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Abstract

We study the digits of β-expansions in the case where β is a Salem
number. We introduce new upper bounds for the numbers of occurrences
of consecutive 0’s in the expansion of 1. We also give lower bounds for
the numbers of nonzero digits in the β-expansions of algebraic numbers.
As applications, we give criteria for transcendence of the values of power
series at certain algebraic points.

1 Main results

Rényi [23] introduced representations of real numbers in a real base β > 1.
The representations are called β-expansions. We recall the definition of β-
expansions. We use the following notation throughout this paper. Let N be
the set of nonnegative integers and let Z+ the set of positive integers. Let x
be a real number. We denote the integral and fractional parts of x by ⌊x⌋ and
{x}, respectively. Moreover, we denote the minimal integer not less than x by
⌈x⌉. We use the Landau symbols o,O and the Vinogradov symbols ≫,≪ with
their regular meanings. We denote f ∼ g if the ratio f/g tends to 1. We recall
that a Pisot number is an algebraic integer greater than 1 whose conjugates
except itself have absolute values less than 1. Moreover, a Salem number is an
algebraic integer greater than 1 whose conjugates except itself have absolute
value at most 1 with at least one conjugate having absolute value 1. If K is a
subfield of a field L, then [L : K] denotes the degree of the field extension L/K.

The β-transformation Tβ : [0, 1] → [0, 1) is defined by

Tβ(x) := {βx}

for x ∈ [0, 1]. Let η be a real number with 0 ≤ η ≤ 1. If β = b is a rational
integer, then suppose further that η < 1. Set tn(β; η) := ⌊βTn−1

β (η)⌋ for each
positive integer n. Then we have tn(β; η) ∈ Z ∩ [0, β). The β-expansion of η is

∗2010 Mathematics Subject Classification : primary 11K16; secondary 11J91, 11J25
†Keywords and phrases: beta expansions, expansion of 1, Pisot numbers, Salem numbers.

1



written as

η =
∞∑

n=1

tn(β; η)β
−n. (1.1)

Put

dβ(η) := t1(β; η)t2(β; η) . . . .

Since the β-expansion of 0 is trivial, we only consider the β-expansions of posi-
tive real numbers. If β = b ∈ Z and if η = 1, then set

db(1) = t1(b; 1)t2(b; 1) . . . := (b− 1)(b− 1) . . . .

If η = 1, then the β-expansion of 1 is simply called the expansion of 1. We
call dβ(η) infinite if tn(β; η) ̸= 0 for infinitely many n’s. Verger-Gaugry [27] say
that dβ(η) is gappy if tm(β; η) = 0 for infinitely many m’s and if tn(β; η) ̸= 0
for infinitely many n’s.

The sequence dβ(1) plays a crucial role for studying the β-shifts. In particu-
lar, Blanchard [7] classified the β-shifts, using the expansion of 1. For instance,
dβ(1) is ultimately periodic if and only if the β-shift is sofic. If β satisfies these
properties, then β is called a Parry number. Parry [22] studied the periodicity of
dβ(1). He showed that any Pisot number is a Parry number. However, it is still
unknown whether there is a non-Parry Salem number. Boyd [9] proved that any
Salem number of degree 4 is a Parry number. On the other hand, his numerical
experiments [10] implies that there are possible examples of non-Parry Salem
numbers of degree greater than 4.

The sequence dβ(1) is mysterious. It is generally difficult to decide whether
dβ(1) is gappy. Dubickas [15] proved that dβ(1) is gappy in the case where β is
a rational number with 1 < β < 2. The number of occurrences of consecutive
0’s in dβ(1) is important in Blanchard’s classification. Put

{n ∈ Z+ | tn(β; 1) ̸= 0} =: {v1(β) < v2(β) < · · · < vm(β) < · · · }.

If dβ(1) is periodic, then the sequence vm+1(β) − vm(β) (m = 1, 2, · · · ) is
bounded. For an algebraic number β, we denote its minimal polynomial by
AdX

d + Ad−1X
d−1 + · · · + A0 ∈ Z[X], where Ad > 0. Let β1, . . . , βd be the

conjugates of β. Then the Mahler measure of β is defined by

M(β) = Ad

d∏
i=1

max{1, |βi|}.

Verger-Gaugry [27] showed for any algebraic number β > 1 that

lim sup
m→∞

vm+1(β)− vm(β)

vm(β)
≤ logM(β)

log β
− 1. (1.2)

In particular, if β is a Salem number, then

lim
m→∞

vm+1(β)− vm(β)

vm(β)
= 0. (1.3)

We give new upper bounds for vm+1(β)− vm(β) as follows:
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THEOREM 1.1. Let β be a Salem number of degree d. Then there exists an
effectively computable positive constant C1(β), depending only on β, such that

vm+1(β)− vm(β) ≤ d logβ m

for any m with m ≥ C1(β), where logβ m = logm/ log β.

Note that Theorem 1.1 is stronger than (1.3) because vm(β) ≥ m. The
sequence dβ(η) is interesting also in the case where η is an algebraic number
with 0 < η < 1. For instance, if β = b is an integer greater than 1, then db(η)
denotes the base-b expansion of η. Borel [8] conjectured that every algebraic
irrational number is normal in any integral base b.

We consider the number of nonzero digits written as

νβ(η;N) := Card{n ∈ Z+ | n ≤ N, tn(β; η) ̸= 0}

where N is a positie integer and Card denotes the cardinality. We denote the
number of digit changes by

γβ(η;N) := Card{n ∈ Z+ | n ≤ N, tn(β; η) ̸= tn+1(β; η)},

where N is a positive integer. Bugeaud [12, 13] introduced the function γβ(η;N)
to investigate the complexity of the sequence dβ(η). Observe that

νβ(η;N) ≥ 1

2
γβ(η;N) +O(1). (1.4)

Let again β = b be an integer greater than 1. If Borel’s conjecture is true,
then, for any algebraic irrational η ∈ (0, 1),

lim
N→∞

νb(η;N)

N
=
b− 1

b
.

However, little is known on the conjecture. It is still unproved whether

lim sup
N→∞

νb(η;N)

N
> 0.

Now we introduce known results on lower bounds for νb(η;N). Let D ≥ 2 be
the degree of η. Bailey, Borwein, Crandall, and Pomerance [5] showed that if
b = 2, then there exist positive constants C2(η) and C3(η) such that

ν2(η;N) ≥ C2(η)N
1/D (1.5)

for any integer N with N ≥ C3(η). Note that C2(η) is computable but C3(η)
is not. Rivoal [24] improved C2(η) for certain classes of algebraic irrational η.
Changing C2(η) and C3(η) by suitable positive constants C2(b, η) and C3(b, η),
respectively, we can prove (1.5) for any integral base b in the same way as the
case of b = 2. Moreover, modifying the proof of (1.5), Adamczewski, Faverjon
[4], and Bugeaud [11] independently gave effective versions of the lower bounds
for general integer b ≥ 2. Here we introduce the results by Bugeaud as follows:
We denote the minimal polynomial of 1 + {η}(= 1 + η) by

P (X) = ADX
D +AD−1X

D−1 + · · ·+A0 ∈ Z[X],
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where AD > 0. We denote the height of P (X) by HP . Namely, HP is the
maximal absolute value of the coefficients of P (X). Then, for any integer N
with N > (20bDD2HP )

2D, we have

νb(η;N) ≥ 1

b− 1

(
N

2(D + 1)AD

)1/D

. (1.6)

We return to the case where β > 1 is a general real number. We review
known results on the periodicity of β-expansions. Schmidt [25] proved that if
each rational number η with 0 < η < 1 has an ultimately periodic β-expansion,
then β is a Pisot or Salem number. Next we suppose that β is a Pisot number.
Then Bertrand [6] and Schmidt [25] independently showed for η ∈ (0, 1] that
dβ(η) is ultimately periodic if and only if η ∈ Q(β). Schmidt [25] also conjec-
tured that if β is a Salem number, then the β-expansion of any rational number
is ultimately periodic, which is still not proved. In what follows, we study the
sequence dβ(η) in the case where β is a Pisot or Salem number and η is an
algebraic number. In this section the implied constants in the symbol ≫ are
effectively computable positive ones depending only on β and η. Moreover, we
say that certain property (A) holds for any sufficiently large N if (A) is true
for any integer N with N ≥ N0, where N0 is an effectively computable positive
constant depending only on β and η.

Bugeaud [13] gave lower bounds for γβ(η;N) as follows: Let β be a Pisot
or Salem number and η an algebraic number with 0 < η ≤ 1. Assume that
tn(β; η) ̸= tn+1(β; η) for infinitely many n’s. Then we have

γβ(η;N) ≫ (logN)3/2(log logN)−1/2 (1.7)

for any sufficiently large N . The author [16, 17] improved lower bounds for
γβ(η;N) in the case where β = b is an integer greater than 1. Namely, if η
satisfies certain assumptions on its minimal polynomial, then

γb(η;N) ≫ N1/D

for any sufficiently large N , where D is the degree of η.
We now consider lower bounds for νβ(η;N) in the case where β is a Pisot or

Salem number. If tn(β; η) ̸= tn+1(β; η) for infinitely many n’s, then using (1.4)
and (1.7), we obtain

νβ(η;N) ≫ (logN)3/2(log logN)−1/2 (1.8)

for any sufficiently large N . On the other hand, using Theorem 2.1, we improve
(1.8) as follows:

THEOREM 1.2. Let β be an Pisot or Salem number and η ∈ (0, 1] an al-
gebraic number. Let D := [Q(β, η) : Q(β)]. Suppose that dβ(η) is infinite.
Then there exist effectively computable positive constants C4(β, η) and C5(β, η),
depending only on β and η, such that

νβ(η;N) ≥ C4(β, η)N
1/(2D−1)(logN)−1/(2D−1)

for any integer N with N ≥ C5(β, η).
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In particular, we consider the case where β is a Salem number and η ∈ (0, 1]
is a rational number such that dβ(η) is infinite. Suppose that the Schmidt’s
conjecture is true, namely, dβ(η) is periodic. Then there exist positive constants
C6, C7 such that

νβ(η;N) ≥ C6N

for any N with N ≥ C7. On the other hand, using Theorem 1.2, we obtain
partial results for the Schmidt conjecture as follows:

COROLLARY 1.3. Let β be a Salem number and η ∈ (0, 1] a rational number.
Suppose that dβ(η) is infinite. Then there exist effectively computable positive
constants C8(β, η) and C9(β, η), depending only on β and η, such that

νβ(η;N) ≥ C8(β, η)
N

logN

for any integer N with N ≥ C9(β, η).

It is well-known that dβ(1) is infinite. Thus, Corollary 1.3 implies that

νβ(1;N) ≫ N

logN

for any sufficiently large N . We note that Dubickas [15] estimated lower bounds
for νβ(1;N) in the case where β is a transcendental number satisfying certain
Diophantine assumptions.

We also introduce the Diophantine exponents which are measures of the
periodicity of sequences. We give notation on words. Let W := Z ∩ [0, β) and
V a finite nonempty word on the alphabet W with length |V |. For any positive
real number x, put

V x := V . . . V︸ ︷︷ ︸
⌊x⌋

V ′,

where V ′ is the prefix of V with length ⌊{x}|V |⌋. Let ρ ≥ 1 and let t = (tn)
∞
n=1

be an infinite word on the alphabet from W. We say that t satisfies Condition
(∗)ρ if there exist two sequences of finite words (Un)

∞
n=1, (Vn)

∞
n=1 and a sequence

of positive real numbers (τn)
∞
n=1 such that:

1. For any n ≥ 1, the word UnV
τn
n is a prefix of t;

2. For any n ≥ 1, we have |UnV
τn
n |/|UnVn| ≥ ρ;

3. The sequence (|V τn
n |)∞n=1 is strictly increasing.

We then define the Diophantine exponent Dio(t) of t by the supremum of the real
numbers ρ for which t satisfies Condition (∗)ρ. It is easily seen that 1 ≤ Dio(t) ≤
∞. Moreover, if t is ultimately periodic, then Dio(t) = ∞. Adamczewski and
Bugeaud [2] showed the following: Let β be an algebraic number greater than
1. Let t = dβ(η) for an algebraic η ∈ (0, 1]. Then t is ultimately periodic or

Dio(t) ≤ logM(β)

log β
. (1.9)
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The Diophantine exponents are applicable to the study of subwords in infinite
sequences. For instance, (1.9) implies (1.2). Moreover, consider the case where
β is a Pisot or Salem number and η is an algebraic number in (0, 1)\Q(β). Then,
applying the Diophantine exponents, Adamczewski and Bugeaud [3] estimated
lower bounds for the number of distinct blocks of n digits occurring in t =
dβ(η). We also introduce that Dubickas [15] gave upper bounds for Dio(dβ(1))
in the case where β is a transcendental number satisfying certain Diophantine
assumptions.

Note that (1.1) is regarded as a special value of the power series

∞∑
n=1

tn(β; η)X
n.

In this paper, we also discuss arithmetical properties of the values of power
series. In Section 2 we give new criteria for transcendence of the values of
power series. In Section 3 we review the transcendence of the values of gap and
lacunary series. In Section 4 we prove the theorems stated in Sections 1 and 2.

2 New criteria for transcendence of the values
of power series

Transcendence of the special values of power series at algebraic points has been
investigated by various mathematicians. In Sections 2 and 3 we study the values
of power series in one variable. In what follows, s = (sn)

∞
n=0 is a bounded

sequence of integers such that sn ̸= 0 for infinitely many n ∈ N. Put

f(s;X) :=
∞∑

n=0

snX
n.

We define the sequence (w(s;m))∞m=0 by

{n ∈ N | sn ̸= 0} =: {w(s; 0) < w(s; 1) < · · · < w(s;m) < · · · }. (2.1)

In Section 3 we review the transcendence of f(s; z) for algebraic z under the
assumption that

lim sup
m→∞

w(s;m+ 1)

w(s;m)
> 1.

Little is known on the transcendence of f(s; z) for algebraic z with 0 < |z| < 1
in the case of

lim
m→∞

w(s;m+ 1)

w(s;m)
= 1. (2.2)

In this section we introduce new criteria for the transcendence of f(s;β−1),
where β is a Pisot or Salem number. The criteria are applicable even to the
values f(s, β−1), where s = (sn)

∞
n=0 are certain sequences satisfying (2.2). In

the last of this section we give such examples. In the rest of this section we
assume that sn ≥ 0 for any nonnegative integer n. We take an integer b ≥
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2. We consider the case of X = b−1. Namely, applying (1.6), we investigate
arithmetical properties of f(s; b−1). Put

Γ(s) := {n ∈ N | sn ̸= 0}.

Let A be a nonempty subset of N. Set

λ(A;N) := Card{n ∈ N | n ≤ N, n ∈ A}

for N ∈ N. We consider the base-b expansion of f(s; b−1). Since s = (sn)
∞
n=0 is

a bounded sequence of nonnegative integers, we have

νb(f(s; b
−1);N) ≪ λ(Γ(s);N).

Consequently, we get the following: Suppose for a positive integer D that s
satisfies

lim inf
N→∞

λ(Γ(s);N)

N1/D
= 0.

Then f(s; b−1) is not an algebraic number with degree at most D. Namely,

[Q(f(s; b−1)) : Q] > D. (2.3)

In fact, f(s; b−1) is irrational because its base-b expansion is not ultimately
periodic. Thus, (2.3) follows from (1.6). In particular, (2.3) implies the following
criteria for transcendence, which were essentially proved by Bailey, Borwein,
Crandall, and Pomerance [5]: Assume for any positive real number ε that

lim inf
N→∞

λ(Γ(s);N)

Nε
= 0.

Then f(s; b−1) is transcendental.
We now consider the case of X = β−1, where β is a Pisot or Salem number.

THEOREM 2.1. Let β be a Pisot or Salem number and ξ an algebraic num-
ber with [Q(β, ξ) : Q(β)] = D. Let s = (sn)

∞
n=0 be a sequence of integers with

0 ≤ sn ≤ B for any n, where B is a positive integer independent of n. Suppose
that sn ̸= 0 for infinitely many n’s and that ξ = f(s;β−1). Then there exist ef-
fectively computable positive constants C10(β, ξ,B) and C11(β, ξ, B), depending
only on β, ξ and B, such that

λ(Γ(s);N) ≥ C10(β, ξ,B)N1/(2D−1)(logN)−1/(2D−1)

for any integer N with N ≥ C11(β, ξ,B).

Applying Theorem 2.1, we investigate the arithmetical properties of f(s;β−1).

COROLLARY 2.2. Let s = (sn)
∞
n=0 be a bounded sequence of nonnegative

integers. Let D be a positive integer. Assume that

lim inf
N→∞

λ(Γ(s);N) · (logN)1/(2D−1)

N1/(2D−1)
= 0.

Let β be a Pisot or Salem number. Then f(s;β−1) satisfies[
Q
(
β, f(s;β−1)

)
: Q(β)

]
> D.
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We give examples of Corollary 2.2. Let D be a positive integer and t a real
number with t > 2D − 1. Let β be a Pisot or Salem number. Put

ζt(β) :=
∞∑

m=0

β−⌊mt⌋.

Then Theorem 2.1 implies that

[Q(β, ζt(β)) : Q(β)] > D. (2.4)

In fact, we define s(t) = (s
(t)
n )∞n=0 by

{⌊mt⌋ | m = 0, 1, . . .} =: {0 = s
(t)
0 < s

(t)
1 < · · · }.

Then we have

λ
(
Γ
(
s(t)
)
;N
)
∼ N1/t = o

(
N1/(2D−1)(logN)−1/(2D−1)

)
.

If β = b is an integer greater than 1, then Corollary 2.2 is weaker than (2.3). In
particular, (2.4) holds under the weaker assumption, namely, t > D.

Using Corollary 2.2, we generalize the criteria for transcendence by Bailey,
Borwein, Crandall, and Pomerance [5] as follows:

COROLLARY 2.3. Let s = (sn)
∞
n=0 be a bounded sequence of nonnegative

integers. Assume for any positive real number ε that

lim inf
N→∞

λ(Γ(s);N)

Nε
<∞.

Let β be a Pisot or Salem number. Then f(s;β−1) is transcendental.

In particular, we have the following:

COROLLARY 2.4. Let s = (sn)
∞
n=0 be a bounded sequence of nonnegative

integers. Let (w(s;m))∞m=0 be defined by (2.1). Suppose for any positive real
number A that

lim sup
m→∞

w(s;m)

mA
= ∞.

Let β be a Pisot or Salem number. Then f(s;β−1) is transcendental.

We give examples of Corollary 2.4. For any positive integer m, let

µ(m) := mlogm = exp
(
(logm)2

)
.

Moreover, for any integer m ≥ 3, put

ι(m) := mlog logm = exp (logm · log logm) .

Then we have

lim
m→∞

µ(m)

mA
= ∞, lim

m→∞

ι(m)

mA
= ∞

8



for any positive real A. Using Corollary 2.4, we deduce for any Pisot or Salem
number β that

∞∑
m=1

β−⌊µ(m)⌋,

∞∑
m=3

β−⌊ι(m)⌋ (2.5)

are transcendental numbers. Note that

lim
m→∞

⌊µ(m+ 1)⌋
⌊µ(m)⌋

= 1, lim
m→∞

⌊ι(m+ 1)⌋
⌊ι(m)⌋

= 1.

Thus, the numbers in (2.5) are the special values of the power series satisfying
(2.2).

3 Transcendence of the values of gap and lacu-
nary series

Let again s = (sn)
∞
n=0 be a bounded sequence of (not necessarily nonnega-

tive) integers such that sn ̸= 0 for infinitely many n ∈ N. Let f(s;X) and
(w(s;m))∞m=0 be defined as in Section 2. We call f(s;X) a gap series if

lim sup
m→∞

w(s;m+ 1)

w(s;m)
= ∞.

For example, φ(X) :=
∑∞

n=0X
n! is a gap series. We say that f(s;X) is a

lacunary series if

lim inf
m→∞

w(s;m+ 1)

w(s;m)
> 1. (3.1)

Let k be an integer greater than 1. Then ψk(X) :=
∑∞

n=0X
kn

is a lacunary
series. We introduce known results on the transcendence of f(s; z), where z is
an algebraic number with 0 < |z| < 1, in the case where f(s;X) is a gap or
lacunary series.

Liouville [18, 19] investigated transcendence of the values of gap series at
certain rational points. For instance, he proved for any integer b greater than
1 that φ(b−1) =

∑∞
n=0 b

−n! is transcendental, which is one of the first ex-
amples of transcendental numbers. The proof is based on the theory of ap-
proximations of algebraic numbers by rational numbers. We extract results
on Diophantine approximations from the book by Shidlovskii [26]. Recall that
HP denotes the height of P . Moreover, we denote the total degree of P by
degX P (X1, . . . , Xm). Then Theorem 11 in [26, p. 34] implies the following:
Let α1, . . . , αm be algebraic numbers and δ := [Q(α1, . . . , αm) : Q]. Then
there exists an effectively computable positive constant C12 = C12(α1, . . . , αm),
depending only on α1, . . . , αm, satisfying the following: For any polynomial
P (X1, . . . , Xm) ∈ Z[X1, . . . , Xm] with HP ≤ H and degX P (X1, . . . , Xm) ≤ k,
we have

P (α1, . . . , αm) = 0 or |P (α1, . . . , αm)| ≥ Ck
12

Hδ−1
. (3.2)

Using (3.2), we obtain the following:
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PROPOSITION 3.1. Let z and ξ be algebraic numbers with 0 < |z| < 1. Let
s = (sn)

∞
n=0 be a sequence of integers with |sn| ≤ B for any n, where B is a

positive integer independent of n. Assume that

f(s; z) = ξ

and that

M∑
n=0

snz
n ̸= ξ (3.3)

for any nonnegative integer M . Then there exist effectively computable positive
constants C13(z, ξ, B) and C14(z, ξ, B), depending only on z, ξ, and B, such that

w(s;m+ 1)

w(s;m)
< C13(z, ξ, B)

for any integer m with m ≥ C14(z, ξ, B), where (w(s;m))∞m=0 is defined by (2.1).

Proof. For simplicity, we put w(m) := w(s;m) (m = 0, 1, . . .). Then we have

ξ =
∞∑

m=0

sw(m)z
w(m).

We apply (3.2) with α1 = z and α2 = ξ. Put δ := [Q(z, ξ) : Q]. We may assume
that C12 = C12(z, ξ) < 1. Let

P (X1, X2) := X2 −
m∑
i=0

sw(i)X
w(i)
1

for positive integer m. Then we get HP ≤ B and degX P (X1, X2) = w(m).
Moreover, (3.3) implies that

0 ̸= P (z, ξ) =
∞∑

i=m+1

sw(i)z
w(i).

Thus, using (3.2), we get

C
w(m)
12

Bδ−1
≤ |P (z, ξ)| ≤

∞∑
i=m+1

B|z|w(i)

≤ B
∞∑

n=w(m+1)

|z|n =
B

1− |z|
|z|w(m+1).

Taking the logarithm of the inequality above, we deduce Proposition 3.1.

We now consider transcendence of the values of lacunary series. Mahler [20]
proved transcendence of the values of power series satisfying certain kinds of
functional equations. For instance, let k be an integer greater than 1. Then
ψk(X) fulfills

ψk(X
k) =

∞∑
n=0

Xkn+1

=
∞∑

n=0

Xkn

−X = ψk(X)−X.
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Mahler proved for any algebraic z with 0 < |z| < 1 that ψk(z) is transcendental.
For more details on Mahler’s method, see, for instance, [21].

Using the Schmidt Subspace Theorem, Corvaja and Zannier [14] showed
for any algebraic z with 0 < |z| < 1 that if f(s;X) is lacunary, then f(s; z)
is transcendental. Under weaker assumptions than (3.1), Adamczewski and
Bugeaud [3] studied transcendence of f(s;β−1), where β is a Pisot or Salem
number, as follows: Assume that s = (sn)

∞
n=0 satisfies

lim sup
m→∞

w(s;m+ 1)

w(s;m)
> 1. (3.4)

Then, for any Pisot or Salem number β, we have that f(s;β−1) either belongs to
Q(β), or is transcendental. In particular, consider the case where s = (sn)

∞
n=0

fulfills (3.4) and

sn ∈ {0, 1} for any n ∈ N. (3.5)

Namely, we have f(s;X) =
∑∞

m=0X
w(s;m). Adamczewski [1] showed for any

Pisot or Salem number β that if s satisfies (3.4) and (3.5), then f(s;β−1) is
transcendental.

4 Proof of the theorems in Sections 1 and 2

We see that Theorem 1.2 follows from Theorem 2.1. Hence, we only verify
Theorems 1.1 and 2.1.

Proof of Theorem 1.1. For simplicity, we put

vh(β) =: vh, tvh(β; 1) =: αh

for h = 1, 2, . . .. Then we have

1 =
∞∑
h=1

αhβ
−vh ,

where

αh ∈ Z ∩ [1, β) for h = 1, 2, . . . . (4.1)

For any positive integer m, put

Am := βvm −
m∑

h=1

αhβ
vm−vh =

∞∑
h=m+1

αhβ
vm−vh .

Note that Am is an algebraic integer because β is a Salem number. Using (4.1),
we have

0 < Am <

∞∑
h=m+1

β · βvm−vh

≤
∞∑

n=0

β · βvm−vm+1−n =
β

1− β−1
βvm−vm+1 . (4.2)

11



Let σ1, . . . , σd be the conjugate embeddings of Q(β) into C, where σ1(γ) = γ
for any γ ∈ Q(β). Set σi(β) =: βi for 2 ≤ i ≤ d. Then |βi| ≤ 1 because β is a
Salem number. Thus, using (4.1), we get, for 2 ≤ i ≤ d,

|σi(Am)| ≤

∣∣∣∣∣βvm
i −

m∑
h=1

αhβ
vm−vh
i

∣∣∣∣∣ ≤ 1 +mβ.

Since Am > 0 and since Am is an algebraic integer, we obtain

1 ≤ |Am|

∣∣∣∣∣
d∏

i=2

σi(Am)

∣∣∣∣∣ ≤ Am(1 +mβ)d−1. (4.3)

Combining (4.2) and (4.3), we deduce that

βvm+1−vm ≤ β

1− β−1
(1 +mβ)d−1.

Hence, there exists an effectively computable positive constant C1(β) depending
only on β such that

βvm+1−vm ≤ md

for any m with m ≥ C1(β), whch implies Theorem 1.1.

Proof of Theorem 2.1. Without loss of generality, we may assume that 0 ∈ Γ(s).
In what follows, the implied constants in the symbol ≪ and the constants
C15, C16, . . . are effectively computable positive ones depending only on β, ξ
and B. Moreover, let A be a subset of N. We say that certain property (A)
holds for any sufficiently large N ∈ A if (A) is true for any N ∈ A with N ≥ N0,
where N0 is an effectively computable positive constant depending only on β, ξ
and B. Since β is positive and since sn ̸= 0 for infinitely many n’s, we get

M∑
n=0

snβ
−n ̸= ξ

for any nonnegative integer M . Thus, Proposition 3.1 implies that there exist
C15, C16 satisfying, for any real number x with x ≥ C15,

Γ(s) ∩ [x,C16x) ̸= ∅. (4.4)

Since [Q(β, ξ) : Q(β)] = D, there exists a polynomial P (X) = ADX
D +

AD−1X
D−1 + · · · + A0, where AD, AD−1, . . . , A0 ∈ Z[β] and AD > 0, such

that P (ξ) = 0. For simplicity, we put

Γ := Γ(s), λ(N) := λ(Γ;N).

12



We calculate ξk for any k with 1 ≤ k ≤ D. We get

ξk =

(∑
m∈Γ

smβ
−m

)k

=
∑

m1,...,mk∈Γ

sm1 · · · smk
β−m1−···−mk

=

∞∑
m=0

β−m
∑

m1,...,mk∈Γ
m1+···+mk=m

sm1 · · · smk

=:
∞∑

m=0

β−mρ(k;m),

where

ρ(k;m) =
∑

m1,...,mk∈Γ
m1+···+mk=m

sm1 · · · smk
.

Let m be a nonnegative integer. Then ρ(k;m) is also a nonnegative integer by
its definition. Put

kΓ := {m1 + · · ·+mk | m1, . . . ,mk ∈ Γ}.

Since 0 ∈ Γ, we have

Γ ⊂ 2Γ ⊂ · · · ⊂ (D − 1)Γ ⊂ DΓ. (4.5)

Moreover, we get

λ(kΓ;N) = Card([0, N ] ∩ kΓ)
≤ Card([0, N ] ∩ Γ)k = λ(N)k. (4.6)

Observe that ρ(k;m) is positive if and only if m ∈ kΓ. We estimate upper
bounds for ρ(k;m) as follows:

ρ(k;m) ≤ Bk
∑

m1,...,mk∈Γ
m1+···+mk=m

1 ≤ Bk(m+ 1)k. (4.7)

Let R ∈ N. Using

0 = P (ξ) = A0 +
D∑

k=1

Akξ
k

= A0 +
D∑

k=1

Ak

∞∑
m=0

β−mρ(k;m),

we obtain

0 = A0β
R +

D∑
k=1

Ak

∞∑
m=0

β−(m−R)ρ(k;m)

= A0β
R +

D∑
k=1

Ak

∞∑
m=−R

β−mρ(k;m+R).

13



Put

YR :=
D∑

k=1

Ak

∞∑
m=1

β−mρ(k;m+R),

= −A0β
R −

D∑
k=1

Ak

0∑
m=−R

β−mρ(k;m+R), (4.8)

which implies that YR is an algebraic integer since β is a Pisot or Salem number.
Bailey, Borwein, Crandall, and Pomerance [5] called YR BBP tails in the case of
β = 2. For the proof of P (ξ) ̸= 0, we consider BBP tails in the case where β is
a Pisot or Salem number. We give lower bounds for |YR| in the case of YR ̸= 0.

LEMMA 4.1. There exist positive integers C17 and C18 satisfying the follow-
ing: If R ≥ C17, then we have

YR = 0 or |YR| ≥ R−C18 .

Proof. Put d := deg β. Let σ1, . . . , σd be the conjugate embeddings of Q(β) into
C, where σ1(γ) = γ for any γ ∈ Q(β). Set

C19 := max{|σi(Aj)| | i = 1, . . . , d, j = 0, . . . , D}.

We put σi(β) =: βi for 2 ≤ i ≤ d. Then (4.8) implies that

σi(YR) = −σi(A0)β
R
i −

D∑
k=1

σi(Ak)
R∑

m=0

βm
i ρ(k;−m+R). (4.9)

Recall that |βi| ≤ 1 because β is a Pisot or Salem number. Thus, combining
(4.7) and (4.9), we get, for any sufficiently large R,

|σi(YR)| ≤ C19 +
D∑

k=1

C19

R∑
m=0

ρ(k;−m+R)

≤ C19 +
D∑

k=1

C19(R+ 1)BD(R+ 1)D ≤ RD+2.

Assume that YR ̸= 0. Since YR is an algebraic integer, we obtain

1 ≤ |YR|
d∏

i=2

|σi(YR)| ≤ |YR|R(d−1)(D+2).

for any sufficienlty large R ∈ N. Namely,

|YR| ≥ R−C18 .
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Put

C20 := (log β)1/(2D−1)
(
4(1 + C16)(D + 2C18)

)−1/(2D−1)

and

Ξ :=
{
N ∈ N

∣∣∣ N ≥ 2, λ(N) < C20N
1/(2D−1)(logN)−1/(2D−1)

}
.

In what follows, we show that Ξ is bounded. Namely,

λ(N) ≥ C20N
1/(2D−1)(logN)−1/(2D−1)

for any sufficiently large N ∈ N, which implies Theorem 2.1. We construct
J2 ⊂ [0, N) such that YR > 0 for any R ∈ J2 ∩Z. If D = 1, then YR > 0 for any
R ∈ N by the definition of YR and ρ(k;m). So we put J2 := [0, N). Now we
define J2 in the case of D ≥ 2. For any interval I = [a, b), we denote its length
by |I| := b− a. Put

[0, N) ∩ (D − 1)Γ =: {0 = j1 < j2 < · · · < jτ},

where

τ ≤ λ(N)D−1 (4.10)

by (4.6). Let j1+τ := N . Observe that ja ∈ (D − 1)Γ for any a with 1 ≤ a ≤ τ
and that

τ∑
a=1

(j1+a − ja) = N. (4.11)

There exists a p with 1 ≤ p ≤ τ such that

j1+p − jp = max
1≤a≤τ

{j1+a − ja}.

Let J1 := [jp, j1+p) ⊂ [0, N) and L1 := |J1| = j1+p − jp. Then we have

jp ∈ (D − 1)Γ. (4.12)

Moreover, for any k with 1 ≤ k ≤ D − 1,

(jp, j1+p) ∩ kΓ ⊂ (jp, j1+p) ∩ (D − 1)Γ(= ∅) (4.13)

by (4.5). Combining (4.10), (4.11) and the definition of p, we get

L1 = max
1≤a≤τ

{j1+a − ja} ≥ N

τ
≥ N

λ(N)D−1
. (4.14)

The definition of C20 and Ξ implies for any N ∈ Ξ that

N

λ(N)2D−1
> 4(1 + C16)(D + 2C18) logβ N. (4.15)

Thus, if N ∈ Ξ satisfies N > βC15 , then

L1

1 + C16
> C15

15



by (4.14) and (4.15). In particular, (4.4) implies that there exists θ0 = θ0(N)
with

θ0 ∈
[

L1

1 + C16
,
C16L1

1 + C16

)
∩ Γ.

In what follows, we assume that N > βC15 . Let

M =M(N) := jp + θ0 ∈
[
jp +

L1

1 + C16
, jp +

C16L1

1 + C16

)
(4.16)

and

J2 := [jp,M) ⊂ J1.

Then M ∈ DΓ by (4.12) and θ0 ∈ Γ. Hence, we defined J2 in the case of D ≥ 2.
In the case of D = 1, we have p = 1, j1 = 0 and M = N .

We observe that

|J2| ≥
N

(1 + C16)λ(N)D−1
. (4.17)

In fact, if D = 1, then (4.17) is clear. In the case of D ≥ 2, we get

|J2| =M − jp ≥ L1

1 + C16
≥ N

(1 + C16)λ(N)D−1

by (4.14) and (4.16).

LEMMA 4.2. There exists a positive integer C21 with C21 > βC15 satisfying
the following: If N ∈ Ξ satisfies N ≥ C21, then YR > 0 for any R ∈ J2 ∩ Z.

Proof. We may assume that D ≥ 2. We first show that there exists a positive
integer C21 satisfying, for any N ∈ Ξ with N ≥ C21,

YM−1 > 0. (4.18)

We have

YM−1 = AD

∞∑
m=1

β−mρ(D;m+M − 1)

+
D−1∑
k=1

Ak

∞∑
m=1

β−mρ(k;m+M − 1)

=: S1 + S2.

Thus, we get

S1 ≥ AD

β
ρ(D;M) ≥ AD

β
> 0

becauseM ∈ DΓ. We now estimate upper bounds for |S2|. Using (4.14), (4.15),
and (4.16), we get

j1+p −M ≥ j1+p − jp −
C16L1

1 + C16

=
L1

1 + C16
≥ N

(1 + C16)λ(N)D−1
> 2D logβ N. (4.19)
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Let 1 ≤ k ≤ D−1. Take an integer m with 1 ≤ m < j1+p−M +1. Then we get
jp < M ≤ m +M − 1 < j1+p. Thus, (4.13) implies that ρ(k;m +M − 1) = 0.
Hence, using (4.7), (4.19), and M ≤ N , we obtain

|S2| ≤
D−1∑
k=1

|Ak|
∞∑

m=1

β−mρ(k;m+M − 1)

=

D−1∑
k=1

|Ak|
∞∑

m=j1+p−M+1

β−mρ(k;m+M − 1)

≤
D−1∑
k=1

|Ak|
∞∑

m=j1+p−M+1

β−mBD(m+M)D

≤
D−1∑
k=1

|Ak|BD
∞∑

m=j1+p−M+1

β−m(m+N)D

≪
∞∑

m=⌈2D logβ N⌉

β−m(m+N)D.

There exists C22 such that if N ≥ C22, then, for any m ∈ Z+,(
m+N + 1

m+N

)D

≤
(
1 +

1

N + 1

)D

<
β + 1

2
. (4.20)

Consequently,

|S2| ≪ β−⌈2D logβ N⌉ (⌈2D logβ N⌉+N
)D ∞∑

m=0

β−m

(
β + 1

2

)m

≪ N−2D
(
⌈2D logβ N⌉+N

)D
.

In particular, we get

|S2| <
AD

2β

for any sufficiently large N ∈ Ξ. Finally, taking a suitable constant C21 with
C21 > max{βC15 , C22}, we deduce that, for any N ∈ Ξ with N ≥ C21,

YM−1 = S1 + S2 ≥ AD

2β
> 0,

which implies (4.18).
Next we show that if N ≥ C21, then YR > 0 for any R with R ∈ [jp,M)∩Z

by induction on R. Assume that YR > 0 for certain R with R ∈ (jp,M)∩Z. By
(4.13) and R ∈ (jp, j1+p), we have ρ(k;R) = 0 for any k with 1 ≤ k ≤ D − 1.
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Consequently,

YR−1 =

D∑
k=1

Ak

∞∑
m=1

β−mρ(k;m+R− 1)

=
1

β

D∑
k=1

Akρ(k;R)

+
1

β

D∑
k=1

Ak

∞∑
m=2

β−(m−1)ρ(k;m− 1 +R)

=
1

β
ADρ(D;R) +

1

β

D∑
k=1

Ak

∞∑
m=1

β−mρ(k;m+R)

=
1

β
ADρ(D;R) +

1

β
YR ≥ 1

β
YR > 0.

Therefore, we proved Lemma 4.2.

In what follows, we assume that N ∈ Ξ satisfies N ≥ C21. Observe that

Card(J2 ∩DΓ) ≤ λ(DΓ;N) ≤ λ(N)D

by (4.6). Put

(J2 ∩DΓ) ∪ {jp} =: {jp = i1 < i2 < · · · < iω},

where

ω ≤ 1 + λ(N)D ≤ 2λ(N)D. (4.21)

Let i1+ω :=M . Then (4.17) implies that

ω∑
h=1

(i1+h − ih) = |J2| ≥
N

(1 + C16)λ(N)D−1
. (4.22)

There exists a q with 1 ≤ q ≤ ω such that

i1+q − iq = max
1≤h≤ω

{i1+h − ih}.

Put I1 := [iq, i1+q) ⊂ J2. Let 1 ≤ k ≤ D. Then

(iq, i1+q) ∩ kΓ ⊂ (iq, i1+q) ∩DΓ(= ∅) (4.23)

by (4.5). Moreover, using (4.21), (4.22), and the definition of q, we obtain

l1 := |I1| = max
1≤h≤ω

{i1+h − ih}

≥ |J2|
ω

≥ N

2(1 + C16)λ(N)2D−1
.

In particular, (4.15) implies that

l1 ≥ 2(D + 2C18) logβ N (4.24)

for any N ∈ Ξ. Recall that C17 and C21 are defined in Lemmas 4.1 and 4.2,
respectively. Put I2 := [iq, iq + l1/2).
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LEMMA 4.3. There exists C23 with

C23 > max{C21, β
C17} (4.25)

satisfying the following: Let N be an element of Ξ with N ≥ C23. Then, for
any R ∈ I2 ∩ Z, we have

0 < YR < R−C18 .

Proof. Let N ∈ Ξ and R ∈ I2 ∩ Z. For the proof of Lemma 4.3, it suffices to
show that

|YR| < R−C18

by Lemma 4.2 and I2 ⊂ I1 ⊂ J2. We estimate upper bounds for

|YR| =

∣∣∣∣∣
D∑

k=1

Ak

∞∑
m=1

β−mρ(k;m+R)

∣∣∣∣∣ .
Let 1 ≤ k ≤ D. Take an integer m with 1 ≤ m < i1+q − R. Then we have
iq < m + R < i1+q. Thus, (4.23) implies that ρ(k;m + R) = 0 for such an m.
Using (4.7) and R+ 1 ≤ N , we get

|YR| ≤
D∑

k=1

|Ak|
∞∑

m=i1+q−R

β−mρ(k;m+R)

≤
D∑

k=1

|Ak|
∞∑

m=i1+q−R

β−mBD(m+R+ 1)D

≪
∞∑

m=i1+q−R

β−m(m+N)D.

Observe for any R ∈ I2 ∩ Z that

i1+q −R > i1+q − iq −
1

2
l1 =

1

2
l1 ≥ (D + 2C18) logβ N

by (4.24). Thus,

|YR| ≪
∞∑

m=⌈(D+2C18) logβ N⌉

β−m(m+N)D.

Hence, using (4.20) and N ≥ C21 ≥ C22, we obtain

|YR| ≪ β−⌈(D+2C18) logβ N⌉(⌈(D + 2C18) logβ N⌉+N)D
∞∑

m=0

β−m

(
β + 1

2

)m

≪ N−(D+2C18) ·ND = N−2C18 ≤ N−C18R−C18 .

Namely, there exists C24 such that, for any R ∈ I2 ∩ Z,

|YR| ≤ C24N
−C18R−C18 .

Taking a suitable constant C23 satisfying (4.25), we obtain that if N ≥ C23,
then |YR| < R−C18 for any R ∈ I2 ∩ Z. Therefore, we verified Lemma 4.3.
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Suppose that there exists an N ∈ Ξ with N ≥ C23. Recall that iq = iq(N)
is defined by N . Put

R(0) := iq + C17 ∈ Z+.

Since R ≥ C17, Lemma 4.1 implies that

YR(0) = 0 or |YR(0)| ≥ R(0)−C18 . (4.26)

On the other hand, by (4.24) and (4.25), we get

C17 < (D + 2C18) logβ C23

≤ (D + 2C18) logβ N ≤ 1

2
l1,

which implies that R(0) ∈ I2. Thus, using Lemma 4.3, we obtain

0 < YR(0) < R(0)−C18 ,

which contradicts (4.26). Finally, we deduce that Ξ ⊂ [2, C23). Namely, we
proved Theorem 2.1.
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