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Abstract

We study the digits of S-expansions in the case where § is a Salem
number. We introduce new upper bounds for the numbers of occurrences
of consecutive 0’s in the expansion of 1. We also give lower bounds for
the numbers of nonzero digits in the S-expansions of algebraic numbers.
As applications, we give criteria for transcendence of the values of power
series at certain algebraic points.

1 Main results

Rényi [23] introduced representations of real numbers in a real base 8 > 1.
The representations are called S-expansions. We recall the definition of (-
expansions. We use the following notation throughout this paper. Let N be
the set of nonnegative integers and let Z* the set of positive integers. Let x
be a real number. We denote the integral and fractional parts of z by |[z] and
{z}, respectively. Moreover, we denote the minimal integer not less than = by
[2]. We use the Landau symbols o, O and the Vinogradov symbols >, < with
their regular meanings. We denote f ~ g if the ratio f/g tends to 1. We recall
that a Pisot number is an algebraic integer greater than 1 whose conjugates
except itself have absolute values less than 1. Moreover, a Salem number is an
algebraic integer greater than 1 whose conjugates except itself have absolute
value at most 1 with at least one conjugate having absolute value 1. If K is a
subfield of a field L, then [L : K] denotes the degree of the field extension L/K.
The S-transformation T : [0,1] — [0, 1) is defined by

Tp(x) == {Bx}

for € [0,1]. Let n be a real number with 0 <7 < 1. If § = b is a rational
integer, then suppose further that n < 1. Set t,(8;n) := LﬂTgil(n)j for each
positive integer n. Then we have t,(3;7) € ZN[0,5). The B-expansion of 7 is
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written as

n="S ta(Bma". (L1)

Put

dg(n) ==t (Bsm)t2(Bsm) . ...

Since the p-expansion of 0 is trivial, we only consider the S-expansions of posi-
tive real numbers. If 8 =b € Z and if n = 1, then set

dp(1) = t1(b; Dita(b;1)...:= (b —1)(b—1)....

If » = 1, then the S-expansion of 1 is simply called the expansion of 1. We
call dg(n) infinite if ¢,,(8; 1) # 0 for infinitely many n’s. Verger-Gaugry [27] say
that dg(n) is gappy if t,,,(8;n) = 0 for infinitely many m’s and if ¢,(8;n) # 0
for infinitely many n’s.

The sequence dg(1) plays a crucial role for studying the S-shifts. In particu-
lar, Blanchard [7] classified the 8-shifts, using the expansion of 1. For instance,
ds(1) is ultimately periodic if and only if the S-shift is sofic. If 8 satisfies these
properties, then 3 is called a Parry number. Parry [22] studied the periodicity of
ds(1). He showed that any Pisot number is a Parry number. However, it is still
unknown whether there is a non-Parry Salem number. Boyd [9] proved that any
Salem number of degree 4 is a Parry number. On the other hand, his numerical
experiments [10] implies that there are possible examples of non-Parry Salem
numbers of degree greater than 4.

The sequence dg(1) is mysterious. It is generally difficult to decide whether
ds(1) is gappy. Dubickas [15] proved that dg(1) is gappy in the case where § is
a rational number with 1 < 8 < 2. The number of occurrences of consecutive
0’s in dg(1) is important in Blanchard’s classification. Put

{n € ZF | 1a(B51) # 0} = {01(8) < v2(B) < -+ < v(B) < -},

If dg(1) is periodic, then the sequence vy11(8) — v (B8) (m = 1,2,---) is
bounded. For an algebraic number 5, we denote its minimal polynomial by
Ag X+ Ag 1 X4 .o+ Ay € Z[X], where Aq > 0. Let B1,...,84 be the
conjugates of 8. Then the Mahler measure of g is defined by

d
M(B) = AdeaX{l, |1Bil}.

Verger-Gaugry [27] showed for any algebraic number § > 1 that

limsup Uerl(ﬁ) B ’Um(ﬂ) < ]'Og M(ﬁ) —1. (12)

m—o0 Um () ~ logp

In particular, if 8 is a Salem number, then

hm Um-&-l(ﬁ) - U’m(ﬁ)

m—00 vm(ﬂ)

=0. (1.3)

We give new upper bounds for v,,+1(8) — v (8) as follows:



THEOREM 1.1. Let 8 be a Salem number of degree d. Then there exists an
effectively computable positive constant C1(3), depending only on 3, such that

Vnt1(B) — vm(8) < dloggm
for any m with m > C1(8), where logg m = log m/ log 3.

Note that Theorem 1.1 is stronger than (1.3) because v, (8) > m. The
sequence dg(n) is interesting also in the case where 1 is an algebraic number
with 0 < n < 1. For instance, if 8 = b is an integer greater than 1, then dp(n)
denotes the base-b expansion of 7. Borel [8] conjectured that every algebraic
irrational number is normal in any integral base b.

We consider the number of nonzero digits written as

vg(n; N) := Card{n € Z* | n < N, t,(B;n) # 0}

where N is a positie integer and Card denotes the cardinality. We denote the
number of digit changes by

vp(n: N) := Card{n € Z* | n < N, ta(Bin) # tnr1(Bin)},

where N is a positive integer. Bugeaud [12, 13] introduced the function v(n; N)
to investigate the complexity of the sequence dg(n). Observe that

s N) 2 5930 N) + 01, (14)

Let again 8 = b be an integer greater than 1. If Borel’s conjecture is true,
then, for any algebraic irrational n € (0, 1),
w(mN) _b-1

NN T T

However, little is known on the conjecture. It is still unproved whether

N
lim sup Yot 2 (7; V)

> 0.
N—o0 N

Now we introduce known results on lower bounds for v,(n; N). Let D > 2 be
the degree of n. Bailey, Borwein, Crandall, and Pomerance [5] showed that if
b = 2, then there exist positive constants Ca(n) and Cs(n) such that

va(n; N) > Ca(n) NP (1.5)

for any integer N with N > C3(n). Note that Cy(n) is computable but C3(n)
is not. Rivoal [24] improved Cy(n) for certain classes of algebraic irrational 7.
Changing C2(n) and C3(n) by suitable positive constants Co(b,n) and Cs(b,7),
respectively, we can prove (1.5) for any integral base b in the same way as the
case of b = 2. Moreover, modifying the proof of (1.5), Adamczewski, Faverjon
[4], and Bugeaud [11] independently gave effective versions of the lower bounds
for general integer b > 2. Here we introduce the results by Bugeaud as follows:
We denote the minimal polynomial of 1+ {n}(=1+n) by

P(X)=ApXP + Ap 1 XP71 ...+ Ay € Z[X],



where Ap > 0. We denote the height of P(X) by Hp. Namely, Hp is the
maximal absolute value of the coefficients of P(X). Then, for any integer N
with N > (206° D?Hp)?P, we have

1 N 1/D
(1 N) 23— (2<D+1)AD> : (1.6)

We return to the case where 8 > 1 is a general real number. We review
known results on the periodicity of S-expansions. Schmidt [25] proved that if
each rational number 7 with 0 < 1 < 1 has an ultimately periodic S-expansion,
then g is a Pisot or Salem number. Next we suppose that [ is a Pisot number.
Then Bertrand [6] and Schmidt [25] independently showed for n € (0, 1] that
dg(n) is ultimately periodic if and only if n € Q(8). Schmidt [25] also conjec-
tured that if £ is a Salem number, then the S-expansion of any rational number
is ultimately periodic, which is still not proved. In what follows, we study the
sequence dg(n) in the case where 3 is a Pisot or Salem number and 7 is an
algebraic number. In this section the implied constants in the symbol > are
effectively computable positive ones depending only on S and 7. Moreover, we
say that certain property (A) holds for any sufficiently large N if (A) is true
for any integer N with N > Ny, where Ny is an effectively computable positive
constant depending only on g and 7.

Bugeaud [13] gave lower bounds for vg(n; N) as follows: Let 8 be a Pisot
or Salem number and 7 an algebraic number with 0 < < 1. Assume that
tn(B;m) # tny1(B;m) for infinitely many n’s. Then we have

v5(n; N) > (log N)*/?(loglog N)~'/? 1.7
s

for any sufficiently large N. The author [16, 17] improved lower bounds for
~v8(n; N) in the case where § = b is an integer greater than 1. Namely, if 7
satisfies certain assumptions on its minimal polynomial, then

Yo (n; N) > NP

for any sufficiently large IV, where D is the degree of 7.

We now consider lower bounds for v3(n; N) in the case where £ is a Pisot or
Salem number. If t,,(8;n) # t,+1(8;n) for infinitely many n’s, then using (1.4)
and (1.7), we obtain

vs(n; N) > (log N)*/*(log log N)~*/? (1.8)

for any sufficiently large N. On the other hand, using Theorem 2.1, we improve
(1.8) as follows:

THEOREM 1.2. Let 8 be an Pisot or Salem number and n € (0,1] an al-
gebraic number. Let D = [Q(8,n) : Q(B)]. Suppose that dg(n) is infinite.
Then there exist effectively computable positive constants Cy(8,m) and Cs(8,7),
depending only on B and n, such that

vs(n; N) > Cy(B,n)N'/ P~ (log N)~1/(P=1)

for any integer N with N > C5(5,n).



In particular, we consider the case where § is a Salem number and n € (0, 1]
is a rational number such that dg(n) is infinite. Suppose that the Schmidt’s
conjecture is true, namely, dg(n) is periodic. Then there exist positive constants
Cg, C7 such that

vg(n; N) > CgIN

for any N with NV > C7. On the other hand, using Theorem 1.2, we obtain
partial results for the Schmidt conjecture as follows:

COROLLARY 1.3. Let 3 be a Salem number andn € (0, 1] a rational number.
Suppose that dg(n) is infinite. Then there exist effectively computable positive
constants Cs(8,n) and Co(8,1n), depending only on B and n, such that

N
log N

for any integer N with N > Co(f3, 7).

It is well-known that dg(1) is infinite. Thus, Corollary 1.3 implies that

N
I/g(].,N) > logN
for any sufficiently large N. We note that Dubickas [15] estimated lower bounds
for vg(1; N) in the case where [ is a transcendental number satisfying certain
Diophantine assumptions.

We also introduce the Diophantine exponents which are measures of the
periodicity of sequences. We give notation on words. Let W := Z N[0, 8) and
V a finite nonempty word on the alphabet W with length |V|. For any positive
real number z, put

VE=V...VV,
——

=]
where V"’ is the prefix of V' with length [{«}|V]]. Let p > 1 and let t = (¢,,)22

n=1
be an infinite word on the alphabet from W. We say that t satisfies Condition
(%), if there exist two sequences of finite words (Uy )52, (V,)52, and a sequence
of positive real numbers (7,)5%; such that:

1. For any n > 1, the word U, V,]" is a prefix of t;
2. For any n > 1, we have |U,V,"|/|U,Vy| > p;

3. The sequence (|V,

)o° , is strictly increasing.

We then define the Diophantine exponent Dio(t) of ¢ by the supremum of the real
numbers p for which ¢ satisfies Condition (x),. It is easily seen that 1 < Dio(t) <
0o0. Moreover, if t is ultimately periodic, then Dio(t) = co. Adamczewski and
Bugeaud [2] showed the following: Let 5 be an algebraic number greater than
1. Let t = dg(n) for an algebraic n € (0, 1]. Then ¢ is ultimately periodic or

Dio(t) < k’gkféﬁ). (1.9)



The Diophantine exponents are applicable to the study of subwords in infinite
sequences. For instance, (1.9) implies (1.2). Moreover, consider the case where
B is a Pisot or Salem number and 7 is an algebraic number in (0, 1)\Q(3). Then,
applying the Diophantine exponents, Adamczewski and Bugeaud [3] estimated
lower bounds for the number of distinct blocks of n digits occurring in ¢t =
dg(n). We also introduce that Dubickas [15] gave upper bounds for Dio(dg(1))
in the case where [ is a transcendental number satisfying certain Diophantine
assumptions.
Note that (1.1) is regarded as a special value of the power series

D ta(Bim) X

n=1

In this paper, we also discuss arithmetical properties of the values of power
series. In Section 2 we give new criteria for transcendence of the values of
power series. In Section 3 we review the transcendence of the values of gap and
lacunary series. In Section 4 we prove the theorems stated in Sections 1 and 2.

2 New criteria for transcendence of the values
of power series

Transcendence of the special values of power series at algebraic points has been
investigated by various mathematicians. In Sections 2 and 3 we study the values
of power series in one variable. In what follows, s = (s,)2, is a bounded
sequence of integers such that s, # 0 for infinitely many n € N. Put

oo

f(s;X) = anX".

n=0
We define the sequence (w(s;m))So_, by
{neN|s, #0}={w(s;0) <w(s;l) < - <w(s;m) <---}. (2.1)

In Section 3 we review the transcendence of f(s;z) for algebraic z under the
assumption that

; 1
lim sup M > 1.

m—oo  W(8;mM)

Little is known on the transcendence of f(s;z) for algebraic z with 0 < |z] < 1
in the case of

lim 2&MED (2.2)

m—oo  w(s;m)
In this section we introduce new criteria for the transcendence of f(s;371),
where (8 is a Pisot or Salem number. The criteria are applicable even to the
values f(s,7 1), where s = (s,)2%, are certain sequences satisfying (2.2). In
the last of this section we give such examples. In the rest of this section we
assume that s, > 0 for any nonnegative integer n. We take an integer b >



2. We consider the case of X = b~!. Namely, applying (1.6), we investigate
arithmetical properties of f(s;b~1). Put

I'(s):={neN]|s, #0}.
Let A be a nonempty subset of N. Set
AMA;N) :=Card{n e N|n <N, ne A}

for N € N. We consider the base-b expansion of f(s;b~1). Since s = (s,,)22, is
a bounded sequence of nonnegative integers, we have

vo(f(s;071); N) < AMI'(8); N).

Consequently, we get the following: Suppose for a positive integer D that s
satisfies

lim inf 7)\@(8); N)

N—oc0 Nl/D =0

Then f(s;b7 1) is not an algebraic number with degree at most D. Namely,
[Q(f(s;671)) : Q] > D. (2.3)

In fact, f(s;b~!) is irrational because its base-b expansion is not ultimately
periodic. Thus, (2.3) follows from (1.6). In particular, (2.3) implies the following
criteria for transcendence, which were essentially proved by Bailey, Borwein,
Crandall, and Pomerance [5]: Assume for any positive real number ¢ that

lim inf M =0.
N—oo Ne

Then f(s;b71) is transcendental.
We now consider the case of X = 87!, where 3 is a Pisot or Salem number.

THEOREM 2.1. Let 8 be a Pisot or Salem number and £ an algebraic num-
ber with [Q(B3,€) : Q(B)] = D. Let s = (s,)52, be a sequence of integers with
0 < sp, < B for any n, where B is a positive integer independent of n. Suppose
that s, # 0 for infinitely many n’s and that &€ = f(s;371). Then there exist ef-
fectively computable positive constants C19(8,€, B) and C11(8,&, B), depending
only on B, and B, such that

A(L(s): N) 2 Cro(8, &, B)NY/ P~ (log N) =1/ (01
for any integer N with N > C11(8,&, B).
Applying Theorem 2.1, we investigate the arithmetical properties of f(s; 371).

COROLLARY 2.2. Let s = (5,)22, be a bounded sequence of nonnegative
integers. Let D be a positive integer. Assume that

log N)1/(2D=1)

liminf A(T'(s); N) - ( =0.

N—o0 N1/(2D-1)

Let 3 be a Pisot or Salem number. Then f(s;B71) satisfies
[Q (8, f(s:871) : Q(B)] > D.



We give examples of Corollary 2.2. Let D be a positive integer and ¢ a real
number with ¢ > 2D — 1. Let 3 be a Pisot or Salem number. Put

o0

G(B) =Y plm,
m=0
Then Theorem 2.1 implies that
[Q(B, G (B)) : Q(B)] > D. (2.4)
In fact, we define s® = ()2 by

{Im*] |m=01,..}={0=s{ <s’ <...}.
Then we have

A (F(S(t));N> ~ NVt — (Nl/(2D—1)(10g N)—l/(QD—l)) .

If 8 = b is an integer greater than 1, then Corollary 2.2 is weaker than (2.3). In
particular, (2.4) holds under the weaker assumption, namely, ¢ > D.

Using Corollary 2.2, we generalize the criteria for transcendence by Bailey,
Borwein, Crandall, and Pomerance [5] as follows:

COROLLARY 2.3. Let s = (s,)22, be a bounded sequence of nonnegative
integers. Assume for any positive real number € that

lim inf M < 0.
N—oo Ne

Let B be a Pisot or Salem number. Then f(s;[571) is transcendental.
In particular, we have the following:

COROLLARY 2.4. Let s = (s,)22, be a bounded sequence of nonnegative
integers. Let (w(s;m))_, be defined by (2.1). Suppose for any positive real
number A that

w(s;m)

A

lim sup
m—o0 m

Let B be a Pisot or Salem number. Then f(s;[571) is transcendental.

We give examples of Corollary 2.4. For any positive integer m, let

logm

u(m) :=m = exp ((logm)?).
Moreover, for any integer m > 3, put

1(m) := m!°81°e™ — exp (logm - loglogm) .

Then we have



for any positive real A. Using Corollary 2.4, we deduce for any Pisot or Salem
number S that

S grleml § gletm)] (2.5)
m=1 m=3

are transcendental numbers. Note that

. LM D] L )

e Tum] e )]

Thus, the numbers in (2.5) are the special values of the power series satisfying
(2.2).

3 Transcendence of the values of gap and lacu-
nary series

Let again s = (s,)22, be a bounded sequence of (not necessarily nonnega-
tive) integers such that s, # 0 for infinitely many n € N. Let f(s;X) and

oo

(w(s;m))0_ be defined as in Section 2. We call f(s; X) a gap series if

. w(s;m+1)
limsup —— =
m—oo  W(8;m)

For example, ¢(X) := > 02  X™ is a gap series. We say that f(s;X) is a
lacunary series if

limine 2&m+1)
moo  w(sym)

> 1. (3.1)

Let k be an integer greater than 1. Then ¢, (X) := Y X*" is a lacunary
series. We introduce known results on the transcendence of f(s;z), where z is
an algebraic number with 0 < |z| < 1, in the case where f(s;X) is a gap or
lacunary series.

Liouville [18, 19] investigated transcendence of the values of gap series at
certain rational points. For instance, he proved for any integer b greater than
1 that p(b~!) = 327 b~™ is transcendental, which is one of the first ex-
amples of transcendental numbers. The proof is based on the theory of ap-
proximations of algebraic numbers by rational numbers. We extract results
on Diophantine approximations from the book by Shidlovskii [26]. Recall that
Hp denotes the height of P. Moreover, we denote the total degree of P by
degy P(X1,...,Xm). Then Theorem 11 in [26, p. 34] implies the following:
Let ai,...,a, be algebraic numbers and § := [Q(ay,...,0,) @ Q. Then
there exists an effectively computable positive constant C1o = Cia(a, ..., am),
depending only on aq,...,q,, satisfying the following: For any polynomial
P(Xy,...,Xn) € Z[Xy,..., X,,] with Hp < H and degy P(X1,...,Xn) <k,
we have o

Ck
P(ai,...,am) =0o0r |Plag,...,am) > —=

> 2 (3.2)

Using (3.2), we obtain the following:



PROPOSITION 3.1. Let z and £ be algebraic numbers with 0 < |z| < 1. Let
s = (sn)22, be a sequence of integers with |s,| < B for any n, where B is a
positive integer independent of n. Assume that

f(si2) =¢
and that
M
Z Spz # & (3.3)
n=0

for any nonnegative integer M. Then there exist effectively computable positive
constants C13(z,€, B) and C14(z,&, B), depending only on z,£, and B, such that

w(s;m—+1)

w(s;m) < C13(Z,§,B)

for any integer m with m > Ch4(z,&, B), where (w(s;m))S0_, is defined by (2.1).
Proof. For simplicity, we put w(m) := w(s;m) (m =0,1,...). Then we have

(oo}
= Z sw(m)zw(m).
m=0

We apply (3.2) with @1 = z and ag = €. Put § := [Q(z,&) : Q]. We may assume
that Ci2 = Clg(z,f) < 1. Let

P(X1,X5) = X2 = Y sy X1
1=0

for positive integer m. Then we get Hp < B and degy P(X1, X2) = w(m).
Moreover, (3.3) implies that

0# P(z,¢) = Z Suw(iyz" .
i=m-+1
Thus, using (3.2), we get
Oiug(m) o _
L < |PegI< Y BP0
i=m-+1
- B
< B n— w(m+1)
< B Y k=gl
n=w(m+1)

Taking the logarithm of the inequality above, we deduce Proposition 3.1. O

We now consider transcendence of the values of lacunary series. Mahler [20]
proved transcendence of the values of power series satisfying certain kinds of
functional equations. For instance, let & be an integer greater than 1. Then
Y (X) fulfills

Ge(XF) = ST X = 3TXM X = (X)) - X,
n=0 n=0

10



Mahler proved for any algebraic z with 0 < |z| < 1 that ¢y (z) is transcendental.
For more details on Mahler’s method, see, for instance, [21].

Using the Schmidt Subspace Theorem, Corvaja and Zannier [14] showed
for any algebraic z with 0 < |z| < 1 that if f(s;X) is lacunary, then f(s;z)
is transcendental. Under weaker assumptions than (3.1), Adamczewski and
Bugeaud [3] studied transcendence of f(s;37!), where 3 is a Pisot or Salem
number, as follows: Assume that s = (s,)52, satisfies

: 1
i sup 2™+ D

msup = ) > 1. (3.4)

Then, for any Pisot or Salem number 3, we have that f(s;37!) either belongs to
Q(p), or is transcendental. In particular, consider the case where s = (s,,)22,
fulfills (3.4) and

sp € {0,1} for any n € N. (3.5)

Namely, we have f(s;X) = >.°°_ X%(si™) Adamczewski [1] showed for any

m=0
Pisot or Salem number 3 that if s satisfies (3.4) and (3.5), then f(s;371!) is
transcendental.

4 Proof of the theorems in Sections 1 and 2

We see that Theorem 1.2 follows from Theorem 2.1. Hence, we only verify
Theorems 1.1 and 2.1.

Proof of Theorem 1.1. For simplicity, we put
Uh(ﬂ) =: Uh, tvh (5, 1) =:Qp

for h=1,2,.... Then we have

1= i ahﬁ_vha
h=1

where
ap € ZN[LpB) for h=1,2,.... (4.1)
For any positive integer m, put
m o0
Ay = B — Zahﬁvm—vh — Z apBm T,
h=1 h=m+1

Note that A,, is an algebraic integer because § is a Salem number. Using (4.1),
we have

0 < A,< i g B

h=m-+1

S Z ﬂ . /BUTVL_U7VL+1_n — ﬂ /BUNL_UNL+1. (4.2)
n=0

1— g1

11



Let 01,...,04 be the conjugate embeddings of Q(5) into C, where o1(y) = v
for any v € Q(B). Set 0,(8) =: B; for 2 <4 < d. Then |3;| <1 because j§ is a
Salem number. Thus, using (4.1), we get, for 2 < i < d,

m
5;)7?‘1, _ Z ahﬂ;)m_vh

h=1

loi (Am)] < <1+mp.

Since A,,, > 0 and since A,, is an algebraic integer, we obtain

d
H ag; (Am)
=2

Combining (4.2) and (4.3), we deduce that

p
1- 81

Hence, there exists an effectively computable positive constant Cy () depending
only on (3 such that

1< |Ap| < Ay (1+mpB)tt. (4.3)

B'Um+1 —Um S

(1+mp)?.

BUmt1Tvm < md
for any m with m > Cy(8), whch implies Theorem 1.1. O

Proof of Theorem 2.1. Without loss of generality, we may assume that 0 € I'(s).
In what follows, the implied constants in the symbol <« and the constants
C15,C1g, . .. are effectively computable positive ones depending only on 3,¢&
and B. Moreover, let A be a subset of N. We say that certain property (A)
holds for any sufficiently large N € A if (A) is true for any N € A with N > Ny,
where Ny is an effectively computable positive constant depending only on 3, £
and B. Since f is positive and since s,, # 0 for infinitely many n’s, we get

M

D BT E

n=0
for any nonnegative integer M. Thus, Proposition 3.1 implies that there exist
C15, C1 satistying, for any real number x with = > Cys,

I'(s) N[z, Cigx) # 0. (4.4)

Since [Q(B,€) : Q(B)] = D, there exists a polynomial P(X) = ApXP +
AD_1XD_1 + .-« 4+ Ay, where Ap,Ap_1,...,Ag € Z[,B] and Ap > 0, such
that P(£) = 0. For simplicity, we put

I':=T(s), AM(N):=XT;N).

12



We calculate &* for any k with 1 < k < D. We get

()

mel

_ § —mi—-—m
— Sml . Smkﬁ 1 k

my,...,mi €l

oo
§ : —m §
= ﬁ Smq " Smy,
m=0

é—k

where

p(k,m) = Z Smy  Smy -
T s mp €0

my+-tmy=m

Let m be a nonnegative integer. Then p(k;m) is also a nonnegative integer by
its definition. Put

ET :={my+---+my |mq,...,m; €T}

Since 0 € I', we have

rc2rc.--c(b-1rcbor. (4.5)
Moreover, we get
ART; N) = Card([0, N]NEkT)
< Card([0, N]NT)* = A\(N)*. (4.6)

Observe that p(k;m) is positive if and only if m € kI. We estimate upper
bounds for p(k; m) as follows:

pk;m) <B* Y 1< B¥m+1)k (4.7)

Let R € N. Using

D
0 = PE)=Ao+) A
k=1
D o)
= Ao+ Ap Y B "p(kim),
k=1 m=0
we obtain
D [e’s)
0 = AR+ Ap Y B p(kim)
k=1 m=0
D %)
= AB+D A D B p(ksm + R).
k=1 m=—R

13



Put
D 00
Vi = Y Ap > B "p(kim 4+ R),
k=1 =1

D 0
= —ABR =D A > B p(ksm+ R), (4.8)
k=1

m=—R

which implies that Y5 is an algebraic integer since (3 is a Pisot or Salem number.
Bailey, Borwein, Crandall, and Pomerance [5] called Yz BBP tails in the case of
B = 2. For the proof of P(£) # 0, we consider BBP tails in the case where 3 is
a Pisot or Salem number. We give lower bounds for |Yg| in the case of Y # 0.

LEMMA 4.1. There ezist positive integers C17 and Cig satisfying the follow-
ing: If R > Cy7, then we have

Yr =0 or |Yg| > R~ s,

Proof. Put d := deg 8. Let o1, ..., 04 be the conjugate embeddings of Q(8) into
C, where o1(vy) =« for any v € Q(8). Set

Chg :=max{|o;(4;)||i=1,...,d,j=0,...,D}.

We put o;(5) =: ; for 2 < i < d. Then (4.8) implies that

D R
0i(Yr) = —0i(A0)B" = D ai(Ax) D B"p(k; —=m + R). (4.9)
k=1 m=0

Recall that |5;] < 1 because S is a Pisot or Salem number. Thus, combining
(4.7) and (4.9), we get, for any sufficiently large R,

D R
loi(Yr)] < Cig+ Z Chg Z p(k;—m + R)
k=1 m=0
D
< Ci+ Y Cio(R+1)BP(R+1)P < RP*2,
k=1

Assume that Yr # 0. Since Yy is an algebraic integer, we obtain

d
1< [Ya|[[lo:(YR)| < [YR|RE-DPF2).
=2

for any sufficienlty large R € N. Namely,

|Yr| > R™s.

14



Put

—1/(2D-1)
Cao = (10g )"/ 207D (4(1 + C1) (D +2C1s))

and
Hi= {N eN ) N > 2, A(N) < CooN/ P~ (1og N)~1/ (D=1 }
In what follows, we show that = is bounded. Namely,
A(N) > CzONl/@D—l)(lOg N)—l/(2D—1)

for any sufficiently large N € N, which implies Theorem 2.1. We construct
Ja C [0, N) such that Yg > 0 for any R € JoNZ. If D =1, then Y > 0 for any
R € N by the definition of Yz and p(k;m). So we put Jo := [0, N). Now we
define Jy in the case of D > 2. For any interval I = [a,b), we denote its length
by |I] :=b—a. Put

O,N)ND -1 ={0=j1 <jo<--<jr}
where
T < AN)P! (4.10)

by (4.6). Let ji1, := N. Observe that j, € (D — 1) for any a with 1 <a <7
and that

T

> (i4a — ja) = N. (4.11)

a=1

There exists a p with 1 < p < 7 such that

Jitp —Jp = 11%13%(7_{.7'1-&-& — Ja}-
Let Ji := [jp, ji+p) C [0,N) and Ly := |J1| = ji4p — jp. Then we have
j, € (D —1)T. (4.12)

Moreover, for any k with 1 < k < D — 1,

(jp7j1+p) NkI' C (jp7j1+p) n (D — 1)F(: @) (413)
by (4.5). Combining (4.10), (4.11) and the definition of p, we get
N N
— g — Jal > > .
b= max Uee = Jed 2 7 2 yryoet (4.14)
The definition of Cyy and = implies for any N € = that
N

Thus, if N € Z satisfies N > 15, then




by (4.14) and (4.15). In particular, (4.4) implies that there exists 6y = 6o(N)

with
Ly CreL1
0y € , NnT.
0 {1 +Ci6 1+ Ci6

In what follows, we assume that N > 315, Let

(4.16)

Ci6L
M—M(N):—jpwoe[ijr 10 1)

Ly -
1+016’jp 1+ Cis
and

Jy = [jp, M) C Ji.

Then M € DT by (4.12) and 6y € T'. Hence, we defined J; in the case of D > 2.
In the case of D =1, we have p=1, j; =0and M = N.
We observe that

N
(L4 Cie)A(N)PL
In fact, if D =1, then (4.17) is clear. In the case of D > 2, we get

Mo s N
=TT C6 T (U Croa ()Pt

by (4.14) and (4.16).

LEMMA 4.2. There exists a positive integer Co1 with Cop > B satisfying
the following: If N € = satisfies N > Caq, then Y > 0 for any R € JoNZ.

| J2| > (4.17)

|Jo| =

Proof. We may assume that D > 2. We first show that there exists a positive
integer Cy; satisfying, for any N € = with N > Co;,

Yy_1>0. (418)
We have
(oo}
Y1 = Ap Y B "p(Dim+ M —1)
m=1
D—-1 e}
+ DAY B plksm+ M —1)
k=1 =1
=: 51 + SQ.
Thus, we get

Ap Ap
S1> —pD;M)>—>0
12— p(D M) > =
because M € DI'. We now estimate upper bounds for |S3|. Using (4.14), (4.15),
and (4.16), we get

. ‘ . Ci6Ly
.71+p_M > ]1+p_]p_1+016

L N
= > >2D1 N. 4.19
1+Cis — (14 Cie)A(N)P-L o880 (4.19)
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Let 1 <k < D—1. Take an integer m with 1 <m < ji1, — M +1. Then we get
Jp <M <m+ M —1 < ji4p. Thus, (4.13) implies that p(k;m + M — 1) = 0.
Hence, using (4.7), (4.19), and M < N, we obtain

D—-1 00
S| < [ARl > B plksm + M —1)

k=1 m=1
D—-1 0

= Al > BTplkm+ M —1)
k=1 m=j14p—M+1
D—-1 00

< Yial S BTBPm+ M)P
k=1 m:j1+p7M+1
D—1 o

< |AxBP > g (m+ N)P
k=1 m=j14p—M+1

o0

< > BT m+N)P.

m=[2Dlogg N

There exists Caa such that if N > Cyg, then, for any m € ZT,

m+N+1\" 1 \? B+1
mrATY <1 . 4.20
( m+ N ) —< +N+1) < (4:20)

Consequently,

|S2| < /8_[2D10g[1N1 ((2Dlogﬁ N] —|—N)D Z g™ <52+1>

m=0

< N7?P([2Dlogs N1+ N)”.

In particular, we get

Ap
So| < —
[S2] < 3 5
for any sufficiently large N € E. Finally, taking a suitable constant Cy; with
Co1 > max{B915, Ca}, we deduce that, for any N € = with N > Cyy,

Ap
Yv_o1= > —
M—1 S1+5272B>0,
which implies (4.18).
Next we show that if N > Cy;, then Yi > 0 for any R with R € [j,, M)NZ
by induction on R. Assume that Y > 0 for certain R with R € (j,, M)NZ. By
(4.13) and R € (jp, j1+4p), we have p(k; R) = 0 for any k with 1 <k < D — 1.

17



Consequently,

D
Yr1 = ZAk Z B " p(k;m+ R—1)

1 D
B k=1
1 D o)
+= Z Ayg Z B~V p(k;m — 1+ R)
5 k=1 m=2
1 1 D 0o
= GApp(DiR)+ 5> Ac Y A" plkim+ R)
k=1 m=1
= lA (D'R)—I—lY >1Y >0
3 DP(L; 3 R Z 3 R .
Therefore, we proved Lemma 4.2. O

In what follows, we assume that N € = satisfies N > (C51. Observe that
Card(Jo N DT) < A\(DT; N) < A\(N)P
by (4.6). Put
(J2 N D) U {jp} = {jp = i1 <z <+ <liw},
where
w <14+ MNP <20(N)P. (4.21)
Let 414, := M. Then (4.17) implies that

=y ‘ N
};(mh =in) =171 2 T (4.22)

There exists a ¢ with 1 < ¢ < w such that

il — iy, = max il —int-
+q — g 1§h§w{ +h —in}

Put I := [iq,i1+q) C Jo. Let 1 <k < D. Then
(iqri11q) NED C (iq,i14q) N DT (= 0) (4.23)
by (4.5). Moreover, using (4.21), (4.22), and the definition of ¢, we obtain
b= |L]= éllftgw{iuh —in}

L, N
= W T 2(1+ CreA(N)PD T

In particular, (4.15) implies that

l; > 2(D + 2C15) logg N (4.24)
for any N € =. Recall that C17 and C5; are defined in Lemmas 4.1 and 4.2,
respectively. Put Ip := [ig, 34 + 11/2).
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LEMMA 4.3. There exists Ca3 with
Cys > max{Cyy, 917} (4.25)

satisfying the following: Let N be an element of = with N > Cy3. Then, for
any R € Is N7Z, we have

0<Yr< R ©s,

Proof. Let N € Z and R € I, NZ. For the proof of Lemma 4.3, it suffices to
show that

‘YR| < R_018
by Lemma 4.2 and I, C I} C J2. We estimate upper bounds for

D oo
Vel = > Ax Y B "p(kim+ R)|.
k=1 m=1
Let 1 <k < D. Take an integer m with 1 < m < 4144 — R. Then we have
ig <m+ R < ii14q. Thus, (4.23) implies that p(k;m + R) = 0 for such an m.
Using (4.7) and R+ 1 < N, we get

D oo
Ya| < >4l > B ™p(ksm+ R)
k=1 m:i1+qu
D )
SlAl > BTBP(m+R+1)P
k=1

m=i1+q —R

IA

< Y BT(m+N)P.
m:i1+q—R
Observe for any R € I NZ that
1

1
*ll = 511 2 (.D + 2018) logﬁ N

i1+q—R>i1+q—iq—2

by (4.24). Thus,

Yi| < > B~ (m + N)P.
m=[(D+2C13)logg N1

Hence, using (4.20) and N > Cs1 > Cha, we obtain

o0 1 m
Yr] < ﬂ*f(DjLQCls)logg N—‘([(D+2018>logﬁ N +N)D Z gm (6;)

m=0

<« N-(D+2Cis)  NyD _ Ny—2C1s « y—Cis g=Cis,
Namely, there exists Co4 such that, for any R € I, NZ,
|Yg| < CoyN~C18 R=C1s,

Taking a suitable constant Cag satisfying (4.25), we obtain that if N > Cag,
then |Yz| < R~ for any R € Iy N Z. Therefore, we verified Lemma 4.3. [
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Suppose that there exists an N € Z with N > Ca3. Recall that iq = ig(NV)
is defined by N. Put

R(0) :=i,+ Ci7 € Z.
Since R > (17, Lemma 4.1 implies that
Yr(o) = 0 or [Yr()| > R(0)" <. (4.26)
On the other hand, by (4.24) and (4.25), we get
Ci7 < (D+2C)logg Cos

1
< (D—i—?clg)logBN < 5[1,

which implies that R(0) € Is. Thus, using Lemma 4.3, we obtain
0 < Yr(o) < R(0)™s,

which contradicts (4.26). Finally, we deduce that = C [2,C53). Namely, we
proved Theorem 2.1. O
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