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Two-sample tests for high-dimension, low-sample-size data

Aki Ishii
Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan

1 Introduction

One of the features of modern data is that the data dimension is extremely high, however, the sample
size is relatively low. We call such data “HDLSS” or “largep, small n” data, wherep is the data
dimension andn is the sample size. Suppose we have two classes�i; i = 1; 2, and define independent
p × ni data matrices,Xi = [xi1; :::; xini ]; i = 1; 2, from �i; i = 1; 2, wherexij ; j = 1; :::; ni, are
independent and identically distributed (i.i.d.) as ap-dimensional distribution with a mean vector�i

and covariance matrix�i (≥ O). The eigen-decomposition of�i is given by�i = H i�iH
T
i , where

�i = diag(�1(i); :::; �p(i)) having�1(i) ≥ · · · ≥ �p(i)(≥ 0) andH i = [h1(i); :::; hp(i)] is an orthogonal
matrix of the corresponding eigenvectors. We considered the two-sample test:

H0 : �1 = �2 vs. H1 : �1 ̸= �2:

We definedxini =
∑ni

j=1 xij=ni andSini =
∑ni

j=1(xij −xini)(xij −xini)
T =(ni −1) for i = 1; 2. Note

thatS�1
ini

does not exist in the HDLSS context such asni=p → 0. Under the assumption that�1 and�2

are Gaussian, there are a lot of literatures about the two-sample problem in the HDLSS context. When
�1 and�2 are non-Gaussian, Chen and Qin [4] and Aoshima and Yata [1, 2] considered the two-sample
test under heteroscedasticity,�1 ̸= �2. We note that the above literatures considered constructing
two-sample test procedures under the eigenvalue condition as follows:

�2
1(i)

tr(�2
i )

→ 0 asp → ∞ for i = 1; 2. (1.1)

However, (1.1) sometimes fails in actual high-dimensional analyses. Aoshima and Yata [3] proposed
to develop high-dimensional inference not only for the “non-strongly spiked eigenvalue (NSSE) model”
defined by (1.1) but also for the “strongly spiked eigenvalue (SSE) model” defined by

lim inf
p!1

{ �2
1(i)

tr(�2
i )

}
> 0 for i = 1 or 2. (1.2)

They discussed the two-sample test by using the high-dimensional asymptotic theory wherep → ∞ and
ni → ∞. In this talk, we focused on the SSE model and constructed two-sample test procedures when
p → ∞ while nis are fixed.

2 A new two-sample test under the SSE model

Ishii [7] constructed a new two-sample test procedure by using the noise-reduction (NR) methodology
given by Yata and Aoshima [8]. Let̂�1(i) ≥ · · · ≥ �̂p(i) ≥ 0 be the eigenvalues ofSini . By using the
NR method,�j(i)s are estimated by

~�j(i) = �̂j(i) − tr(Sini) −
∑j

s=1 �̂s

ni − 1 − j
(i = 1; 2; j = 1; :::; ni − 2):



Note that~�j(i) ≥ 0 w.p.1 forj = 1; :::; ni − 2. Yata and Aoshima [8, 9] and Ishii et al. [5, 6] showed

that~�j(i) has several consistency properties in high-dimensional context.
We started with the following test statistic:

Tn = ||x1n1 − x2n2 ||2 −
2∑

i=1

tr(Sini)=ni:

Note thatTn was discussed by Chen and Qin [4] and Aoshima and Yata [1, 2] under the NSSE model.
We evaluatedTn under the SSE model and gave a new test statistic as follows.

F = un

Tn +
∑2

i=1
~�1(i)=ni

~�1n

;

whereun = (1=n1 + 1=n2)�1 and ~�1n = (n1 + n2 − 2)�1
∑2

i=1(ni − 1)~�1(i). We discussed the
asymptotic null distribution and the power ofF . We also gave another test statistic and compared test
procedures by using computer simulations.
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Recent developments in the SIML estimation of integrated
volatility with high frequency financial data

Hiroumi Misaki 1

Estimating the volatility and covariance of asset prices has been a key issue

in finance, and considerable interest has been paid on the estimation problem by

using high-frequency data in financial econometrics. We assume that the underlying

continuous processX(t) (0 ≤ t ≤ 1) is not necessarily the same as the observed (log-)

price at tni (i = 1, · · · , n∗) and

X(t) = X(0) +
∫ t

0
σx(s)dB(s) (0 ≤ t ≤ 1),

where B(s) is the standard Brownian motion, σx(s) is the instantaneous volatility

function. The main statistical objective is to estimate the integrated volatility

σ2
x =

∫ 1

0
σ2
x(s)ds

of the underlying continuous process X(t) from the set of discretely observed prices

y(tni ) which are generated by y(tni ) = h
(
X(tni ), y(t

n
i−1), u(t

n
i )

)
.

It has been well known that the realized volatility works poorly when there

exist micro-market noise. Kunitomo and Sato (2011, 2013) have proposed a new

statistical method called the Separating Information Maximum Likelihood (SIML)

method under the presence of micro-market noises. They have shown that the SIML

estimator has reasonable asymptotic properties as well as finite sample properties.

Misaki and Kunitomo (2015) and Kunitomo, Misaki and Sato (2015) have further

investigated the properties of the SIML estimation when we have the micro-market

noises and randomly sampled data at the same time. We have shown the asymptotic

robustness in the sense that it is consistent and it has the asymptotic normality under

a set of fairly general conditions.

We have investigated the finite sample properties of the SIML estimator for

the integrated volatility based on a set of simulations. In all cases, the estimates

obtained by realized volatility are badly-biased, which have been well known in

the analysis of high frequency financial data. The SIML estimate, on the other

1 Faculty of Engineering, Information and Systems, University of Tsukuba, Tennodai 1-1-1,

Tsukuba City, Ibaraki 305-8577, JAPAN, hmisaki@risk.tsukuba.ac.jp
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hand, gives reasonable estimate and the variance of the SIML estimator is within a

reasonable range for practical purposes.

In empricial studies, we have analysed high frequency financial data in the

Japanese stock market. Our main purpose is to estimate daily volatility, covari-

ance and other related quantities by using SIML estimator and to compare them

to some alternative estimators. We have found that the SIML estimation provides

reasonable results in any case whereas most of the examined alternatives are severely

biased. In addition, we have found that the SIML estimates are similar to the real-

ized volatilities and covariances based on relatively long intervals in respect of the

summary statistics across the sample period. Our detailed analysis, however, have

indicated they are not always coincide to each other. In conclusion, our investigation

suggest that the SIML estimation is useful to estimate the daily integrated volatility,

covariance, and other related quantities in actual markets.

We have also discussed the finite sample estimation of the variance or standard

deviation of estimators. One of the possible approach to obtain the variance and its

functionals of an estimator in complex models is to utilize the bootstrap methods,

introduced by Efron (1979). In our formulation there would be two possible ap-

proaches to exploit bootstrap methods for the SIML estimator. One is to resample

the transformed variables zk which is mutually independent (but not identical), and

the other is to apply the MBB to the difference of log price yt. We have given the

preliminary report on estimating the finite sample variance of the SIML estimator.
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Sparse regularization for functional logistic
regression models

Hidetoshi Matsui

The Center for Data Science Education and Research, Shiga University
1-1-1 Banba, Hikone, Shiga, 522-8522, Japan.

hmatsui@biwako.shiga-u.ac.jp

1 Introduction

Sparse regularization have attracted attentions as they provide a unified approach to

problems of estimating and selecting variables, and for this reason they are broadly ap-

plied in several fields (Hastie et al., 2015)．In this work we consider applying the sparse

regularization to the analysis of longitudinal data and selecting genes that have effect on

classification.

When the data to be classified have been measured repeatedly over time, they can

be represented by a functional form. Ramsay and Silverman (2005) established this type

of analysis and called it functional data analysis (FDA). FDA is one of the most useful

methods for effectively analyzing discretely observed data, and it has received considerable

attention in various fields.

In this work we consider the problem of using L1-type regularization to select the

variables for classifying functional data by using the multiclass logistic regression model.

In particular, we apply two types of L1-type penalties and then describe the effect of

them. Then we report results of the analysis of multiple sclerosis data and yeast cell cycle

gene expression data.

2 Multiclass logistic regression model for functional data

Suppose we have n sets of functional data and a class label {(xi(t), gi); i = 1, . . . , n},
where xi(t) = (xi1(t), . . . , xip(t))

T are predictors given as functions and gi ∈ {1, . . . , L}
are the classes to which xi belongs. In the classification setting, we apply the Bayes rule,

which assigns xi to class gi = l with the maximum posterior probability given xi, denoted

by Pr(gi = l|xi) = πl(xi; b) with a parameter vector b incluced in the model. Then the

logistic regression model is given by the log-odds of the posterior probabilities:

log

{
πl(xi; b)

πL(xi; b)

}
= β0l +

p∑
j=1

∫
xij(t)βjl(t)dt, (1)

where β0l is an intercept and βjl(t) are coefficient functions. We assume that both xij(t)

and βjl are expressed by basis expansions. Furthermore, we define the vectors of the re-

sponse variables yi, which indicate the class labels. Then the functional logistic regression

1



model (1) has the probability function

f(yi|xi; b) =
L−1∏
l=1

πl(xi; b)
yilπL(xi; b)

1−
∑L−1

h=1 yih .

3 Estimation by sparse regularization

We consider estimating the parameter b by maximizing the penalized log-likelihood func-

tion

ℓλ,α(b) =
n∑

i=1

log f(yi|xi; b)− Pλ,α(b),

where Pλ,α(b) is a penalty function controlled by tuning parameters λ > 0 and α ∈ [0, 1].

Here we apply following two types of penalties for Pλ,α(b):

Pλ,α(b) =
1

2
(1− α)

p∑
j=1

λj

L−1∑
l=1

∥bjl∥22 + α

p∑
j=1

λj

{
L−1∑
l=1

∥bjl∥22

} 1
2

, (2)

Pλ,α(b) = n(1− α)

p∑
j=1

λj

{
L−1∑
l=1

∥bjl∥22

}1/2

+ nα

p∑
j=1

λj

L−1∑
l=1

∥bjl∥2, (3)

where λj are tuning parameters controlled by λ. Penalty (2) is the elastic net-type penalty

(Zou and Hastie, 2005) and has the property that it select variables in functional logistic

regression model (Kayano et al., 2016). On the other hand, (3) is the sparse group

lasso-type penalty (Friedman et al., 2010) and it can select both variables and decision

boundaries in the functional logistic regression model.

References

Friedman, J., Hastie, T., and Tibshirani, R. (2010), A note on the group lasso and a

sparse group lasso, arXiv preprint arXiv:1001.0376.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015), Statistical Learning with Sparsity:

The Lasso and Generalization, Boca Raton: Chapman & Hall/CRC.

Kayano, M., Matsui, H., Yamaguchi, R., Imoto, S., and Miyano, S. (2016), Gene set

differential analysis of time course expression profiles via sparse estimation in functional

logistic model with application to timedependent biomarker detection, Biostatistics, 17,

235–248.

Ramsay, J. and Silverman, B. (2005), Functional data analysis 2nd ed., New York:

Springer.

Zou, H. and Hastie, T. (2005), Regularization and variable selection via the elastic net,

J. Roy. Statist. Soc. Ser. B, 67, 301–320.

2



A High-dimensionality-adjusted Consistent Cp-type Criterion

in Multivariate Linear Regression Models

Hirokazu Yanagihara

Department of Mathematics, Graduate School of Science, Hiroshima University
1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8626, Japan

Suppose that k-variate explanatory variables xi = (xi1, . . . , xik)
′ and p-variate mutually correlated

response variables yi = (yi1, . . . , yip)
′ (i = 1, . . . , n) are observed, where n is the sample size. The set of

n-vectors of the response variables y1, . . . ,yn, and the set of the n-vectors of the k explanatory variables

x1, . . . ,xn are written in matrix notation as an n × p matrix Y = (y1, . . . ,yn)
′ and an n × k matrix

X = (x1, . . . ,xn)
′, respectively. A multivariate linear regression model in which the normality of yi is

assumed, called a normal multivariate linear regression (NMLR) model, is defined as follows:

Y ∼ Nn×p(XΘ,Σ⊗ In),

where Θ is a k × p matrix of the unknown regression coefficients, and Σ is a p × p unknown variance-

covariance matrix that is positive definite. In order to ensure that it is possible to estimate the NMLR

model, we assume that rank(X) = k (< n) and n− k > p.

Let us express the indices of the relevant explanatory variables as the elements of a set j defined

as j ⊆ ω = {1, . . . , k} and kj = #(j). We denote the matrix of explanatory variables indexed by the

elements of j as Xj , i.e., Xj is the n×kj matrix consisting of the columns of X indexed by the elements

of j. For example, if j = {1, 2, 4}, then Xj consists of the first, second, and fourth columns of X, and

kj = 3. We then consider the candidate model to be the following NMLR model, which uses the kj

relevant explanatory variables that were extracted from the set of all possible explanatory variables:

Y ∼ Nn×p(XjΘj ,Σj ⊗ In),

where Θj is the kj × p matrix of unknown regression coefficients, and Σj is a p × p unknown variance-

covariance matrix that is assumed to be positive definite.

A commonly used method for variable selection is to choose the best subset of explanatory variables

by minimizing a variable selection criterion. The best subset of explanatory variables is the subset in

the candidate model that results in the smallest value for the variable selection criterion. One of the

most widely known variable selection criteria is the Cp criterion proposed by Mallows (1973; 1995). The

criterion is defined by adding twice the number of parameters in the mean structure to the minimum

value of the residual sum of squares (RSS), which is the sum of the squared differences between the

data and the fitted value. The Cp criterion was proposed for selecting variables in a linear regression

model in which there is only one response variable. A multiple-response version of the Cp criterion was

proposed by Sparks et al. (1983) and Fujikoshi and Satoh (1997) proposed a modified Cp (MCp) criterion

that corrected the bias of that proposed by Sparks et al. For a linear regression with a single response,

Atkinson (1980) proposed a generalized Cp (GCp) criterion, which is obtained by adding a penalty term



that is α times the number of parameters in the mean structure to the RSS, where α is some positive

constant. A multiple-response version of the GCp criterion was proposed by Nagai et al. (2012). By

varying α, the GCp can express a wide variety of selection criteria, e.g., the GCp with α = 2 coincides

with the Cp, and the GCp with α = (n− k)/(n− k − p) is essentially equivalent to the MCp.

An important property of a variable selection criterion is its consistency, which means that the true

subset of explanatory variables can be selected with probability tending asymptotically to unity. We

express the subset of true explanatory variables as j∗ ⊆ ω. A large sample (LS) asymptotic framework in

which the sample size n goes to ∞ is commonly used for evaluating consistency. Although consistency is

an asymptotic property, we can expect that there is a high probability that a consistent variable selection

criterion can choose the true subset j∗ as the best one for a moderate sample size. On the other hand,

we often see a high-dimensional dataset in which the dimension of the response variables vector is large,

but it is still smaller than the sample size; this situation is called moderately high-dimensional data (see

e.g., Yao et al., 2015). With moderately high-dimensional data, a consistent variable selection criterion

developed for the LS asymptotic framework will often choose a subset other than j∗ even when the

sample size is large. This occurs because the asymptotic distribution evaluated from the LS asymptotic

framework has poor accuracy with moderately high-dimensional data. We can improve the accuracy

of the asymptotic distribution by using not the LS asymptotic framework but a high-dimensional (HD)

asymptotic framework, in which the sample size n and the dimension of the response variables vector p go

to ∞ simultaneously under the condition that p/n → c0 ∈ [0, 1). We can expect that a variable selection

criterion that is judged to be consistent by an evaluation within the HD asymptotic framework can choose

the true subset j∗ as the best one with high probability under a moderate sample size even when p is

large. However, when p is very small, there remains a possibility that such a criterion will choose a subset

other than j∗ even under a large sample size, because then, the accuracy of the asymptotic distribution

evaluated within the HD asymptotic framework becomes low.

The aim of this paper is to propose a Cp-type criterion that will meet the conditions for consistency

regardless of the asymptotic framework that is used to evaluate it; that is, with high probability, this

criterion is expected to select the true subset j∗ for a moderate sample size regardless of the size of

p. To achieve our aim, the following asymptotic framework is used for evaluating consistency: n →
∞ and p/n → c0 ∈ [0, 1).

A sufficient condition to ensure the consistency of GCp when n → ∞ and p/n → c0 ∈ [0, 1) is that

the following conditions are satisfied simultaneously:

lim
n→∞,p/n→c0

√
p

(
− n

n− p
+ α

)
= ∞, lim

n→∞,p/n→c0

p

n

(
− n

n− p
+ α

)
= 0.

By using the result, we propose new GCp, which is consistent even under high dimensionality; we call

it the high-dimensionality-adjusted consistent GCp (HCGCp). The HCGCp criterion is defined by the

following α:

α =
n

n− p
+ β, β > 0 s.t. lim

n→∞,p/n→c0

√
pβ = ∞, lim

n→∞,p/n→c0

p

n
β = 0.



Canonical correlation analysis for geographical and chronological

responses

Mariko Yamamura

Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama,
Higashi-Hiroshima, 739-8524, Japan

Data containing information about observed location and time are called geographical and
chronological data. Yamamura et al. (2016) extended the application potency of the varying
coefficient model in Tonda et al. (2010) by applying the model not only for geographical, but also
for chronological data. As is often the case with real data sets, we sometimes need to analyze
with multiple response variables. Tonda et al. (2010) has only proposed the varying coefficient
model for a single response variable. One method of treating multiple response variables is
that we create a synthesis variable from them and apply a regression model which procedure
corresponds to canonical correlation analysis (CCA). The purpose of this paper is to propose
how we can analyze geographical and chronological data with multiple response variables by
innovating the varying coefficient model in CCA.

As numerical background, we propose to apply an approach where we use a body condition
data set from common minke whales (Balaenoptera acutorostrata acutorostrata) in the Bar-
ents Sea (Solvang et al. (2016)). Over the period 1993-2013, the body condition data were
obtained from a total of 10,556 common minke whales taken in Norwegian scientific and com-
mercial whaling operations in the Northeast Atlantic during the months April to September.

Figure 1: Measurement sites.

Blubber thickness (BT1, BT2, and BT3) mea-
surements were made perpendicular from the skin
surface to the muscle-connective tissue interface.
Length and girth measurements were made to the
nearest centimeter, while blubber measurements
were to the nearest millimeter. For all whales, the
year, month, day, and latitude / longitude were
recorded.

The synthesis variable u = α′y is assumed
to have a liner structure, where α is a param-
eter vector and columns of y are (y1, y2, y3)

′ = (“length”, “BT1”, “BT3”)′. Explana-
tory variables a take values 1. We fit the linear model to estimate the varying co-
efficient cubic plane or plane curve, i.e. β̂(z1, z2, z3, z4) = θ̂′w(z1, z2, z3, z4), where
(z1, z2, z3, z4)

′ = (“latitude”, “longitude”, “year”, “calendar day”)′. The w(z1, z2, z3, z4) =
(w1(z1, z2)

′,w2(z3)
′,w3(z4))

′ is assumed to have one of either linear, quadratic or cubic ex-
pression with their interaction each.

All variables used in the estimation are standardized, since estimated coefficient values should
be compared on the same basis, which is common practice in a real data analysis with CCA.

The best variables for y and best expression form of w(z1, z2, z3, z4) were selected by the
Bayesian information criterion (BIC) in Schwarz (1978). For clear interpretation of results,
estimated varying coefficients are graphically expressed by geography in Fig.2.
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Fig.2 shows estimated varying coefficients cubic plane curves by sex. White markers are
actual catching points, and coefficient values are showed by contour plots which become higher
in warmer colored areas.

Contours take values between −1.5 and 1 and are almost flat in male, meaning that body
condition considered by length, BT1, and BT3 are not much different in any geographical areas
in males. In females, the low contour in dark blue at the bottom left in the map, Fig.2 and
the high in yellow at the top, might signify habits of whales that they migrate from south with
hunger and move northward to take enough nourishment in Barents Sea, or might take extreme
large or small values since w1(z1, z2) have a cubic expression.
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Figure 2: Varying coefficient cubic plane curves (length, BT1 & BT3).

From the estimation results of minke whales body condition data, male and female whales
gain their body condition as fall approaches, which is the well known as their general habits
in the Barents Sea; the nourishment during summer result in fat deposition and leads to fatter
body conditions in the fall. Windsland et al. (2008) suggested the possibility of food reduction
for whales caused by ecological change in Barents Sea.
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Statistical Inference using Graph-based Divergences

on Discrete Sample Spaces

Takafumi Kanamori1 and Takashi Takenouchi2

1Nagoya University
2Future University Hakodate

This paper proposes a general framework of statistical inference using unnormalized statistical models
on discrete sample spaces. One of the most common methods in statistical inference is the maximum
likelihood estimator (MLE), which is obtained by maximizing the empirical mean for the log-likelihood of
the statistical model. The MLE has some nice properties such as the statistical consistency and efficiency.
The computation of the normalization constant in the statistical model is, however, often intractable in
high-dimensional sample domains.

Several approaches have been proposed to deal with the normalization constant. Monte Carlo method
is a popular method to approximate integrals and total sums using random sampling [5, 9, 19]. Alterna-
tively, the log-likelihood can be replaced with another scoring rule that measures the goodness of fit of
the model to observed samples. Scoring rules such as pseudo-likelihood, composite likelihood, and ratio
matching [1, 2, 7, 10, 11, 12, 13, 14, 15, 18], which do not require the normlization constant, are thought
to be computationally efficient. As a general rule, the computational cost can be reduced by localizing
the scoring rule over the sample space. Dawid, et al. [4] argued the theoretical properties of scoring rules
that can be expressed as the sum of localized scoring rules.

In this paper, we study the statistical consistency of local scoring rules. In general, the scoring
rule is closely related to the Bregman divergence D(p, q), which measures the discrepancy between two
probability distributions, p and q [6, 8, 16]. The Bregman divergence takes non-negative real numbers
and D(p, p) = 0 holds for any probability distribution. An important axiom of the Bregman divergence
is the coincidence axiom, which states that p = q holds when D(p, q) = 0 [3, 17]. For the Bregman
divergence with the coincidence axiom, the associated scoring rule has the property of the asymptotic
consistency under a mild assumption. The asymptotic consistency of the estimator using the scoring rule
is guaranteed by the sufficient condition of asymptotic consistency for M-estimator [20].

We also demonstrate the relation between the local scoring rules and localized Bregman divergences,
and use it to investigate the statistical consistency of local scoring rules. We show that the consistency
depends on the structure of the neighborhood system defined on discrete sample spaces.
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Mini Data Approach to Big Data 
Masahiro Mizuta 

Advanced Data Science Laboratory, Information Initiative Center,  
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N.11, W.5, Kita-ku, Sapporo 060-0811, Japan 
 

Abstract: We deal with a question whether the visualization is always effective for big data?  “Big 
data” is an important key word for business, academic, medical and so on. Many persons insist “In a 
Big Data World we need visualization” or “What we need to deal with big data is a visualization!!” We 
discuss a mechanism and a limitation of visualization and generalize the visualization approach to 

the mini data approach1. 
Key words: data analysis, data reduction, symbolic data analysis 

 
１． Introduction 
Nowadays, Big Data is an important key word. But I am afraid that we, statisticians, do not have 

clear strategies to deal with Big data. We try to discuss this problem. 
 

２． Is Visualization ALWAYS effective for BIG DATA? 
The question is “Is Visualization ALWAYS effective for BIG DATA?” Valuable clues are the size of 

data and the size of the plot. The size of IRIS DATA is 4 kilobytes at most. The size of the plot is 
more than 20 kilobytes. In principle, all information is contained in the plot, in other words, we can 
recover the Iris data from the plot. 

But, in the case of Big data, the situation is completely changed. The size of Big data is beyond 
several gigabytes or terabytes. Even if ultra-high resolution display is used, the size of the plot is 
several gigabytes. This means it is impossible to visualize big data completely. The visualization of 
big data is the task of data reduction. The task is a field of statistics. 

 
３． Mini data approach 
We have proposed a concept of mini data approach for big data (Mizuta & Minami, 2015). Mini 

data of big data are defined as data set which contains an important information about the big data, 
but its size and/or structure are realistic to deal with. Visualization is a kind of mini data. 
Contingency table is also a kind of mini data. There are two steps in mini data approach; How to 
build Mini Data, and how to analyze Mini Data. 

Here are methods or tools to build mini data from big data; Sampling, Variable selection, 
Dimension reduction, Feature extraction, and Symbolization.  

 
                                                   
1 A part of this manuscript is a translated version of Mizuta (2016a). 
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Another important problem is how to utilize mini data or how to get fruitful results from mini 
data. We have many methods that can be used for the problem, including conventional 
multidimensional data analysis, symbolic data analysis.  

 
４． Concluding remarks 

We begin with the question “Is Visualization ALWAYS effective for analysis of data?” The answer 
is definitely NO. Of course, when the size of data is small, visualization is completely effective, e.g. 
we can find an excellent plot of iris data. But the size of the data set is big, for example more than 
100Mbytes, Visualization is a kind of data reduction or data compression!! In general, it is a HARD 
WORK. We must focus on the process of the visualization and generalize it. It is a mini data 
approach in my presentation. 
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Business Analytics and Big Data

Haipeng Shen

Faculty of Business and Economics, University of Hong Kong

Big data are becoming increasingly common in our modern digital business
world. More and more data are being collected with ever‐increasing volume,
dimensionality, and complexity. We are blessed with the ood of data, as busi-
ness analytics techniques can be called upon to \mine" important features from
the data, i.e. �nding the needles. At the same me, high‐dimensionality and
complexity can be a curse, as the needles are often hidden in a haystack, or mul-
tiple haystacks, and classical methods sometimes fail to work for big data. This
presentation uses real examples, including customer service call center workforce
management and healthcare delivery systems, to provide a statistician’s perspec-
tive on how innovative data‐analycal techniques can assist business decision
making by asking the right questions, having the right data, and collaborating
with the right people.



Order selection for predictions in high-dimensional 

AR models: the cases of I(d) processes 
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Abstract 

Most order selection methods in high-dimensional autoregressive models are devised 

for processes of integrated of order 0 (I(d) processes, d = 0). We consider in this paper 

an I(d) autoregressive (AR) process, d ≥ 0 is an unknown integer and the lag order 

may be finite or infinite. The number of lags considered, Pn, goes to infinity, when the 

sample size, n, does. While Sin and Yu (2016) show that Akaike’s information 

criterion (AIC) is asymptotically inefficient (in terms of prediction) when the lag 

order is finite; this paper shows that when the lag order is infinite with algebraically 

decaying AR coefficients, neither Bayesian information criterion (BIC) nor Hanan 

Quninn information criterion (HQIC) is asymptotically inefficient. These results 

motivate us to combine the strengths of AIC and BIC/HQIC, yielding a so-called 

two-stage information criterion (TSIC) for a general I(d) AR process. We show that 

TSIC is asymptotically efficient in the aforementioned two scenarios, as well as the 

scenario of exponentially decaying AR coefficients. This paper concludes with a 

simulation study which compares various information criteria with the least absolute 

shrinkage and selection operator (Lasso) and the adaptive Lasso. Although the 

(modified) Lasso-type methods perform comparably with, if not marginally 

outperform, the TSIC for some processes, the TSIC performs substantially better for 

some other processes. 

 



On high-dimensional cross-validation  
 
Ching-Kang Ing 
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Cross validation (CV) has been one of the most popular methods for model selection. 
By splitting n data points into a training sample of size n_{c} and a validation sample 
of size n_{v} in which n_{v}/n approaches 1 and n_{c} tends to infinity, Shao (1993) 
showed that subset selection based on CV is consistent in a regression model of p 
candidate variables with p<< n. However, in the case of p >> n, not only does CV's 
consistency remain undeveloped, but subset selection is also practically infeasible. 
Instead of subset selection, in this talk, we suggest using CV as a backward 
elimination tool for excluding redundant variables that enter regression models 
through high-dimensional variable screening methods such as LASSO, LARS, ISIS and 
OGA. By choosing an n_{v} such that n_{v}/n converges to 1 at a rate faster than the 
one suggested by Shao (1993), we establish the desired consistency property. We 
further illustrate the finite sample performance of the proposed procedure via 
Monte Carlo simulations. Moreover, applications of our method to the analysis of 
wafer yields are also provided.  
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Classi�cation and variable selection for high-dimensional data

with applications to proteomics

Inge Koch

School of Mathematical Sciences, University of Adelaide
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For two-class classification problems Fisher’s discriminant rule performs well
provided the dimension is smaller than the sample size. As the dimension in-
creases, Fisher’s rule may no longer be adequate, and can perform as poorly as
random guessing. For high-dimension low sample size (HDLSS) data, dimen-
sion reduction and feature selection have become essential prior to applying any
classification rule.

In this talk we look at different ways of incorporating feature selection into
Fisher’s classification rule and the nave Bayes rule including the ‘Features An-
nealed Independence Rule’ (FAIR) of Fan and Fan (2008), and the ‘Nave Canon-
ical Correlation’ approach of Tamatani, Koch and Naito (2012). We examine the
behavior of such rules and look at asymptotic properties as the dimension and
sample size grow.

Proteomics is a rapidly growing research area within bioinformatics which
focuses on identification of proteins, peptides and biomarkers from peptide con-
centrations. We consider proteomics imaging mass spectrometry data ― HDLSS
data with an underlying spatial distribution ― here from patients with endome-
trial cancer. For these data we examine the performance of feature selection and
classification rules in predicting which patients’ cancer will metastasise.
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Regression with auxiliary variables

Shinpei Imori

Graduate School of Engineering Science, Osaka University

1 Introduction

In this paper, we attempt to construct a parametric model for random variables of interest,
which are called objective variables. Along with the objective variables, we sometime ob-
serve random variables related to the objective variables but of no interest, like as metadata.
Such variables are referred to as auxiliary (or secondary) variables. For example, in Flickr
(https://www.flickr.com), which is an image sharing web service, we can observe many images
as well as their auxiliary variables including tags, geographical information and user information
among others (see McAuley and Leskovec, 2012).

Because we can expect that the auxiliary variables have a lot of information about the
objective variables, we try to improve the parametric model of the objective variables to fit a
future observation by using the auxiliary variables. In fact, Mercatanti, Li & Mealli (2015) had
already reported that the auxiliary variables are able to improve the precision of the parameter
estimation in the Gaussian mixture model.

In a regression framework, a simple way to use the auxiliary variables is to incorporate
them into the regression model as explanatory variables. Unless the true regression structure is
completely explained by the objective variables, we will be able to expect that using auxiliary
variables as the explanatory variables improves the accuracy of the regression model. However,
if the future observation does not include the auxiliary variables, the regression model with
the auxiliary variables cannot be applied to the future observation because this indicates that
part of explanatory variables are missing. Indeed, it may be difficult to collect the metadata as
mentioned before rather than the image data.

In this paper, we construct a regression model that can be applied to the future observation
without the auxiliary variables although this regression model includes the information of the
auxiliary variables on the objective variables. Concretely speaking, at first, we consider a joint
model of the objective and the auxiliary variables, and then, we derive a marginal model of the
objective variables from the joint model i.e., the auxiliary variables are deleted. We would like
to note that the auxiliary variables are sometimes used in missing data analysis, however, this
is different from our purpose.

2 Regression with auxiliary variable

In this section, we explain a regression framework with the auxiliary variables. Let Y be a
response variable and X be a p-dimensional explanatory variable. The true conditional density
function of Y given X is denoted by q(y|x). Our aim is to construct a good regression model to
estimate q(y|x), and then a candidate model py(y|x;α) is considered where α ∈ A is unknown
parameters.

Here, we have the auxiliary variables A that are a q-dimensional random variable. A joint
model of (Y,A) given X is assumed to be p(y, a|x; θ) where θ ∈ Θ is unknown parameters. More
directly, we consider the regression model of Y given (A,X) as py(y|a, x; θ) when we regard A
as covariates. These models p(y, a|x; θ) and py(y|a, x; θ) may be able to explain the event of
interest and to predict the future behavior of Y more precisely than py(y|x;α). However, since
we allow the auxiliary variables not to be collected in the future observation, we do not apply
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the regression model py(y|a, x; θ) to the future observation. Thus, we consider an alternative
model as follows:

p(y|x; θ) ≡
∫

p(y, a|x; θ)da =

∫
py(y|x, a; θ)p(a|x; θ)da.

Hence, if we specify the regression model of A given X, p(a|x; θ), then we can define the marginal
model p(y|x; θ). The unknown parameters θ are estimated from the joint model p(y, a|x; θ) in
order to utilize the information of the auxiliary variables A.

Note that when the regression model py(y|x;α) is correctly specified, i.e., there exists α0 ∈ A
such that py(y|x;α0) = q(y|x), it may not need to consider the joint model p(y, a|x; θ) (or its
marginal model p(y|x; θ)) because the maximum likelihood estimator (MLE) of α will converge
to the true value α0.

3 Auxiliary variable selection

It follows form the results of the previous section that a goodness of fit of the regression model
with the auxiliary variables depends strongly on the regression model for the auxiliary variables
given the explanatory variables, p(a|x; θ). Hence, it needs to select the best regression model
among candidate models.

In this study, the goodness of fit of the candidate model is measured by KL-divergence
(Kullback and Leibler, 1951):

L(θ) = −
∫

q(y|x)q(x) log p(y|x; θ)
q(y|x)

dydx,

whereas the unknown parameters θ will be estimated from p(y, a|x; θ). This implies that the
adequacy of usual selection methods by information criteria such as AIC proposed by Akaike
(1974) and BIC proposed by Schwarz (1978) is not guaranteed. Hence, we consider the new
variable selection procedure, and we attempt to select the valid auxiliary variables and model.

References

1. Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions
on automatic control, 19(6), 716–723.

2. Kullback, S. & Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics, 22(1), 79–86.

3. McAuley, J. & Leskovec, J. (2012, October). Image labeling on a network: using social-
network metadata for image classification. In European Conference on Computer Vision,
828–841. Springer Berlin Heidelberg.

4. Mercatanti, A., Li, F. & Mealli, F. (2015). Improving inference of Gaussian mixtures using
auxiliary variables. Statistical Analysis and Data Mining, 8(1), 34–48.

5. Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2),
461–464.
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Abstract

We investigate the statistical efficiency and computational complexity of some nonparametric
estimators for a nonlinear tensor estimation problem. Low-rank tensor estimation has been used as
a method to learn higher order relations among several data sources in a wide range of applications,
such as multi-task learning, recommendation systems, and spatiotemporal analysis. We consider a
general setting where a common linear tensor learning is extended to a nonlinear learning problem
in reproducing kernel Hilbert space and propose two nonparametric estimators such as a Bayes
estimator [5] and an alternating minimization procedure [10]. It is shown that the Bayes estimator
achieves a near minimax optimal convergence rate without any strong convexity assumption, such
as restricted strong convexity. We also show that the alternating minimization method achieves
linear convergence as an optimization algorithm and that the generalization error of the resultant
estimator yields the minimax optimality.

1 Problem formulation
Suppose that we are given n input-output samples {(xi, yi)}ni=1. The input xi is a concatenation of K

variables, i.e., xi = (x
(1)
i , · · · , x(K)

i ) ∈ X1 × · · · × XK = X , where each x
(k)
i is an element of a set Xk.

We consider the regression problem where these samples are generated according to the non-parametric
model [8]:

yi =

d∑
r=1

K∏
k=1

f∗
(r,k)(x

(k)
i ) + ϵi, (1)

where {ϵi}ni=1 represents an i.i.d. zero-mean noise. In this regression problem, our objective is to estimate

the true function f∗(x(1), . . . , x(K)) =
∑d

r=1

∏K
k=1 f

∗
(r,k)(x

(k)).

This model captures the effect of non-linear higher order interactions among the input components
{x(k)}Kk=1 to the output y, and thus, is useful for a regression problem where the output is determined
by complex relations between the input components. This type of regression problem appears in several
applications, such as multi-task learning, recommendation systems and spatiotemporal data analysis
[6, 7, 1].
To understand the model in Eq. (1), it is helpful to consider a linear case as a special case [2, 11]. In

general, the linear tensor model is formulated as

Yi = ⟨A∗, Xi⟩+ ϵi. (2)

Here, Xi, A∗ are tensors in RM1×···×MK and the inner product ⟨·, ·⟩ is defined by ⟨A,X⟩ =∑M1,...,MK

i1,...,iK=1 Ai1...iKXi1...iK . A∗ is assumed to be low rank in the sense of CP-rank [3, 4], i.e., A∗ is

decomposed as
∑d

r=1 u
∗(1)
r ◦ · · · ◦ u∗(K)

r , where the vector u
∗(k)
r ∈ RMk and the symbol ◦ represents the

vector outer product. If we also assume Xi is rank-1, i.e., Xi = x
(1)
i ◦ · · · ◦x(K)

i , then the inner product in

Eq.(2) is written as: ⟨A∗, Xi⟩ =
⟨∑d

r=1 u
∗(1)
r ◦ · · · ◦ u∗(K)

r , x
(1)
i ◦ · · · ◦ x(K)

i

⟩
=
∑d

r=1

∏K
k=1

⟨
u
∗(k)
r , x

(k)
i

⟩
.

This is equivalent to the case where we limit f∗
(r,k) in Eq. (1) to the linear function

⟨
u
∗(k)
r , x(k)

⟩
. Hence,

the linear model based on CP-decomposition can be understood as a special case of our proposed model.
[5] proposed a nonparametric Bayesian estimator and [10] proposed an alternating minimization esti-

mator for the nonlinear model (1).

2 Convergence analysis
[5, 10] have shown that the convergence rates of the predictive risks of the Bayes estimator and the
alternating minimization achieve the minimax optimal rate.

Let ∥f̂ − f∗∥2n := 1
n

∑n
i=1(f̂(xi) − f∗(xi))

2 and s(r,k) be the covering number exponent of the RKHS

in which the true function f∗
(r,k) is supposed to be included. Now let f̂ be the Bayes estimator proposed

in [5]. Then the following risk bound is obtained.

1



Theorem 1 Under some assumptions, there exists a constant C > 0 such that

EY1:n|x1:n

[
∥f̂ − f∗∥2n

]
≤ C

{
d∑

r=1

K∑
k=1

n
− 1

1+s(r,k) +
d

n
log

(
1

κ

)}
,

where EY1:n|x1:n
indicates the expectation with respect to the outputs Y1, . . . , Yn conditioned by the inputs

x1, . . . , xn, and κ is a constant that is determined by the prior distribution of the rank.

It was shown that this bound actually achieves the minimax optimal rate [5].
On the other hand, the convergence rate of the alternating minimization method proposed [10] have

been also analyzed. Let (f̂ (t), v̂(t)) be the estimator at the tth iteration of the alternating minimization
method. Then the following risk bound of the alternating minimization method is obtained [10].

Theorem 2 Suppose that (f̂ (1), v̂(1)) is sufficiently close to the true function f∗, then we have

∥f̌ (t) − f∗∥2L2
= O

(
τdKn− 1

1+s log(dK) + τdK

(
3

4

)t
)

with probability 1− 3 exp(−τ).

This theorem indicates that after T = O(log(n)) iterations, we obtain the estimation accuracy of

O(dKn− 1
1+s log(dK)). The estimation accuracy bound O(dKn− 1

1+s log(dK)) is intuitively natural because
we are estimating d×K functions {f∗

(r,k)}r,k and the optimal sample complexity to estimate one function

f∗
(r,k) is known as n− 1

1+s [9]. Indeed, this accuracy bound is minimax optimal [5].
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