predictive density which will
be taken to be of the plug-in type. The scales may be known or unknown. The main contents
are as follows:

1. First, we introduce a general expression which derived by Chang and Strawderman (2014)
for the a-divergence loss as following;:

If the true density function of Y is N(u,0?) and the estimated predictive density of Y, is
N(f1,62) then
a) for -1 <a<1,

(a=1)/2 1-— 1—a)r? 1 1 1-—
2 52 O 0T 2 52y (Lza\(; _ (A=) 1 _(lta_ 1l-«a
d(o*,6%) = PSR A(O‘,U)—(202)<1 52 )>0, 72_<2&2 T 552 )

Further, d(0?,6%) < 1 and A(0?,6%) > 0.

b) (Reverse KL)

D &> 8 i )2
P (N(Gla, 62), N(§|p, 02)) = ;[(02 ~log % - 1> N (,LLZ,U)]
¢) (KL)

DN 6, N so®) = 3[( G —r0a 5 1) + L],

Also note that in each case, the {D(«)} loss is a concave monotone function of squared
error loss |fi — p|? and is also a function of the variances. In this set-up and show that it is
a concave monotone function of quadratic loss, and also of the variances (predicand, and

plug-in).

2. Next, we demonstrate D(«) stochastic domination and Pitman closeness of certain plug-in
predictive densities over others for the entire class of metrics simultaneously when ”usual”
stochastic domination and Pitman closeness holds in the related problem of estimating
two ordered means with respect to quadratic loss(Oono, Shinozaki (2005), Chang, Oono
and Shinozaki(2012), Chang, Fukuda and Shinozaki(2017)).



3. We also discuss improving the generalized Bayesian predictive densities suggested by Cor-

cuera and Giummole (1999) under D(«) loss.

Based on the data X;; ~ N(u;,02),i = 1,2,j = 1,---,n;, we predict the density Y ~
N(pi,0?),i = 1,2. We denote its density function by p(g; pi, 0;), where p; and o? are
unknown.

When —1 < a < 1, Corcuera and Giummole (1999) have established that the best invariant
predictive density of p(7; p;, 0;) based solely on w1, - - - Ty, is

1—a _ 27 —(2n;—1—a)/2(1—a)

where ; is the sample mean and 62 = ((n; —1)/n;)s? is the sample variance. Corcuera and
Giummole (1999) have also shown that p,(7; Z;, ;) is the generalized Bayesian predictive
density for the prior density f(ui,0;) < 1/0;,0 < 0; < co. It is to be noted that p, (7; Z;, 7;)
is not a normal distribution, although the plug-in density N(Z;, s?) is the generalized Bayes
rule when o = 1.

We consider the following two cases separately where order restrictions on y; and/or o?
are present,

1) Case when 1 < po.

ii) Case when py < pg and o3 < 03.

Examples of D(«) stochastic (Pitman closeness) domination presented relate to the prob-

lem of estimating the predictive density of the variable with the restrictions on two normal
means.

keywords: Predictive density, a-divergence, stochastic dominance, ordered normal
means, Pitman closeness criterion
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product-PCA
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Abstract

This article studies the robustness of the eigenvalue ordering, an important issue
when estimating the leading eigen-subspace by principal component analysis (PCA).
In Yata and Aoshima (2010), cross-data-matrix PCA (CDM-PCA) was proposed and
shown to have smaller bias than PCA in estimating eigenvalues. While CDM-PCA
has the potential to achieve better estimation of the leading eigen-subspace than the
usual PCA, its robustness is not well recognized. In this article, we first develop a
more stable variant of CDM-PCA, which we call product-PCA (PPCA), that provides
a more convenient formulation for theoretical investigation. Secondly, we prove that,
in the presence of outliers, PPCA is more robust than PCA in maintaining the correct
ordering of leading eigenvalues. The robustness gain in PPCA comes from the random
data partition, and it does not rely on a data down-weighting scheme as most robust
statistical methods do. This enables us to establish the surprising finding that, when
there are no outliers, PPCA and PCA share the same asymptotic distribution. That
is, the robustness gain of PPCA in estimating the leading eigen-subspace has no
efficiency loss in comparison with PCA. Simulation studies and a face data example
are presented to show the merits of PPCA. In conclusion, PPCA has a good potential
to replace the role of the usual PCA in real applications whether outliers are present
or not.

Key words: cross-data-matrix PCA; dimension reduction; efficiency loss; ordering

of eigenvalues; random partition; robustness.



Learning Ordinality in High-Dimensional Data
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Numerous real-world applications involve naturally ordinal outcomes, such as cancer
stages or tumor grades. Despite the recent surge in high-dimensional statistical
methodologies, high—-dimensional learning with ordinal outcomes has been largely

over looked in the HDLSS |iterature. In this talk, I will introduce recent projects on
ordinality in high-dimensional data. The first three topics concern supervised
learning aimed at predicting ordinal labels. All three ordinal methods assume
sparsity and equal covariance population structure, leading us to term them "ordinal
sparse high-dimensional LDA’. They operate on the principle that a classification
rule primarily reliant on variables that are monotonically associated with the
outcome should be preferable. They all result in a low-dimensional discriminant
subspace where classes are sequentially aligned. The first FWOC method weights
features based on their rank correlations with class labels, integrating these
weights into the LDA framework. The second SOBL method combines sparsity and
ordinality regularizations in a high-dimensional generalized eigenvalue problem. The
third SODA approach applied regularization to optimal scores within the sparse LDA
framework. In addition, in scenarios where an ordinal outcome is unobserved, one may
search for an ordinal signal in the data. This leads us to develop 'monotone
clustering’ that is designed to identify subgroups interpretable in an ordinal
manner.



Normal-reference test for high-dimensional covariance matrices
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Abstract

In the past decade, much attention has been paid for testing the equality of high-dimensional
covariance matrices. Several test statistics have been proposed for this purpose. Some of them
imposed strong assumptions, aiming to yield the asymptotic normality of the associated test
statistics. In practice, however, these assumptions are often challenging to verify, resulting in size
control issues when the required assumptions are not met. To address this challenge, in this talk,
we investigate a normal-reference test which can effectively control the size. In the normal-
reference test, the null distribution of a test statistic is approximated with that of a chi-square-type
mixture which is obtained from the test statistic under the null hypothesis, assuming normality of the
data samples. To accurately approximate the distribution of the chi-square-type mixture, we employ
a three-cumulant matched x2-approximation with the approximation parameters being consistently
estimated from the data. Two simulation studies demonstrate that in terms of size control, the
proposed normal-reference test performs well across a range of scenarios and it outperforms several

existing competitors. A real data example illustrates the proposed normal-reference test.

KEY WORDS: x’-type mixtures; high-dimensional data; three-cumulant matched x*-approximation.
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Abstract: We consider the problem of testing linear hypotheses associated with a high-
dimensional multivariate linear regression model under the setting where the dimensionality of
the response is comparable to the sample size, and the dimensionality of the predictors is finite.
Classical solutions involving likelihood ratio tests for such problems suffer from significant loss of
power within this asymptotic framework. We propose regularization schemes that modify the
likelihood ratio statistics by applying nonlinear shrinkage to the eigenvalues of the empirical
covariance matrix of the regression residuals. We propose two different classes of regularized
tests to deal with different types of structural assumptions on the covariance matrix of the noise
in the linear regression model: (a) the spectral measure of the noise covariance converges to a
nontrivial limit; and (b) the noise covariance has a spiked covariance structure. We show that in
each case, the proposed tests significantly improve on the performance of the likelihood ratio
test. We also address the problem of finding the optimal regularization parameter within a
decision-theoretic framework by adopting a probabilistic formulation of the alternatives. As an
application, we consider the problem of detecting possible associations among human behavioral
measurements and volumetric measurements for various brain regions.

(This is a joint work with Haoran Li, Alexander Aue and Jie Peng).



ON APPROXIMATE SAMPLING FROM NON-LOG-CONCAVE
NON-SMOOTH DISTRIBUTIONS VIA A LANGEVIN-TYPE MONTE
CARLO ALGORITHM

SHOGO NAKAKITA

We consider the problem of sampling from a Gibbs distribution 7(dz) o< exp(—U(x))dz
on (RY B(R%)), where U : RY — [0, 00) is a non-negative potential function. One of the
extensively used types of algorithms for the sampling is the Langevin type motivated by
the Langevin dynamics, the solution of the following d-dimensional stochastic differential
equation (SDE):

(0.1) dX, = —VU (X,)dt + V2dB,, X, =&,

where {B;}>¢ is a d-dimensional Brownian motion and ¢ is a d-dimensional random
vector with || < oo almost surely. Since the 2-Wasserstein or total variation distance
between 7 and the law of X, is convergent under mild conditions, we expect that the
laws of Langevin-type algorithms inspired by X; should converge to w. However, most of
the theoretical guarantees for such algorithms are based on the convexity of U, the twice
continuous differentiability of U, or the Lipschitz continuity of the gradient VU, which do
not hold in some modelling in statistics and machine learning. The main interest of this
study is proposal of a Langevin-type algorithm whose convergence can be given under
minimal assumptions.

To see what difficulties we need to deal with, we review a typical analysis [6] based on
the smoothness of U, that is, the twice continuous differentiability of U and the Lipschitz
continuity of VU. Firstly, the twice continuous differentiability simplifies discussions or
plays significant roles in studies of functional inequalities such as Poincaré inequalities
and logarithmic Sobolev inequalities [e.g., 1, 2]. Since the functional inequalities for 7
are essential in analysis of Langevin algorithms, the assumption that U is of class C?
frequently appears in previous studies. In the second place, the Lipschitz continuity
combined with weak conditions ensures the representation of the likelihood ratio between
{X:} and {Y;}, which is critical when we bound the Kullback-Leibler divergence. Liptser
and Shiryaev [4] exhibit much weaker conditions than Novikov’s or Kazamaki’s condition
for the explicit representation if (0.1) has the unique strong solution. Since the Lipschitz
continuity of VU is sufficient for the existence and the uniqueness of the strong solution
of (0.1), the framework of Liptser and Shiryaev [4] is applicable.

Our approaches to overcome the non-smoothness of U are mollification, a classical
approach to dealing with non-smoothness in differential equations, and the ‘misuse’ of
moduli of continuity for possibly discontinuous functions. We consider the convolution
U, := U x p, on U with a weak gradient, and some sufficiently smooth non-negative
function p, with compact support in a ball of centre 0 and radius r € (0,1]. We can
let U, be of class C? and obtain bounds for the constant of Poincaré inequalities for

7" (dz) o exp(—U,(x))dx, which suffice to show the convergence of the law of the mollified
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dynamics { X!} defined by the SDE
dX] = —VU, (X])dt + V2dB,, Xj=¢

to the corresponding Gibbs distribution 7" in 2-Wasserstein distance owing to Bakry
et al. [1], Liu [5], and Lehec [3]. Since the convolution VU, is Lipschitz continuous
if the modulus of continuity of a representative VU is finite (the convergence to zero
is unnecessary), a concise representation of the likelihood ratios between the mollified
dynamics { X7} and {Y;} is available, and we can evaluate the Kullback—Leibler divergence
under weak assumptions.

As our analysis relies on mollification, the bias—variance decomposition in estimation of
VU, rather than VU is crucial. This decomposition enables us to propose new algorithms
for U without continuous differentiability. Concretely speaking, we propose a new al-
gorithm named the spherically smoothed Langevin Monte Carlo (SS-LMC) algorithm,
whose errors can be arbitrarily small under the dissipativity of U and the boundedness of
the modulus of continuity of weak gradients. In addition, we argue zeroth-order versions
of these algorithms which are naturally obtained via integration by parts.
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Two step estimations via the Dantzig selector for ergodic
time series models
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Let us consider the following time series model.
X =S(a"¢(Xi-1),8" Zi1) +up,  Eluf|Foi1] = 0*(X_1; h),

where X;—1 = (X¢-1,...,X;_q), without loss of generality. Let 6y = (af,3,)" be the
true value of § = (a',87)T, © = ©, x ©5 C RPH? a parameter space for § and H a metric
space equipped with a metric dg. Put Tig := {j : agj # 0}, Too := {j + p1 : Boj # 0} and
Ty = T1oUTsg. We observe (X1, Z1),...,(Xn, Z,). Our aim is to estimate § = (a',37)T.
Hereafter, we fix an initial value (Xo,...,X1-4) = (z0,...,21-4) and put p = p; + p2,
s = 81 + So, where s1 and s9 are the numbers of elements in 779 and Thg, respectively.

We first construct the estimator HAS) for 0 by the following Dantzig selector type esti-
mator:

0D = argin 61, Coi= {0 € R : [0 (0) e < A},
€Cn

where
H00) = 53 ST oK) ) (K ST oK, 21}

and )\, is a tuning parameter. Moreover, we define the following estimator T, for Ty:
T, :={j: 0] > 0},

where 7, is a threshold. For the second step, we construct a consistent estimator for h, by

using QAS). Finally, using T, and hy,, we consider the estimator éff) for 6 as a solution to
the following equation:

~ ~

Vo (97:”, hn) =0, 0



where

. S(ag ¢(Xi-1)1y, By Zt—1T5)
Unr(Or, hn) = — Z Lz T102(X ;1 )T2 :
t—1;

-{Xt S(aq, ¢(Xi1)1y, B Zioamy)}

for every T'=T1 U T5.

In this talk, we establish the rate of convergence of éﬁf) , and the asymptotic normal-
ity of énT,,, under some regularity conditions under high-dimensional and sparse settings.
Moreover, we discuss the integer-valued autoregressive models as an example.
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Innovation algorithm of fractionally integrated (/(d)) process
and applications on the estimation of parameters
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ABSTRACT

The long memory phenomena frequently occur in the empirical studies of various fields. The fractionally integrated
process is the one of the suitable candidate which appropriately represents the long memory property. There are two
recursive algorithms for determining the one-step predictors of time series, that is, the Durbin-Levinson algorithm and
the innovation algorithm. The Durbin-Levinson algorithm for the fractionally integrated process is well-known and
widely used, which naturally derives the Cholesky factorization of the inverse matrix of the covariance matrix of the
process. In this paper, we derive the innovation algorithm for the fractionally integrated process. The result is also
applied to the derivations of the Cholesky factorization of the covariance matrix and the Gaussian likelihood of the
process in the explicit forms. Moreover, the asymptotic theory of Gaussian maximum likelihood estimator (GMLE) is
derived in terms of the innovation algorithm.

1 Introduction

An ARMA (p,q) process {x;} is often called a short memory process since the covariance between x; and x., ; decreases
rapidly as j — co. However, the long memory phenomena frequently occur in the empirical studies of various fields
(see e.g., Hurst (1951)). In this paper, we consider one of the long memory process so-called the fractionally integrated
(I1(d)) process defined by

) (1-LY¥z=¢, Gt=1,...,n)),

where d € (—1/2,1/2), (d # 0), L is the lag operator and {&;} bid (O, 0'2). Using the expansion of the lag operator

1 «lG-d,;, <~
2 AL)=(1-L)y = L= L
@ =00 = 5 2R _,.Z:“”

this can be rewritten as

3) &=y @il =) ¢
=0 =

Then, {z,} is a stationary long memory process generated by
z=(1- L)_dst
1 = I(+d -
- . &= Vi
r(d);r(]-i‘l) =J ; Jet=j

where the coeflicients satisfy y; = O ( jd‘l), so that the degree of decreasing is quite slow as j — oo.




2 Main result

In this section, we provide the main results.

2.1 The Gaussian MLE for /(d) process

In this section, we impose the Gaussian assumption on /(d) process. Then, we have the Gaussian log-likelihood of
1(d) process for 6 = (d, 0'2)/

uj—y (d)?
Vi1 (0)

" 1 n 1 n
@ 1(9)=[(d,g-2)=—ilog{Zn}—zjzz;logvj‘fl(e)—zg

Now, we have the following main results. First, we describe the consistency of GMLE.

Theorem 1. Let {z,} is the Gaussian I (d) process defined in (1) withd € (—1/2,1/2), (d # 0). And let 0= (Zi: 52)/ is
the Gaussian MLE (GMLE) of 0 = (d, 0'2), which maximizes the Gaussian log-likelihood (4). Then, the GMLE 0 has

consistency, that is,
—~
0 — 0(),
’
where 6y = (do, 0'%) is the true value of 6.

Next, we have the following asymptotic normality.

Theorem 2. Let {z,} is the Gaussian 1 (d) process defined in (1) with d € (=1/2,1/2), (d # 0). And let § = (d.5%)
is the Gaussian MLE (GMLE) of 6 = (d, 0'2)/ which maximizes the Gaussian log-likelihood (4). Then, the GMLE 0

satisfies the asymptotic normality, that is,
Vi (0-60) 5 N (0, 4),

where 6y = (do, 0'3), is the true value of 6.
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Scaling Limits of Markov Chains/Processes in Monte
Carlo Methods

Kengo Kamatani (Institute of Statistical Mathematics, JST CREST)

In this presentation, we will explore the recent results of scaling limit of piecewise deterministic
Markov processes for anisotropic targets. Suppose we wish to sample from

II(dz) = exp(—H(x))dx

where H : R? — R is a continuously differentiable function. For the Bayesian context, this
probability distribution is the posterior distribution of interest. If we have an i.i.d. sample from
IT, we can approximate Il-integral of any function f(x) by the law of large numbers. In most
of the cases, direct i.i.d. sampling is impossible or computationally very expensive. For these
cases, the Markov chain Monte Carlo method is useful which originated with the classic paper by
Metropolis et al. (1953) almost 70 years ago. The Markov chain Monte Carlo method is designed
to construct an ergodic Markov kernel P which is Il-invariant. If a Markov chain X1, X, ... is
generaetd from the Markov kernel P then the law of large numbers is satisfied. The Markov
chain Monte Carlo is now a gold standard for Bayesian inference.

Recently, its continuous process version, the Markov process Monte Carlo method is of
substantial interest for Monte Carlo analysis. Known Markov process Monte Carlo methods rely
on an auxiliary variable trick which uses an auxiliary variable v with a probability density v
on = and considers the joint probability distribution p := II(dz) ® v(dv) as an extended target
distribution on Z = R? x Z. The original target distribution is a marginal distribution of the
extended target distribution. Since Brownian motion does not have an absolutely continuous
path, we can not simulate processes driven by Brownian motion exactly. For our Monte Carlo
analysis, exact sampling is necessary. Therefore, the Markov processes of interest should not
have a Brownian part. Known processes consist of a deterministic part and a pure jump part.
These processes are known as the piecewise deterministic Markov processes.

Here we follow Azais et al. (2014) for the expression of the piecewise deterministic Markov
processes. The processes are constructed by characteristics (¢, A\g, @k : 1 = 1,..., K). The flow
¢ : Z xR — Z is continuous, ¢(-,t) is a homeomorphism for each ¢t € R and ¢(¢(-, s),t) =
o(-,s+1t). Foreach k =1,..., K, the jump rate A\, : Z — R, determines the jump time of pure
jump processes, and Q) is a Markov kernel on Z. Let Ag(z,t) So Me(0(z, 8))ds.

The Markov process is defined by the following way. Suppose z(O) = (2(0),t(0)) € Z. Let
Ty,...,Tk be independent processes with P(T), > t) = exp(—Ax(z,t)). Let Ty = ming—y, . x Tk.
If T}, = T, then Z is generated from Qi (¢(z,T%),-) and set

| #(2(0),t) fort < Ty
X(t){ 4 for t = T.

After T, the process evolves in the same way with starting value Z. There are several choices
of characteristics. Two popular piecewise deterministic Markov processes use the same flow ¢
defined by 2/(t) = v(t) and v'(¢t) = 0. The Zig-Zag sampler proposed by Bierkens et al. (2019)



uses d Markov kernels @)1, . .., Qg4 with d jump rates A\{,...,A\q. Foreachi=1,...,d, the Markov
kernel is a deterministic kernel @; defined by a map (z,v) — (x, F;(v)) where F; is an operator
that flips the i-th coordinate of . The jump rate is defined by \;((z,v)) = max{0, 0, H(z)v;}.
The bouncy particle sampler proposed by Peters and de With (2012), Bouchard-Coté
et al. (2018) uses two Markov kernels Qpounce and Qref with corresponding jump rates Apounce
and Arer. The kernel Qpounce is a deterministic kernel defined by a map (z,v) — (x, k(z,v)):

(VH(z),v)
IVH(z)[?

and Apounce (7, v) = max{0,(VH(z),v)}. The jump rate A\ is a positive constant, and Q,.f is a -
invariant Markov kernel. For our analysis, for simplicity, we assume Q¢ ((2,v),d(y, w)) = v(dw).

We have several critical findings. For the Zig-Zag algorithm, its performance is intricately
linked to the orientation of the target’s anisotropy; specific alignments with the algorithm’s
operational axes lead to enhanced efficiency, while others can hinder its effectiveness. The BPS
algorithm, on the other hand, exhibits a deterministic dynamical behaviour in its limiting form
with a better rate of convergence.

This is joint work with Joris Bierkens (TU Delft) and Gareth O. Roberts (Warwick). See our
paper on arxiv https://arxiv.org/abs/2305.00694 for the detail.

VH(x)

K(z,v) =v—2
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On a general linear hypothesis testing problem for latent factor
models in high dimensions

Takahiro Nishiyama® and Masashi Hyodo®

@ Department of Business Administration, Senshu University
b Faculty of Economics, Kanagawa University

Let xgi = (g1, - .. ,xgip)T ~ F, be iid p-dimensional random vectors collected from
the ¢th subject in the gth population, where F, denotes the distribution function for
gth population, i € {1,...,n4}, g € {1,...,k}. A factor model assumes that for each
g € {1,...,k}, the observable vector x, is decomposable into a latent factor and an
idiosyncratic component as follows:

Xgi = [l;g + Fngi + \I’;/zﬁgi, (1)

where K, € R? is a deterministic intercept vector, zy; = (zgﬂ, o ,zgidg)T is a d,-dimensional
latent factor vector, and €, = (€g1, .. .,€4p) " is a p-dimensional error vector which is un-
correlated with the latent factor. In what follows, we assume that d, € N is a fixed num-
ber. Further, F, = (f;1,...,f,,)" denotes a loading matrix where for each j € {1,...,p},
fi; = (fojr,---, fyja,)" € R% is a non-random vector, and W, = diag(¢g1, ..., 1%y is a
non-random p x p diagonal matrix whose elements are 15 > 0,...,1,, > 0. For the
latent vector z,; and error vector €4, we further assume that z,, are iid with E(z,/) = 0,
E(z};,) = 1 and E(z,,) = r,, < ©, and €; are iid with E(ey;) = 0, E(e;;;) = 1 and
E(ej;;) = ke, < 0 for g e {1,... k}, e {l,...,ng}, je{l,...,p} and £ € {1,...,d,}.
Structural assumptions of the model (1) imply that

E(xgi) = py, cov(xg) = FgF;r + ¥, =3, (2)

where 3, € RZ{” and RZE? denotes the space of real, symmetric, positive definite, p x p
matrices.

By using the data generated by (1), we design a high-dimensinal test procedure for a
general linear hypothesis testing (GLHT) problem:

H:GM =0, A:GM # O, (3)

where M = (py,..., ;)" is a k x p matrix and G is a ¢ x k known coefficient matrix
with full row rank ¢ < k. By setting G to be any (k — 1) x k contrast matrix, i.e., any
(k—1) x k matrix with linearly independent rows and zero row sums, the GLHT problem
(3) reduces to the one-way MANOVA problem:

Hipy = =py AFH (4)

Also, various post hoc and contrast tests can be written in the form of (3).



From Zhang et al. (2017) and Zhang et al. (2022), we re-write (3) into the following
equivalent form:

H:Cp=0, A:Cp=0, (5)

where C = G®1, (gp x kp matrix), G = (GDG ' )~Y2G with D = diag(1/ny, - , 1/ny)

and p = (], ..., pmf)".
Let H=G'G and pi = (X/,...,X])" where X, = (1/ny) >, x,: for g € {1,...,k}.
Then, tor testing (5), we defined the test statistic as

{”CN’”z Z (gqtr (W )}

g=1

- %{ATH@;I i }

Tnh

where, for g € {1,...,k}, a4y is the diagonal element of the matrix A = DY?HD'?

and t?\Il\) = tr(S ) ngl Ai(Sy). Here, A\y(S,) is the ¢th largest eigenvalue of matrix

={1/(ny — 1)} 2% (x4i — Xy) (X4i — X,) " and c?g is a consistent estimator of d, based
on the ER method proposed by Ahn and Horenstein (2013). Besides, we derived the
limiting null distribution of 7T;,;, under some assumptions and constructed test procedure
for testing (5). Also, we compared, through simulations, the performance of the proposed
test and existing procedures suitable for one-way MANOVA problem in high-dimensional
data in terms of size control and power.
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