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Asymptotic properties of kernel k-means
for high dimensional data

Kento Egashiraa, Kazuyoshi Yatab, Makoto Aoshimab

aDepartment of Information Sciences, Tokyo University of Science
bInstitute of Mathematics, University of Tsukuba

Cluster analysis can be divided into two types: hierarchical and partitional. Hier-
archical clustering groups data into dendrograms based on their cluster similarities
determined by a preset linkage function. A dendrogram enables the observation of
the process of merging or dividing clusters. For discussions on hierarchical cluster
analyses, see the works of Everitt et al. [4] and Hastie et al. [6], among others. Par-
titional clustering, as its name suggests, divides data into a pre-determined number
of clusters. K-means can be given on behalf of partitional clustering. Notably, k-
means has been approved as a useful tool for analyzing microarray gene expression
data. A characteristic of such data is that the number of variables was consider-
ably larger than the sample size, giving high-dimensional, low-sample-size (HDLSS)
scenarios. Substantial work on HDLSS asymptotic clustering has been performed
in recent years. For example, Liu et al. [8] proposed a two-way split statistical-
significance-of-clustering (SigClust) method for HDLSS data. Ahn et al. [1] pro-
posed hierarchical divisive clustering for high-dimensional asymptotics. Huang et al.
[5] modified SigClust using a soft thresholding approach. Kimes et al. [7] proposed
a method for sequentially testing the statistical significance of hierarchical cluster-
ing by controlling the family-wise error rate in HDLSS settings. Yata and Aoshima
[10] presented the consistency properties of sample principal component scores and
applied them to clustering in high-dimensional settings. Nakayama et al. [9] inves-
tigated HDLSS clustering using kernel principal component analysis. Borysov et al.
[2] studied the behaviors of hierarchical clustering under several asymptotic settings
from a moderate dimension for HDLSS; however, the theoretical assumptions were
considered to be strict for HDLSS data owing to several simultaneous asymptotic
settings. Egashira et al. [3] explores practical assumptions to indicate the behav-
ior of hierarchical clustering and obtained theoretical results in multiclass settings.
Given this background, asymptotic properties of k-means in the HDLSS settings
seems to have not been studied sufficiently.

In this talk, we investigated k-means when both the dimension and sample size
approach infinity at first. Then, we explored kernel k-means in the HDLSS context
theoretically. Especially, we mensioned kernel k-means with gaussian kernel function
and compared performance of it to conventional k-means in the multiclass HDLSS
context.
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Broken-stick components retention rule for equi-correlated

normal population (報告書)

赤間陽二

2023年 12月 9日

株価の低頻度サンプリング時系列や, 大規模心理学的調査などでは, 変数の間の相関が顕著になる. そのよう
な状況で因子モデルの因子の個数を標本相関行列 Cから推定することを考える. 代表的な推定方法としては,

閾値法 (thresholding)の他に,「ランダム」データから因子などをシミュレーションして, Cの対応物と比較す
る方法がある. 閾値法としては, Guttman-Kaiser ruleや adjusted correlation thresholding [6]があり, 後者
のシミュレーションによる因子数推定法としては, 伝統的な broken-stick ruleや, 頻繁に使用される parallel

analysis [3]がある. 閾値法もシミュレーションによる因子推定法も, 実データを用いて振る舞いが研究されて
きた. 閾値法の理論的背景は [8], [6], [2]などが考察しているが, broken-stick ruleや parallel analysisの理論
的背景は十分理解されてない [5].

そこで broken-stick rule の理論研究のために次のような設定を考えた. どの異なる変数の組みも共通
の定数 ρ ∈ [0, 1) を相関係数として持つ p 次元正規母集団 (等相関正規母集団と呼ぶことにする) に着目
し, サイズ n のサンプルのサンプル相関行列 C に対する broken-stick rule の結果の, 比例的漸近枠組み
n, p → ∞, p/n → c > 0での極限を研究することにした. このような Cの絶対最大非対角要素は, さまざま
な漸近枠組みで ρに関する相転移を現象を持つ [7]. 我々は, ρの 0または正で, Guttman-Kaiser ruleの極限
挙動に相転移 [2]を見たように, broken-stick ruleの極限挙動に相転移を見ることを目標とした.

本研究では, 比例的漸近枠組みにおいて, 等相関正規母集団の標本相関行列 C の第二固有値が (1 －
ρ)(1 +

√
c)2 に高確率で収束することを証明した. その証明には, 比例的漸近枠組みでの非有界スペクトルを

持つ標本分散行列 Sの固有値分布 [4], Sと Cの漸近的関係 [1], および, Weyl の不等式を用いた. この第二
固有値に関する命題と, C の最大固有値の発散 [1] より, broken-stick rule が C から抽出する因子の個数が,

性質 ρ > 0の指示関数に高確率で収束することが証明できた. この定理により, broken-stick rule は, 母相関
係数が正である equi-correlation block の個数を数えていることが説明できた. 対応しそうな現象が, binary

multiple sequence alignment のデータ [9]や, Fama-French 100 portfoliosのデータ [6]の平均相関係数の低
頻度サンプリング時系列に確認できた.

しかし, シンポジウムで高次元ファイナンスの専門家が次のような指摘をした: 高頻度サンプリング時系列
分析では, 正規分布より裾が重い分布, 例えば t-分布などを用い, 因子モデルの因子の個数を推定するのに [10]

の Shrinkage Principal Orthogonal complEment Thresholding (S-POET) という閾値法が有用である.

さらに, シンポジウムで矢田・青嶋のグループは, 一般的なスパイク固有値モデルの標本分散行列の固有
値に関する分布自由な結果や, 比例的漸近枠組み以外の漸近枠組みに関する結果を示唆し, S-POET は noise

reduction PCA [11, 12]に関係していると指摘した.

以上から Yata & Aoshima や Fanの結果が, 本研究の理論展開に重要であることを認識した. またシンポ
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ジウムでは本研究に有用なさまざまな知見を得た.
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Forecasting High-Dimensional Covariance

Matrices Using High-Dimensional Principal

Component Analysis

Hideto Shigemoto ∗, Takayuki Morimoto †

November 17, 2023

Abstract

We modify the recently proposed forecasting model of high-

dimensional covariance matrices (HDCM) of asset returns using

high-dimensional principal component analysis (PCA). It is well-

known that when the sample size is smaller than the dimension,

eigenvalues estimated by classical PCA have a bias. In particular, a

very small number of eigenvalues are extremely large and they are

called spiked eigenvalues. High-dimensional PCA gives eigenvalues

which correct the biases of the spiked eigenvalues. This situation

also happens in the financial field, especially in situations where

high-frequency and high-dimensional data are handled. The research

aims to estimate the HDCM of asset returns using high-dimensional

PCA for the realized covariance matrix using the Nikkei 225 data,

it estimates 5- and 10-minute intraday asset-returns intervals. We

construct time-series models for eigenvalues which are estimated by

each PCA, and forecast HDCM. Our simulation analysis shows that

the high-dimensional PCA has better estimation performance than

classical PCA for the estimating integrated covariance matrix. In

our empirical analysis, we show that we will be able to improve the

forecasting performance using the high-dimensional PCA and make

a portfolio with smaller variance.

∗ Group Risk Management Department, Nomura Holdings, Inc., 2-2-2 Otemachi,

Chiyoda-ku, Tokyo 100-8130, Japan.
† Corresponding author: Department of Mathematical Sciences, Kwansei Gakuin Uni-

versity, 1, Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.

morimot@kwansei.ac.jp
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component analysis; high-frequency data; time series

Summary

In this study, we constructed the HDCM forecasting models using high-

dimensional PCA. In particular, the previous studies show that to estimate

the latent factors, POET is used. However, it is known that when the dimen-

sion is greater than the sample size, the eigenvalues estimated by classical

PCA have biases. Therefore, in order to estimate the eigenvalues more accu-

rately, we adopted SPOET which corrects biases of empirical eigenvalues. In

addition, we combined eigenvalues and time-series models to forecast eigen-

values and covariance matrix.

In the simulation study, we generated the asset returns based on the esti-

mated HDCM as the integrated covariance matrix and it shows that SPOET

is also effective for the price process. Especially, the empirical eigenvalues of

SPOET were closer to the true values than those of POET.

In the empirical analysis, we constructed some forecasting models of

HDCM using a number of individual stocks traded on Nikkei 225. Almost

all our proposed models which use SPOET show better performance than

the other models which use POET. In addition, in terms of economic

performance, our models can generate a smaller variance than benchmarks

in most cases. This study applied SPOET discussed under the i.i.d. setting

to the continuous Itô semi-martingale setting for simulation study and

empirical analysis. Thus, theoretical results are needed in the future.

This study is partly supported by the Institute of Statistical Mathematics

(ISM) cooperative research program (2022-ISMCRP-2024), JSPS KAKENHI

Grant Number 21K01433, and Grant-in-Aid for JSPS Fellows Grant Number

22J10285. The views expressed in this study are those of the authors and do

not necessarily reflect the official views of Nomura Holdings, Inc. or Kwansei

Gakuin University.
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Feature learning via mean-field neural networks and
anisotropic features

Taiji Suzuki1,2
Joint work with Denny Wu3, Atsushi Nitanda2,4, Kazusato Oko1,2

1Graduate School of Information Science and Technology, the University of Tokyo,
2RIKEN Center for Advanced Intelligence Project,
3Center for Data Science, New York University,

4Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology.

In this presentation, I have presented the feature learning perspective of mean-field neural
networks and compared it with kernel methods. Especially, I presented the generalization ability of
mean field neural network trained by mean field Langevin dynamics for learning k-sparse parity
functions. I summarize the technical details given in the presentation as follows.

1 Introduction
In this work, we bridge the aforementioned gap by presenting a simple and general framework to
establish sample complexity of MFLD in learning binary classification problems. We then apply
this framework to the sparse k-parity problem, and obtain improved rate of convergence for the
fully time- and space-discretized algorithm. More specifically, our contributions can be summarized
as follows.
• We present a general framework to analyze MFLD in the learning of binary classification tasks.

Our framework has two main ingredients: (i) an annealing procedure that applies to common
classification losses that removes the exponential dependence on regularization parameters in
the logarithmic Sobolev inequality, and (ii) a novel local Rademacher complexity analysis for the
distribution of parameters optimized by MFLD. As a result, we can obtain learning guarantees
for the mean-field neural network in discrete-time and finite-width settings.

• We apply our general framework to the k-sparse parity problem, and derived learning guarantees
with improved rate of convergence and dimension dependence. Specially, in the n � d2 regime
we obtain exponentially converging classification error, whereas in the n � d regime we achieve
linear dimension dependence. Note that this improves upon the NTK analysis (which gives a
sample complexity of n = Ω(dk)) in that it “decouples” the degree k from the exponent in the
dimension dependence. Our theoretical results are supported by empirical findings.

2 Problem Setting
We consider a classification problem given by the following model:

Y = 1A(Z)− 1Ac(Z) ∈ {±1}

where Z = (Z1, . . . , Zd) is the input random variable on R
d and 1A is the indicator function

corresponding to a measurable set A ∈ B(Rd), i.e., 1A(Z) = 1 if Z ∈ A and 1A(Z) = 0 if Z �∈ A.
Let PZ be the distribution of Z. We are given input-output pairs Dn = (zi, yi)

n
i=1 independently

identically distributed from this model as training data. Then, we construct a binary classifier
that predicts the label for the test input data as accurate as possible. To achieve this, we learn a
two-layer neural network model in the mean-field regime via the mean-field Langevin dynamics.

One important problem setting for our analysis is the k-sparse parity problem defined as follows.
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Example 1 (k-sparse parity problem). PZ is the uniform distribution on the grid {±1/
√
d}d and

A = {ζ = (ζ1, . . . , ζd) ∈ {±1/
√
d}d | ζ1 · · · ζk > 0}1.

Mean-field two-layer network. Given input z, let hx(z) be one neuron in a two-layer neural
network with parameter x = (x1, x2, x3) ∈ R

d+1+1 defined as

hx(z) = R̄[tanh(z�x1 + x2) + 2 tanh(x3)]/3,

where R̄ ∈ R is a hyper-parameter determining the scale of the network. We place an extra tanh
activation for the bias term x3 ∈ R because the boundedness of hx is required in the convergence
analysis. Let P be the set of probability measures on (Rd̄,B(Rd̄)) where d̄ = d + 2 and B(Rd̄)
is the Borel σ-algebra on R

d̄ and Pp be the subset of P such that its p-th moment is bounded:
Eμ[‖X‖p] < ∞ (μ ∈ P). The mean-field neural network is defined as an integral over neurons hx,

fμ(·) =
∫
hx(·)μ(dx),

for μ ∈ P . To evaluate the performance of fμ, we define the empirical risk and the population risk
as

L(μ) := 1
n

∑n
i=1 �(yifμ(zi)), L̄(μ) := E[�(Y fμ(Z))],

respectively, where � : R → R≥0 is a convex loss function. In particular, we consider the logistic loss
�(f, y) = log(1+ exp(−yf)) for y ∈ {±1} and f ∈ R. To avoid overfitting, we consider a regularized
empirical risk F (μ) := L(μ) + λEX∼μ[λ1‖X‖2], where λ, λ1 ≥ 0 are regularization parameters.
One advantage of this mean-field definition is that fμ is a linear with respect to μ, and hence the
functional L(μ) becomes a convex functional. Let μ̂ be the minimizer of F (μ). We put the following
assumption.

Assumption 1. There exists c0 > 0 and R > 0 such that the following conditions are satisfied:
• For some R̄, there exists μ∗ ∈ P such that KL(ν, μ∗) ≤ R and L(μ∗) ≤ �(0)− c0.

• For any λ < c0/R, the regularized expected risk minimizer μ[λ] := argmin L̄(μ) + λKL(ν, μ)
satisfies Y fμ[λ]

(X) ≥ c0 almost surely.

Type I: Perfect Classification with Exponentially Decaying Error Under the margin
assumption of fμ∗ (Assumption 1), we have that fμ̂ also yields a Bayes optimal classifier. More
precisely, we have the following theorem.

Theorem 1. Suppose Assumption 1 holds. Let M0 = (ε∗ + 2(R̄+ 1))/λ. Moreover, suppose that
λ < c0/R and

Q := c20 −
4R̄2

nλ2

[
λ

(
4R̄+

λ

32R̄2n

)
+ 8R̄2(4 + log log2(8n

2M0R̄)) + nλε∗
]
> 0,

then fμ̂ yields perfect classification, i.e., P (Y fμ̂(Z) > 0) = 1, with probability 1− exp(− nλ2

32R̄4Q).

Type II: Polynomial Order Classification Error We can also obtain a result that has a
milder dependency on λ and hence a better sample complexity.

Theorem 2. Suppose Assumption 1 holds. Let λ < c0/R and M0 = (ε∗ + 2(R̄+ 1))/λ. Then, with
probability 1− exp(−t), the classification error of fμ̂ is bounded as

P (Y fμ̂(Z) ≤ 0) ≤ 2ψ(c0)

[
8R̄2

nλ

(
4 + t+ log log2(8n

2M0R̄)
)
+

1

n

(
4R̄+

λ

32R̄2n

)
+ ε∗

]
.

We notice that the right hand side scales with O(1/(nλ)), which is better than O(1/(nλ2)) in
Theorem 1; this implies that a sample size linear in the dimensionality is sufficient to achieve small
classification error. The reason for such improvement in the λ-dependence is that the stronger
L∞-norm convergence is not used in the proof; instead, only the convergence of the loss is utilized.
On the other hand, this analysis does not guarantee a perfect classification.

1We present the axis-aligned setting for conciseness, but the same result holds under orthogonal transforms.
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Statistical estimation with integral-based loss functions

Akifumi Okuno1,2

1Inst. Stat. Math., 2RIKEN AIP

This study considers statistical estimation problems using integral-based loss functions,
which encompass the following two specific applications.

(1) Robust estimation using density-power divergence discussed in Okuno (2023a). Therein,
they minimize the following robust loss function equipped with a parametric density pθ ar-
bitrarily specified by users (e.g., Gaussian mixture model, Gompertz model):

− 1

β

1

n

n∑
i=1

pθ(xi )β+ 1

1+β

∫
pθ(z)1+βdz.
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(a) Gompertz density

x

Fr
eq

ue
nc

y

−5 0 5 10

0
20

40
60

80
10

0
12

0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Pr
ob

ab
ilit

y 
de

ns
ity

MLE (beta=0)
beta=0.5 / m=10
beta=0.5 / m=25
beta=0.5 / m=100

(b) Gaussian mixture

Figure 1: Computational intractable models (Gompertz and Gaussian mixture) are estimated by
the proposed approach.

(2) Higher-order variation regularization discussed in Okuno (2023b). Therein, they minimize
the following penalized loss function equipped with a function fθ arbitrarily specified by
users (e.g., neural network, generalized additive model):

1

n

n∑
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{yi − fθ(xi )}2 +
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dz.
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(b) Ridge regularization
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(c) Proposal

Figure 2: Single-layer perceptron (with L = 200 hidden units) trainedwith the proposed approach.



Due to the difficulty in evaluating the integral terms, much of the existing research has
concentrated on (i) straightforward models (e.g., normal density estimation, spline estimation)
where the explicit form of these integral terms can be obtained, or (ii) numerical integration,
which is computationally intensive. Notably, statisticians have long focused on optimization
with full-batchmethods (e.g., Newton-Raphsonmethod), and the obsessionwith full-batchmeth-
ods has made computations challenging.

However, if we rewind the long history of research all the way back to the beginning, such
integral-based loss functions have been known to be simply minimized by stochastic gradient
descent (Robbins andMonro, 1951). To bridge the substantial, unseen gap between the practical
applications in statistics and the profound advancements in stochastic optimization theory, this
talk intentionally sheds light on the potential utility of the stochastic optimization techniques.
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NON-SPARSE HIGH-DIMENSIONAL STATISTICS AND ITS APPLICATIONS

MASAAKI IMAIZUMI1,2

1The University of Tokyo, 2 RIKEN Advanced Intelligence Project

Abstract. In this talk, we present several results in non-sparse high-dimensional statistics. Specif-

ically, the generalization and Bayesian estimation of high-dimensional linear regression models,

statistical inference for high-dimensional generalized linear models, and the regret analysis on con-

textual bandit problems applying high-dimensional linear models. The analysis in these studies uses

the theory of benign overfitting using spectrum, the risk analysis using the convex Gaussian minimax

theorem, and the statistical inference using approximate message propagation methods.

1. Outline

1.1. Linear Regression. We consider a linear regression problem with 𝑝-dimensional covariates

and a parameter. Suppose that we observe i.i.d. 𝑛 pairs {(𝑋𝑖,𝑌𝑖)}
𝑛
𝑖=1

of a covariate 𝑋𝑖 ∈ R
𝑝 and a

target variable 𝑌𝑖 ∈ R generated from the following linear model with the true parameter 𝜃0 ∈ R𝑝:

𝑌𝑖 = 〈𝑋𝑖, 𝜃0〉 + 𝜉𝑖, 𝑖 = 1, ..., 𝑛,

where 𝜉𝑖 is a centered noise variable. Let Σ = E[𝑋𝑖𝑋
�
𝑖 ] be a covariance matrix of the covariate.

The goal of this problem is to estimate the parameter 𝜃0 from the observations. Here, we consider

the high-dimensional setting, specifically, we consider 𝑝 � 𝑛 or where 𝑝 = ∞ regardless of 𝑛.

Also, we do not impose the assumption of sparsity on the true parameter 𝜃0. In this setting, the

notion of benign overfitting is actively studied.

We investigate whether benign overfitting-like phenomena occur in situations in which we relax

key assumptions in this foundational model. [NI22] considers the case where the covariates are

dependent in the sample direction and shows that similar benign overfitting occurs depending on

the strength of the dependence. [WI23] develops an informative prior distribution that allows

for a Bayesian estimator and its distribution approximation that is valid even in non-sparse high

dimensions. [TI23] considers that the noise 𝜉𝑖 is dependent on the covariance and gives conditions

for the estimation error convergence, by utilizing the Gaussian minimax inequality.

1.2. Generalized Linear Regression. We next consider the generalized linear model (GLM):

for a pair (𝑋,𝑌 ) of 𝑝-dimensional random features 𝑋 and random responses 𝑌 , we consider the

following model

E[𝑌 | 𝑋 = 𝑥] = 𝑔(𝑥�𝛽), ∀𝑥 ∈ R𝑝, (1)
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where 𝑔 : R→ R is an inverse link function that monotonically increases, and 𝛽 = (𝛽1, . . . , 𝛽𝑝)
� ∈

R
𝑝 is an unknown deterministic coefficient vector. Suppose that we observe i.i.d. 𝑛 pairs {(𝑋𝑖,𝑌𝑖)}

𝑛
𝑖=1

of a feature vector 𝑋𝑖 ∈ R
𝑝 and a target variable 𝑌𝑖 ∈ Y that follow the GLM (1), where Y is a

response space, such as R,R+, {0, 1}, {0, 1, 2, . . .}, and so on.

We consider the proportional high-dimensional regime: we are particularly interested in the

proportional limit of the coefficient dimension 𝑝 and sample size 𝑛:

𝑛, 𝑝 → ∞ and 𝑝/𝑛 → ∃𝜅 ∈ (0,∞).

In this regime, for the logistic regression as the special case, statistical inference on 𝛽 has been

actively studied without the sparsity of 𝛽.

[SUI23] develops a methodology for statistical inference for a broad class of GLMs, by deriving

the asymptotic normality of an estimator. This method is based on the analysis of a state evolution

equation by a vector approximate massage passiong (VAMP) and its application to statistical models.

1.3. Bandit with Linear Context. We study a bandit problem with𝐾 arms associated with a linear

model for its rewards with 𝑝-dimensional context vectors. For each round 𝑡 ∈ [𝑇] := {1, 2, ..., 𝑇}

and arm 𝑖 ∈ [𝐾], we define a context 𝑋 (𝑖)
𝑡 which is a 𝑝-dimensional zero-mean sub-Gaussian vector,

which is independent among rounds 𝑡. An agent chooses an arm 𝐼 (𝑡) ∈ [𝐾] based on 𝑋 (𝑖)
𝑡 of all

the arms 𝑘 ∈ [𝐾], and then observes a reward that follows a linear model as shown in

𝑌 (𝐼 (𝑡)) = 〈𝑋 (𝐼 (𝑡)) , 𝜃𝐼 (𝑡)〉 + 𝜉 (𝑡).

The unknown true parameters 𝜃 (𝑖) for each arm 𝑖 ∈ [𝐾] lie in a parameter space R𝑝, and the

independent sub-Gaussian noise 𝜉 (𝑡) with zero mean and variance 𝜎2 > 0. We define 𝑖∗(𝑡) :=
argmax𝑖∈[𝐾] 〈𝑋

(𝑖)
𝑡 , 𝜃 (𝑖)〉 as the (ex ante) optimal arm at round 𝑡.

Our goal is to design an algorithm that maximizes the total reward, which is equivalent to

minimizing the following expected regret. [KI23] considers the high-dimensional setting 𝑝 � 𝑛 or

𝑝 = ∞ without the sparsity, then derive a novel explore-then-commit strategy to achieve minimize

the expected regret.
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1. Introduction: Galaxy Formation and Evolution with Big Data 

Matter in the early Universe was almost uniform, and a slightly dense region grew by gravity, finally into a galaxy. 

It was attempted to develop a theory to deal with the star formation and associated history of heavy element synthesis, 

under an assumption that a galaxy has formed from a single, huge gas cloud. While the research in this direction 

was once completed in the first half of 1980s, this was not the end of the studies of galaxy evolution. Cosmological 

research that has progressed in parallel has revealed that galaxies merge and grow. This indicates that the galaxy 

evolution is a very complicated process that strongly depends on the density of the surrounding galaxies and the gas 

density. In order to formulate the galaxy evolution, it is necessary to determine such a huge system of equations. 

Though astrophysicists have constructed the governing equations from the physical laws from the first principle 

before, such a method is not realistic anymore when the quantity space exceeds 10 dimensions. It is a high time to 

revolutionize the methodology for galaxy evolution studies.  

 

2. Application of High-Dimensional Statistical Analysis to Astrophysical data   

In astronomy, if we denote the dimension of data as d and the number of samples as n, we often meet a case with 

n << d. Traditionally, such a situation is regarded as ill-posed, and there was no choice but to throw away most of 

the information in data dimension to let d < n. The data with n << d is referred to as high-dimensional low sample 

size (HDLSS). To deal with HDLSS problems, a method called high-dimensional statistics has been developed 

rapidly in the last decade. We first introduce the high-dimensional statistical analysis to the astronomical community. 

We apply two representative methods in the high-dimensional statistical analysis methods, the noise-reduction 

principal component analysis (NRPCA) and automatic sparse principal component analysis (A-SPCA), to a 

spectroscopic map of a nearby archetype starburst galaxy NGC 253 taken by the Atacama Large 

Millimeter/Submillimeter Array (ALMA). The ALMA map is a typical HDLSS dataset. First, we analyzed the 

original data including the Doppler shift due to the systemic rotation. The high-dimensional PCA could describe the 

spatial structure of the rotation precisely. We then applied to the Doppler-shift corrected data to analyze more subtle 

spectral features. The NRPCA and R-SPCA could quantify the very complicated characteristics of the ALMA 

spectra. Particularly, we could extract the information of the global outflow from the center of NGC 253. This 

method can also be applied not only to spectroscopic survey data, but also any type of data with small sample size 

and large dimension. We are also trying to develop a method to analyze absorption line systems in the spectra of 



distant radio quasars.  

 

3. Galaxy Manifold 

From 1970s to the mid-1980s, classical multivariate analysis methods such as the principal component analysis 

(PCA) were used to combine physical quantities of galaxies in a high-dimensional space. Various (logarithmic) 

linear relations, so-called galactic scaling relations, have been discovered. Research to unify the scaling relations 

and find the fundamental relationships has led to the concept of galaxy manifolds. However, the galaxy manifold 

has once been almost forgotten because the classical PCA could treat only linear relations, and it remained a limited 

concept, though they are still useful for exploring (log)linear relations of galaxies.  

Recently, we discovered a galaxy manifold that expresses the basics of galactic evolution by the Fisher EM 

algorithm. Because of its strongly nonlinear spatial structure, it could have never been found in previous studies 

based on the classical PCA. To understand the manifold, a more sophisticated method beyond a mere classification 

is needed. We focused on a method known as the manifold learning, one of the latest methods of data science that 

is completely different from conventional methodologies.  

We adopt the algorithm Isomap and UMAP (Uniform Manifold Approximation and Projection). Isomap defines 

the neighboring points by using input-space distance and the distant points as a sequence of “short hops” between 

neighboring points. Isomap tries to find shortest paths in a graph with edges connecting neighboring data points. By 

construction, Isomap preserves the “surface density” of data points in the feature space. UMAP is based on 

differential geometry and algebraic topology. The algorithm is founded on three assumptions: 1) the data are 

uniformly distributed on a Riemannian manifold, 2) the Riemannian metric is locally constant (or can be 

approximated as such), and 3) the manifold is locally connected. From these assumptions it is possible to model the 

manifold with a fuzzy topological structure. Sine it defines the manifold so that the data points distribute as 

homogeneously as possible, it does not preserve the surface density of data points. UMAP also preserves some 

important structural properties, and it is more robust against noise than Isomap.  Manifold learning algorithm can 

“unfold” a curved and/or rolled manifold in the feature space, and provide a local coordinate system on it. The 

resulting manifolds with local coordinates from Isomap and UMAP are presented in Fig. 1. From Figure 1, we 

clearly see that the galaxy manifold is two-dimensional. We also stress that two different algorithms, Isomap and 

UMAP yield similar two-dimensional manifolds. Since Isomap preserves the density of data point cloud, we observe 

that the manifold has a density structure, i.e., dense and sparse regions on the manifold.  

The galaxy manifold obtained with Isomap preserve this information and reveal the speed of galaxy evolution at 

various stages along the manifold. e.g., galaxies passes the green valley very fast. In contrast, the galaxy manifold 

obtained with UMAP is imposed uniformity on the galaxy data, leading to a more robust and representative 

description of the observed galaxy properties e.g., galaxies evolve continuously in the feature space, without a 

discontinuity or “jump” on their evolutionary tracks. Thus, the galaxy manifold provides a clue to the evolutionary 

path of galaxies on the manifold. The SFR and stellar mass fields do not show the same evolutionary path. This 

supports that the galaxy merger without star formation plays a significant role in the growth of stellar mass. Next 

step is to fully parametrize the evolution equation of galaxies. 



Predictive Density Estimation for Two Ordered Normal Means

Under α-Divergence Loss

Yuan-Tsung Chang (Mejiro University) Nobuo Shinozaki (Keio University)
William, E. Strawderman (Rutgers University)

When the underlying loss metric is α-divergence, D(α), loss introduced by siszàr (1967), we
consider stochastic and Pitman closeness domination in predictive density estimation problems
when there are restrictions given on two means. The underlying distributions considered are
normal location-scale models, including the distribution of the observables, the distribution of
the variable whose density is to be predicted, and the estimated predictive density which will
be taken to be of the plug-in type. The scales may be known or unknown. The main contents
are as follows:

1. First, we introduce a general expression which derived by Chang and Strawderman (2014)
for the α-divergence loss as following:

If the true density function of Y is N(μ, σ2) and the estimated predictive density of Y , is
N(μ̂, σ̂2) then
a) for −1 < α < 1,

Dα(N(ỹ|μ̂, σ̂2), N(ỹ|μ, σ2)) =
4

1− α2

(
1− d(σ2, σ̂2)e−A(σ2,σ̂2)

(μ̂−μ)2

2

)
,

where

d(σ2, σ̂2) =
σ(α−1)/2τ

σ̂(α+1)/2
, A(σ2, σ̂2) =

(
1− α

2σ2

)(
1− (1− α)τ2

2σ2

)
> 0,

1

τ2
=

(
1 + α

2σ̂2
+

1− α

2σ2

)
.

Further, d(σ2, σ̂2) < 1 and A(σ2, σ̂2) > 0.

b) (Reverse KL)

D+1(N(ỹ|μ̂, σ̂2), N(ỹ|μ, σ2)) =
1

2

[(
σ̂2

σ2
− log

σ̂2

σ2
− 1

)
+

(μ̂− μ)2

σ2

]
.

c) (KL)

D−1(N(ỹ|μ̂, σ̂2), N(ỹ|μ, σ2)) =
1

2

[(
σ2

σ̂2
− log

σ2

σ̂2
− 1

)
+

(μ̂− μ)2

σ̂2

]
.

Also note that in each case, the {D(α)} loss is a concave monotone function of squared
error loss |μ̂−μ|2 and is also a function of the variances. In this set-up and show that it is
a concave monotone function of quadratic loss, and also of the variances (predicand, and
plug-in).

2. Next, we demonstrate D(α) stochastic domination and Pitman closeness of certain plug-in
predictive densities over others for the entire class of metrics simultaneously when ”usual”
stochastic domination and Pitman closeness holds in the related problem of estimating
two ordered means with respect to quadratic loss(Oono, Shinozaki (2005), Chang, Oono
and Shinozaki(2012), Chang, Fukuda and Shinozaki(2017)).
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3. We also discuss improving the generalized Bayesian predictive densities suggested by Cor-
cuera and Giummole (1999) under D(α) loss.

Based on the data Xij ∼ N(μi, σ
2
i ), i = 1, 2, j = 1, · · · , ni, we predict the density Ỹ ∼

N(μi, σ
2
i ), i = 1, 2. We denote its density function by p(ỹ;μi, σi), where μi and σ2

i are
unknown.

When −1 ≤ α < 1, Corcuera and Giummole (1999) have established that the best invariant
predictive density of p(ỹ;μi, σi) based solely on xi1, · · ·xini is

p̂α(ỹ; x̄i, σ̃i) ∝
[
1 +

1− α

2ni + 1− α

(
y − x̄i
σ̃i

)2]−(2ni−1−α)/2(1−α)

,

where x̄i is the sample mean and σ̃2
i = ((ni−1)/ni)s

2
i is the sample variance. Corcuera and

Giummole (1999) have also shown that p̂α(ỹ; x̄i, σ̃i) is the generalized Bayesian predictive
density for the prior density f(μi, σi) ∝ 1/σi, 0 < σi < ∞. It is to be noted that p̂α(ỹ; x̄i, σ̃i)
is not a normal distribution, although the plug-in density N(x̄i, s

2
i ) is the generalized Bayes

rule when α = 1.

We consider the following two cases separately where order restrictions on μi and/or σ2
i

are present,

i) Case when μ1 ≤ μ2.

ii) Case when μ1 ≤ μ2 and σ2
1 ≤ σ2

2.

Examples of D(α) stochastic (Pitman closeness) domination presented relate to the prob-
lem of estimating the predictive density of the variable with the restrictions on two normal
means.

keywords: Predictive density, α-divergence, stochastic dominance, ordered normal
means, Pitman closeness criterion
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On the efficiency-loss free ordering-robustness of

product-PCA

Hung Hung

1Institute of Health Data Analytics and Statistics, National Taiwan University, Taiwan

Abstract

This article studies the robustness of the eigenvalue ordering, an important issue

when estimating the leading eigen-subspace by principal component analysis (PCA).

In Yata and Aoshima (2010), cross-data-matrix PCA (CDM-PCA) was proposed and

shown to have smaller bias than PCA in estimating eigenvalues. While CDM-PCA

has the potential to achieve better estimation of the leading eigen-subspace than the

usual PCA, its robustness is not well recognized. In this article, we first develop a

more stable variant of CDM-PCA, which we call product-PCA (PPCA), that provides

a more convenient formulation for theoretical investigation. Secondly, we prove that,

in the presence of outliers, PPCA is more robust than PCA in maintaining the correct

ordering of leading eigenvalues. The robustness gain in PPCA comes from the random

data partition, and it does not rely on a data down-weighting scheme as most robust

statistical methods do. This enables us to establish the surprising finding that, when

there are no outliers, PPCA and PCA share the same asymptotic distribution. That

is, the robustness gain of PPCA in estimating the leading eigen-subspace has no

efficiency loss in comparison with PCA. Simulation studies and a face data example

are presented to show the merits of PPCA. In conclusion, PPCA has a good potential

to replace the role of the usual PCA in real applications whether outliers are present

or not.

Key words: cross-data-matrix PCA; dimension reduction; efficiency loss; ordering

of eigenvalues; random partition; robustness.
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Normal-reference test  for  high-dimensional  covariance matrices 

Jin-Ting Zhang 
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Abstract 

 
In the past decade, much attention has been paid for testing the equality of high-dimensional 

covariance matrices. Several  test statistics have been proposed for this purpose.  Some of them 

imposed  strong assumptions, aiming to yield the asymptotic normality of the associated test 

statistics.  In practice, however, these assumptions are often challenging to verify, resulting in size 

control issues when the required assumptions are not met.  To address this challenge,  in this talk,  

we  investigate  a   normal-reference test which can effectively control the size.  In the normal-

reference test,  the null distribution of a test statistic is approximated with that of a chi-square-type 

mixture which is obtained from the test statistic under the null hypothesis, assuming normality of the 

data samples. To accurately approximate the distribution of the chi-square-type mixture, we employ 

a three-cumulant matched 2-approximation with the approximation parameters being consistently 

estimated  from the data. Two simulation studies demonstrate that in terms of size control, the 

proposed normal- reference test performs well across a range of  scenarios and  it outperforms  several  

existing competitors. A real data example illustrates the proposed normal-reference test. 

 

 
KEY WORDS: 2-type mixtures; high-dimensional data; three-cumulant matched  2-approximation. 
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Two step estimations via the Dantzig selector for ergodic

time series models

Kou Fujimori1 and Koji Tsukuda2

1Faculty of Economics and Law, Shinshu University.
2Faculty of Mathematics, Kyushu University.

Let us consider the following time series model.

Xt = S(α�φ(Xt−1), β
�Zt−1) + ut, E[u

2
t |Ft−1] = σ2(Xt−1;h),

where Xt−1 = (Xt−1, . . . , Xt−d), without loss of generality. Let θ0 = (α�
0 , β

�
0 )

� be the
true value of θ = (α�, β�)�, Θ = Θα×Θβ ⊂ R

p+q a parameter space for θ and H a metric
space equipped with a metric dH . Put T10 := {j : α0j 
= 0}, T20 := {j + p1 : β0j 
= 0} and
T0 = T10 ∪T20. We observe (X1, Z1), . . . , (Xn, Zn). Our aim is to estimate θ = (α�, β�)�.
Hereafter, we fix an initial value (X0, . . . , X1−d) = (x0, . . . , x1−d) and put p = p1 + p2,
s = s1 + s2, where s1 and s2 are the numbers of elements in T10 and T20, respectively.

We first construct the estimator θ̂
(1)
n for θ by the following Dantzig selector type esti-

mator:
θ̂(1)n := arg min

θ∈Cn
‖θ‖1, Cn := {θ ∈ R

p : ‖ψ(1)
n (θ)‖∞ ≤ λn},

where

ψ(1)
n (θ) =

1

n

n∑

t=1

∂

∂θ
S(α�φ(Xt−1), β

�Zt−1){Xt − S(α�φ(Xt−1), β
�Zt−1)}

and λn is a tuning parameter. Moreover, we define the following estimator T̂n for T0:

T̂n := {j : |θ̂nj | > τn},

where τn is a threshold. For the second step, we construct a consistent estimator for h, by

using θ̂
(1)
n . Finally, using T̂n and ĥn, we consider the estimator θ̂

(2)
n for θ as a solution to

the following equation:
ΨnT̂n

(θT̂n
, ĥn) = 0, θ̃nT̂ c

n
= 0,

1



where

ΨnT (θT , ĥn) =
1

n

n∑

t=1

∂
∂θT

S(α�
T1
φ(Xt−1)T1 , β

�
T2
Zt−1T2)

σ2(Xt−1; ĥn)

·{Xt − S(α�
T1
φ(Xt−1)T1 , β

�Zt−1T2)}

for every T = T1 ∪ T2.

In this talk, we establish the rate of convergence of θ̂
(1)
n , and the asymptotic normal-

ity of θ̃nT̂n
under some regularity conditions under high-dimensional and sparse settings.

Moreover, we discuss the integer-valued autoregressive models as an example.
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Innovation algorithm of fractionally integrated (I(d)) process
and applications on the estimation of parameters

Junichi Hirukawa and Kou Fujimori
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ABSTRACT

The long memory phenomena frequently occur in the empirical studies of various fields. The fractionally integrated

process is the one of the suitable candidate which appropriately represents the long memory property. There are two

recursive algorithms for determining the one-step predictors of time series, that is, the Durbin-Levinson algorithm and

the innovation algorithm. The Durbin-Levinson algorithm for the fractionally integrated process is well-known and

widely used, which naturally derives the Cholesky factorization of the inverse matrix of the covariance matrix of the

process. In this paper, we derive the innovation algorithm for the fractionally integrated process. The result is also

applied to the derivations of the Cholesky factorization of the covariance matrix and the Gaussian likelihood of the

process in the explicit forms. Moreover, the asymptotic theory of Gaussian maximum likelihood estimator (GMLE) is

derived in terms of the innovation algorithm.

1 Introduction

An ARMA (p,q) process {xt} is often called a short memory process since the covariance between xt and xt+ j decreases

rapidly as j → ∞. However, the long memory phenomena frequently occur in the empirical studies of various fields

(see e.g., Hurst (1951)). In this paper, we consider one of the long memory process so-called the fractionally integrated

(I(d)) process defined by

(1 − L)d zt = εt, (t = 1, . . . , n) ,(1)

where d ∈ (−1/2, 1/2), (d � 0), L is the lag operator and {εt} i.i.d.∼
(
0, σ2
)
. Using the expansion of the lag operator

Δ(L) = (1 − L)d =
1

Γ(−d)

∞∑
j=0

Γ( j − d)

Γ( j + 1)
L j =

∞∑
j=0

ϕ jL j,(2)

this can be rewritten as

εt =

∞∑
j=0

ϕ jL jzt =

∞∑
j=0

ϕ jzt− j.(3)

Then, {zt} is a stationary long memory process generated by

zt = (1 − L)−d εt

=
1

Γ(d)

∞∑
j=0

Γ( j + d)

Γ( j + 1)
εt− j =

∞∑
j=0

ψ jεt− j,

where the coefficients satisfy ψ j = O
(

jd−1
)
, so that the degree of decreasing is quite slow as j→ ∞.
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2 Main result

In this section, we provide the main results.

2.1 The Gaussian MLE for I(d) process

In this section, we impose the Gaussian assumption on I(d) process. Then, we have the Gaussian log-likelihood of

I (d) process for θ =
(
d, σ2

)′

l (θ) = l
(
d, σ2

)
= −n

2
log {2π} − 1

2

n∑
j=1

log v j−1 (θ) − 1

2

n∑
j=1

u j−1 (d)2

v j−1 (θ)
.(4)

Now, we have the following main results. First, we describe the consistency of GMLE.

Theorem 1. Let {zt} is the Gaussian I (d) process defined in (1) with d ∈ (−1/2, 1/2), (d � 0). And let θ̂ =
(
d̂, σ̂2

)′
is

the Gaussian MLE (GMLE) of θ =
(
d, σ2

)′
which maximizes the Gaussian log-likelihood (4). Then, the GMLE θ̂ has

consistency, that is,

θ̂
P→ θ0,

where θ0 =
(
d0, σ

2
0

)′
is the true value of θ.

Next, we have the following asymptotic normality.

Theorem 2. Let {zt} is the Gaussian I (d) process defined in (1) with d ∈ (−1/2, 1/2), (d � 0). And let θ̂ =
(
d̂, σ̂2

)′
is the Gaussian MLE (GMLE) of θ =

(
d, σ2

)′
which maximizes the Gaussian log-likelihood (4). Then, the GMLE θ̂

satisfies the asymptotic normality, that is,

√
n
(
θ̂ − θ0

) L→ N (0,A) ,

where θ0 =
(
d0, σ

2
0

)′
is the true value of θ.

References

Akaike, H. (1969). Power Spectrum Estimation through Autoregressive Model Fitting. Ann. Inst. Stat. Math. 21,

407–419.

Berk, K. N. (1974). Consistent Autoregressive Spectral Estimates. Ann. Statist. 2, 489–502.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. New York: Springer.

Hosking, J. R. M. (1981). Fractional Differencing. Biometrika 1, 165–176.

Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Trans. Amer. Soc. Civil Eng. 116, 770–799.

Li, W. K. andMcLeod, A. I. (1986). Fractional Time Series Modelling. Biometrika 73, 217-221.

Slater, L J. (1966). Generalized Hypergeometric Functions. New York: Cambridge University Press.

Yajima, Y. (1985). On Estimation of Long Memory Time Series Models. Australian Journal of Statistics 27, 303–320.

2



Scaling Limits of Markov Chains/Processes in Monte
Carlo Methods

Kengo Kamatani (Institute of Statistical Mathematics, JST CREST)

In this presentation, we will explore the recent results of scaling limit of piecewise deterministic
Markov processes for anisotropic targets. Suppose we wish to sample from

Πpdxq “ expp´Hpxqqdx
where H : R

d Ñ R is a continuously differentiable function. For the Bayesian context, this
probability distribution is the posterior distribution of interest. If we have an i.i.d. sample from
Π, we can approximate Π-integral of any function fpxq by the law of large numbers. In most
of the cases, direct i.i.d. sampling is impossible or computationally very expensive. For these
cases, the Markov chain Monte Carlo method is useful which originated with the classic paper by
Metropolis et al. (1953) almost 70 years ago. The Markov chain Monte Carlo method is designed
to construct an ergodic Markov kernel P which is Π-invariant. If a Markov chain X1, X2, . . . is
generaetd from the Markov kernel P then the law of large numbers is satisfied. The Markov
chain Monte Carlo is now a gold standard for Bayesian inference.

Recently, its continuous process version, the Markov process Monte Carlo method is of
substantial interest for Monte Carlo analysis. Known Markov process Monte Carlo methods rely
on an auxiliary variable trick which uses an auxiliary variable v with a probability density ν
on Ξ and considers the joint probability distribution μ :“ Πpdxq b νpdvq as an extended target
distribution on Z “ R

d ˆ Ξ. The original target distribution is a marginal distribution of the
extended target distribution. Since Brownian motion does not have an absolutely continuous
path, we can not simulate processes driven by Brownian motion exactly. For our Monte Carlo
analysis, exact sampling is necessary. Therefore, the Markov processes of interest should not
have a Brownian part. Known processes consist of a deterministic part and a pure jump part.
These processes are known as the piecewise deterministic Markov processes.

Here we follow Azaïs et al. (2014) for the expression of the piecewise deterministic Markov
processes. The processes are constructed by characteristics pφ, λk, Qk : l “ 1, . . . ,Kq. The flow
φ : Z ˆ R Ñ Z is continuous, φp¨, tq is a homeomorphism for each t P R and φpφp¨, sq, tq “
φp¨, s` tq. For each k “ 1, . . . ,K, the jump rate λk : Z Ñ R` determines the jump time of pure
jump processes, and Qk is a Markov kernel on Z. Let Λkpz, tq “ şt

0
λkpφpz, sqqds.

The Markov process is defined by the following way. Suppose zp0q “ pxp0q, tp0qq P Z. Let
T1, . . . , TK be independent processes with PpTk ě tq “ expp´Λkpz, tqq. Let T˚ “ mink“1,...,K Tk.
If Tk “ T˚, then Z is generated from Qkpφpz, T˚q, ¨q and set

Xptq “
"

φpzp0q, tq for t ă T˚
Z for t “ T˚.

After T˚, the process evolves in the same way with starting value Z. There are several choices
of characteristics. Two popular piecewise deterministic Markov processes use the same flow φ
defined by x1ptq “ vptq and v1ptq “ 0. The Zig-Zag sampler proposed by Bierkens et al. (2019)

1



uses d Markov kernels Q1, . . . , Qd with d jump rates λ1, . . . , λd. For each i “ 1, . . . , d, the Markov
kernel is a deterministic kernel Qi defined by a map px, vq ÞÑ px, Fipvqq where Fi is an operator
that flips the i-th coordinate of x. The jump rate is defined by λippx, vqq “ maxt0, BiHpxqviu.

The bouncy particle sampler proposed by Peters and de With (2012), Bouchard-Côté
et al. (2018) uses two Markov kernels Qbounce and Qref with corresponding jump rates λbounce

and λref . The kernel Qbounce is a deterministic kernel defined by a map px, vq ÞÑ px, κpx, vqq:

κpx, vq “ v ´ 2
x∇Hpxq, vy
}∇Hpxq}2 ∇Hpxq

and λbouncepx, vq “ maxt0, x∇Hpxq, vyu. The jump rate λref is a positive constant, and Qref is a μ-
invariant Markov kernel. For our analysis, for simplicity, we assume Qrefppx, vq, dpy, wqq “ νpdwq.

We have several critical findings. For the Zig-Zag algorithm, its performance is intricately
linked to the orientation of the target’s anisotropy; specific alignments with the algorithm’s
operational axes lead to enhanced efficiency, while others can hinder its effectiveness. The BPS
algorithm, on the other hand, exhibits a deterministic dynamical behaviour in its limiting form
with a better rate of convergence.

This is joint work with Joris Bierkens (TU Delft) and Gareth O. Roberts (Warwick). See our
paper on arxiv https://arxiv.org/abs/2305.00694 for the detail.
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On a general linear hypothesis testing problem for latent factor
models in high dimensions

Takahiro Nishiyamaa and Masashi Hyodob

a Department of Business Administration, Senshu University
b Faculty of Economics, Kanagawa University

Let xgi “ pxgi1, . . . , xgipqJ „ Fg be iid p-dimensional random vectors collected from

the ith subject in the gth population, where Fg denotes the distribution function for

gth population, i P t1, . . . , ngu, g P t1, . . . , ku. A factor model assumes that for each

g P t1, . . . , ku, the observable vector xgi is decomposable into a latent factor and an

idiosyncratic component as follows:

xgi “ μg ` Fgzgi ` Ψ1{2
g εgi, (1)

where μg P R
p is a deterministic intercept vector, zgi “ pzgi1, . . . , zgidgqJ is a dg-dimensional

latent factor vector, and εgi “ pεgi1, . . . , εgipqJ is a p-dimensional error vector which is un-

correlated with the latent factor. In what follows, we assume that dg P N is a fixed num-

ber. Further, Fg “ pfg1, . . . , fgpqJ denotes a loading matrix where for each j P t1, . . . , pu,
fgj “ pfgj1, . . . , fgjdgqJ P R

dg is a non-random vector, and Ψg “ diagpψg1, . . . , ψgpq is a

non-random p ˆ p diagonal matrix whose elements are ψg1 ą 0, . . . , ψgp ą 0. For the

latent vector zgi and error vector εgi, we further assume that zgi� are iid with Epzgi�q “ 0,

Epz2gi�q “ 1 and Epz4gi�q “ κzg ă 8, and εgij are iid with Epεgijq “ 0, Epε2gijq “ 1 and

Epε4gijq “ κεg ă 8 for g P t1, . . . , ku, i P t1, . . . , ngu, j P t1, . . . , pu and � P t1, . . . , dgu.
Structural assumptions of the model (1) imply that

Epxgiq “ μg, covpxgiq “ FgF
J
g ` Ψg :“ Σg, (2)

where Σg P R
pˆp
ą0 and R

pˆp
ą0 denotes the space of real, symmetric, positive definite, p ˆ p

matrices.

By using the data generated by (1), we design a high-dimensinal test procedure for a

general linear hypothesis testing (GLHT) problem:

H : rGM “ O, A : rGM ‰ O, (3)

where M “ pμ1, . . . ,μkqJ is a k ˆ p matrix and rG is a q ˆ k known coefficient matrix

with full row rank q ă k. By setting rG to be any pk ´ 1q ˆ k contrast matrix, i.e., any

pk´1q ˆk matrix with linearly independent rows and zero row sums, the GLHT problem

(3) reduces to the one-way MANOVA problem:

H : μ1 “ ¨ ¨ ¨ “ μk, A :‰ H. (4)

Also, various post hoc and contrast tests can be written in the form of (3).



From Zhang et al. (2017) and Zhang et al. (2022), we re-write (3) into the following

equivalent form:

H : Cμ “ 0, A : Cμ ‰ 0, (5)

where C “ G b Ip (qp ˆ kp matrix), G “ p rGDrGJq´1{2 rG with D “ diagp1{n1, ¨ ¨ ¨ , 1{nkq
and μ “ pμJ

1 , . . . ,μ
J
k qJ.

Let H “ GJG and pμ “ pxJ
1 , . . . ,x

J
k qJ where xg “ p1{ngq řng

i“1 xgi for g P t1, . . . , ku.
Then, tor testing (5), we defined the test statistic as

Tnh “ 1

p

#
}Cpμ}2 ´

kÿ
g“1

agg {trpΨgq
+

“ 1

p

#pμJpH b Ipqpμ ´
kÿ

g“1

agg {trpΨgq
+

where, for g P t1, . . . , ku, agg is the diagonal element of the matrix A “ D1{2HD1{2

and {trpΨgq “ trpSgq ´ ř pdg
�“1 λ�pSgq. Here, λ�pSgq is the �th largest eigenvalue of matrix

Sg “ t1{png ´ 1qu řng

i“1pxgi ´ xgqpxgi ´ xgqJ and pdg is a consistent estimator of dg based

on the ER method proposed by Ahn and Horenstein (2013). Besides, we derived the

limiting null distribution of Tnh under some assumptions and constructed test procedure

for testing p5q. Also, we compared, through simulations, the performance of the proposed

test and existing procedures suitable for one-way MANOVA problem in high-dimensional

data in terms of size control and power.

References

[1] Ahn, S. C., Horenstein, A R., 2013. Eigenvalue ratio test for the number of factors. Econo-
metrica, 81, 1203–1227.

[2] Zhang, J.-T., Guo, J., Zhou, B., 2017. Linear hypothesis testing in high-dimensional one-
way MANOVA. J. Multivar. Anal., 155, 200–216.

[3] Zhang, J.-T., Zhou, B., Guo, J., 2022. Linear hypothesis testing in high-dimensional het-
eroscedastic one-way MANOVA: A normal reference L2-norm based test. J. Multivar.
Anal., 187, 104816.


