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Abstract

Let @ > 1 be an algebraic number and £ > 0. Denote the fractional
parts of £a™ by {£a"}. In this paper, we estimate a lower bound of the
occurrence Ay (a, &) of integers n with 0 < n < N and

n . 1 1
{¢a™} > min {m, m} . (see (1.2))

Our results show, for example, the following; Let o be an algebraic integer
with Mahler measure M («) and £ > 0 an algebraic number with £ ¢ Q(«).
Put [Q(a, &) : Q(a)] = D. Then there exists an absolute constant ¢
satisfying

(log o) (log N)*/?

A (@:€) 2 € e ()2 (10g(6D)) 72 (log log N) /2

for all large V.

1 Introduction

A normal number in an integer base « is a positive number for which all finite
words with letters from the alphabet {0,1,... ;& — 1} occur with the proper
frequency. It is easily checked that a positive number £ is a normal number in
base « if and only if the sequence £a™ (n = 0,1,...) is uniformly distributed
modulo 1. Borel [6] proved that almost all positive £ are normal numbers in
every integer base. Moreover, Koksma [16] showed that if any real number o > 1
is given, then the sequence £a™ (n = 0,1,...) is uniformly distributed modulo 1
for almost all positive £, which is a generalization of Borel’s result. However, it
is generally difficult to check a given geometric sequence is uniformly distributed
modulo 1 or not. For instance, we even do not know whether the numbers v/2,
{/5 and 7 are normal in base 10.

Borel [7] conjectured that each algebraic irrational number is normal in every
integer base. However, we know no such number whose normality was proved.
We now introduce some partial results.

Let a be a natural number greater than 1 and £ a positive algebraic irrational
number. For simplicity, assume that £ < 1. Write its a-ary expansion by

§= i si(f)o/ =.5-1(&)s—2(&) -+~
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with s;(¢) € {0,1,...,a — 1}. First, we measure the complexity of the infinite
word 8 = s_1(£)s—2(§) - - by the number p(N) of distinct blocks of length N
appearing in the word s. If ¢ is normal in base a, then p(N) = ¥ for any
positive N. Ferenczi and Mauduit [13] showed that

lim (p(N)— N) = co.

N—oc0

Adamczewski and Bugeaud [1] improved their results as follows:

. p(N) _
R

Moreover, Bugeaud and Evertse [10] showed for any positive ¢ with n < 1/11
that

lim sup 72?(]\]) =00

VP N(log N7
Bugeaud and Evertse [10] gave a lower bound of the number ch(N) of digit
changes among the first (N + 1) digits of the a-ary expansion of £&. Namely,

ch(N) = Card{i e N|1 <i < N,s_;(€) #s_i—1(§)},

where Card denotes the cardinality. They showed for an algebraic irrational
& > 0 of degree D(> 2) that there exist an effectively computable absolute
constant ¢; and an effectively computable constant co(a, €), depending only on
a and &, satisfying

(log V)/
(log 6D)1/2(log log N)1/2

ch(N) > ¢y

for any N with N > ca(a, §).
Next, we count the number Ay (a, &) of nonzero digits among the first N
digits of the a-ary expansion of £, where

An(a, &) = Card{i e N]1 <i < N,s_;(§) # 0}. (1.1)

Let € be an algebraic irrational number of degree D with 1 < £ < 2. In the
case of @ = 2, Bailey, Borwein, Crandall, and Pomerance [4] showed that an
arbitrary positive ¢ is given, then

An(a, &) > (1 —¢)(24p) " YP NP

for all sufficiently large N, where Ap(> 0) is the leading coefficient of the min-
imal polynomial of £. Moreover, in the same way as the proof of the inequality
above, we can show for any natural number o > 2 that there exist a positive
constant c3(c, &) depending only on « and ¢ satisfying

An (o, &) > es(a, NP

for every sufficiently large N.
In what follows, we consider the fractional parts of geometric progressions
whose common ratios are algebraic numbers. Let o > 1 be an algebraic number



with minimal polynomial agX? + aq_1 X% ! +... + ag € Z[X], where ag > 0
and ged(ag, ag—1,...,a0) = 1. Put

L@ =Y a L ()= |ail. (1.2)

a; >0 a; <0

Moreover, write the Mahler measure of o by

d
M(a) = aq | [ max{1, o},
k=1

where o = @, ag, ..., aq are the conjugates of a. We now recall the definition
of a Pisot and Salem number. A Pisot number is an algebraic integer greater
than 1 whose conjugates different from itself have absolute values strictly less
than 1. A Salem number is an algebraic integer greater than 1 which has at
least one conjugate with modulus 1 and exactly one conjugate outside the unit
circle. Take a positive number £. If a is a Pisot or Salem number, then assume
¢ € Q(a). Dubickas [11] showed for infinitely many n > 1 that

{é“a"}zmin{L:m),L_l@},

where {€a”} means the fractional part of £a”. In what follows we estimate the
number of such n, namely, we give a lower bound of the number

1

0<n<N,{ca"} > min{l } } (1.3)

An (@, &) Card{nEZ T (o) T (o)

(1.3) is generalization of (1.1). In fact, assume that « is a natural number
greater than 1 and that ¢ is a positive number with £ < 1. Then, for n > 0,

(s )

if and only if the (n + 1)-th digit of a-ary expansion of ¢ is nonzero.
Dubickas’s result above implies

A}Enoo An(a, &) = oo
He verified this by showing that, for infinitely many n > 0,
s—n(§) # 0,

where s_,,(£) will be defined in Section 2. Moreover, in the same way as that of
Theorem 3 of [11], we can show the following: Assume that « has at least one
conjugate different from itself outside the unit circle. Then

A log M -
i inf 228 S (10, 0g M(a) . (1.4)
Nooo  log N log M () — log(aga)
At the beginning of Section 5, we give another proof of (1.4). In this paper we
improve this estimation in the case where o« > 1 and £ > 0 are algebraic num-
bers with £ € Q(«) by using a version of the quantitative parametric subspace

theorem of Bugeaud and Evertse [10]. First, we consider the case where o > 1
is an algebraic integer.




THEOREM 1.1. Let a« > 1 be an algebraic integer with Mahler measure
M(«). Let & be a positive number with £ & Q(«). Put

D = [Q(a,§) : Q(a)].
Then there exists an effectively computable absolute constant ¢ > 0 such that

(log a)? (log N)3/2
(log M (a))?(log(6D))!/2 (loglog N)'/2

)\N(O‘,g) 2 C

for every sufficiently large N.

Next we give a lower bound of Ay (e, &) in the case where o > 1 is not an
algebraic integer.

THEOREM 1.2. Let a > 1 be an algebraic number of degree d with Mahler
measure M(a)). We denote the leading coefficient of the minimal polynomial of
a by ag(>1). Let & be a positive algebraic number with & ¢ Q(«). Assume that
« is not an algebraic integer. Then

L Aw(,6) log M (a) B
l}ﬂlilof logN — log log M(a) — logagy

Theorem 1.2 gives an improvement of (1.4) since

log M - log M !
log og M(a) > | log og M(a) .
log M (a) —logagy log M (a) — log(agc)
We introduce a numerical example in the case of a = 4 + 1/v/2. The minimal
polynomial of a is 2X2 — 16X + 31, so we have ag = 2, M(a) = 31, and

1 o101 1

min —

1
R A LA F R T

Note that the conjugate of « is greater than 1. Thus by (1.4), for any positive
3

AN+ 1/V2,€) ( ( log(31) >)1 3
1}\1{11}1;1; —logN > | log log(31) — log(8 + v2) =0944....

On the other hand, the second statement of Theorem 1.2 implies that if £ > 0
is an algebraic number with ¢ ¢ Q(+/2), then

AN+ 1/V2,6) log(31) o
l}\lfri}ilof T > <log <10g(31)10g(2))) =443....

REMARK 1.1. By using the same method for the proof of Theorem 1.2 and
1.1, Bugeaud [9] gave a lower bound for the number of digit changes in the
[-expansion of algebraic numbers.



2 Preliminaries

Let a > 1 be an algebraic number of degree d and & a positive number. Write
the minimal polynomial of a by P,(X) = agX? +--- +ag € Z[X] (aqg > 0). In
this section, we study the sequence (8,,(£))5° defined by

m=—0o0

d
sm(§) = — Z ag—i{éa™""}.

Let [z] be the integral part of a real number z. Since

d d
T S SO (e )
i=0 =0
we have

sm(§)

i ad—i ([ﬁa_m_i] - fa_m_i)

d
= Z ag—i[€a™™71. (2.1)
=0

In particular, s,,(&) is a rational integer. Thus we get the following:

LEMMA 2.1. Let £ be a positive number.
(1) If $m(€) £ 0 ,then

max  {a"} > min{ L 7 ! } .

—m—d<n<—m L+(O¢) ’ _(Oé)

(2) sm (&) =0 for all sufficiently large m.

Proof. We first show the first statement. Since s,,(£) is a nonzero integer, we
have

d
1< [sm(§)] = ‘_Zad—i{ga_m_i} :
i=0

By using 0 < {€a™™7'} < 1, we obtained the first statement. The second
statement follows from (2.1) and [~ ™] = 0 for each sufficiently large m. O

PROPOSITION 2.2. Write the conjugates of o with moduli greater than 1
by ar(=a),...,ap. Let & be a positive number. Then
(1) For2 <k <p,

oo

Z aksi(€) = 0.

i=—00

> e =Sy (1) #0

i=—00

where PX(X) = ag + aqg_1X + -+ apX?¢ denotes the reciprocal polynomial of
P,(X) and (P*)(X) its derivative.



REMARK 2.1. By the second statement of Lemma 2.1, the series

oo

> apsi(€)

1=—00
converges for any k£ with 1 <k < p.

Proof. We first consider the case of 0 < & < 1. Then, for any m < 0, [{a™] =0,
and so s_p,(§) =0 by (2.1). Put

F(z) =Y l€amz", g(z) = > {€am}2"

Then we have

( § _g@)p;(z) = [(Pi)

1—az

o0

= > [€oflag ;2"
h=0 i,5>0

itji=h

(o'} h (']

= > Y €aflagnyi =) s n(€)2"
h=0i=h—d h=0

Consider the region of z € C satisfying

(5 —00)) P = 502 (22)
h=0

Since 0 < {€a™} < 1 for any n, the left-hand side of (2.2) is a meromorphic
function on {z||z| < 1}. Moreover, because the sequence s_,,,(§) (m =0,1,...)
is bounded, the right-hand side of (2.2) converges for |z| < 1. Hence (2.2) holds
for |z| < 1. In particular, since the left-hand side of (2.2) has zero at z = a; '
with 2 < k < p, we obtain

oo ) oo )
Y asi(€) =) agtsi(€) =0.
i=—00 1=0
Let o = a,...,0p,Qpt1,-..,0q be the conjugates of a. PZ(z) has a simple

zero at z = 1/« since
* d 1
Pi(z)=2Py | = ) = aa(l —az)(1 — a2z) - (1 — agz).
z

Note that g(z) is holomorphic for |z| < 1. Hence

dooalsi(6) = Y aTls(9)
t=—00 =0
I G I e |
N zll}ir}a l—az a(Po‘) (oz) 70



Next, we check the case of € > 1. Take a positive integer R satisfying o= # < 1.
Then we obtain

oo

Z aj.si(€) = af Z a si_r(€a™ M) =0

for 2 <k <p, and
oo (oo} €

> afse) =a® 3 o s p(ea ) =~ Sr0) (1).

i=—00 i=—00

3 The quantitative subspace theorem

First, we consider approximations of given algebraic numbers by algebraic num-
bers which lies in a fixed number field. We fix an algebraic closure Q of Q. In
what follows, assume that all algebraic number fields are subfields of Q. Let us
begin with some notation about the absolute values on K, where K is a num-
ber field of degree d. Let M,,..(K) be the set of archimedean places of K and
Mion(K) the set of non-archimedean places of K, respectively. Moreover, put
M(K) = Mgre(K) U Mpon(K). We define the absolute values | - |, and || - ||,
associated to a place v € K. In the case of K = Q, we have

M(Q) = {oo} U {primes}.

In the case of v = o0, let |- | be the ordinary archimedean absolute value on
Q. If v = p is a prime number, then denote | - |, the p-adic absolute value,
normalized such that |p|, = p~'.

Next, we consider the case where K is an arbitrary number field. Suppose
a place v € M(K) lies above the place p, € M(Q). We choose the normalized
absolute value | - |, in such a way that the restriction of | - |, to Q is | - |,,. Let
K, (resp. Qp,) be the completion of (K, |- |,) (resp. (Q,|-|p,)). Put

_ [Kv : qu]
1) ="k q)

and

|- o = |- 15,
Define the height of = by
H(z)= [] max{1,|lz[}.

veM(K)
By Lemma 3.10 of [20], we have
H(z)%8" = M(x) (3.1)

Moreover, the product formula (for instance see [20], p. 74) implies for any
nonzero x € K that

H(z™) = H(). (3.2)

Now we introduce Theorem 2 of [17] in the case of d = 1, which we use to prove
Theorem 1.2. Suppose every valuation of K to be extended to Q.



THEOREM 3.1 (Locher [17]). Let 0 < ¢ < 1 and F/K be an extension of
number fields of degree D. Let S be a finite set of places of K with cardinality
5. Suppose that for each v € S, a fixed element 0, € F is given. Let H be a real
number with H > H(0,) for all v € S. Consider the inequality

[T min{1, 116, =1} < H(y)~?* (3.3)
veS

to be solved in elements v € K. Then there are at most
e 974 1og(6D) log (5_1 1og(6D))
solutions v € K of (3.3) with

H(y) > max{H,44/5}.

Next, we consider approximations of given algebraic numbers by algebraic
numbers with arbitrary degree. Let us introduce the quantitative subspace
theorem proved by Bugeaud and Evertse [10]. Let £ = (L;, : v € M(K), i =
1,2) be a tuple of linear forms with the following properties:

Liy € K[X,Y] for v e M(K), i = 1,2,
Ly, = X, Ly, =Y for all but finitely many v € M(K),
det(Ly,, Lay) = 1 for v € M(K), (3.4)

Card (UUEM(K){Ll'U’ Lgv}) S T.

Put
U {leLZv}:{Ll,...,LS}
veEM(K)
and
H=HL) = ][] | Jnax || det(L;, L;)||o- (3.5)
veEM(K)

Moreover, let ¢ = (¢ : v € M(K), ¢ = 1,2) be a tuple of reals with the
following properties:

C1y = C2y = 0 for all but finitely many v € M(K),

Z’UEM(K) 21‘2:1 civ =0, (36)
Z'L}EM(K) max{clﬂv CQv} <1

Next, take any finite extension E of K and any place w € M(E). Let v € M(K)
be the place lying below w. Write the completion of (E, |- |,) (resp. (K,|-|4))
by E,, (resp. K,). For i = 1,2, define the linear forms Li,,, Lo,, and the real
numbers ¢i., C2, by

L = Ly and ¢y = d(’LU|U)Cz'm (3-7)



where

d(wlv) = []?E :: IIE]U]
Note that
]| = ||2][£1*) for z € K (3.8)
and that
Z d(wlv) =1 for v € M(K). (3.9)
weM(E)

wlv

Take a positive number @ and x = (z,y) € @2. We define the twisted height
Hq,zo(x). There exists a number field E including the field K(x,y). Then put

Horo) = J]  max [|Lin(x)ll@ ",
weME) T T

which is a finite product by the assumption of £ and c¢. We show that Hg r o(x)
does not depend on the choice of E. Let E’ be another number field including
K(z,y). Take a number field F with F D EUE’. By (3.7), (3.8), and (3.9)

) —Ciu
1%1?3)(2 || Liw ()] Q
wEM(F)

— . d(ulw) )—d(u|w)ciw
= 1I max || Liw ()| Q
WEM(E) weMF) = =

ulw

~ T max Zall@
weME) T T

Similarly, we get

; “Ciw! — ) —Ciu
II o L ()@ e [|Liu(x)][u@Q
w' e M(E’) wEM(F)
- H 1255 | Liw (%)] 0@ .
weM(E)

Now we consider the inequality
Hg,ro(x) <Q7°, (3.10)

where x € 62 and Q,9 > 0.

THEOREM 3.2 (Bugeaud and Evertse [10]). Let £ = (L, : v € M(K), @
1,2) be a tuple of linear forms satisfying (3.4) and ¢ = (¢ : v € M(K), i
1,2) a tuple of reals fulfilling (3.6). Moreover, let 0 < 0 < 1.

Then there are proper linear subspaces T1,..., Ty, of @2, all defined over K,
with

t1 = t1(r,0) = 226 log(2r) log (6~ log(2r)) (3.11)



such that the following holds: for every real QQ with

Q > max (Hl/(g),?/“) (3.12)
there is a subspace T; € {Th,...,Tt,} which contains all solutions x € 62 of
(3.10).

This is Proposition 4.1 of [10] in the case of n = 2.

4 Systems of inequalities

In this section we apply Theorem 3.2 to certain systems of inequalities, which
are generalization of Theorem 5.1 in [10]. Let K C Q be a number field of degree
d. We define some notation about linear forms with algebraic coeflicients. Take
a linear form L(X,Y) = aX + 8Y € Q[X, Y] and put

K(L) = K(a, B).
Define the inhomogeneous height H*(L) of L by
H(L)= [[  max{1,llall,|I8].}.
veEM(K(L))
Note that, for a number field E including K (L),
IT  wax{1,llall, 8]}

weM(E)

= II I wax{vllal. (1.3 =B (L) (41)

vEM(K(L)) wEM(E)

w

by (3.9). In what follows we put, for w € E,

(1Ll = max{[|e]fuw, [[B]]w}-

Moreover, if an automorphism o : Q — Q is given, let
o(L) =o0(a)X 4+ o(B)Y.

Write the archimedean place associated to the inclusion map K «— C by oo,
namely,

||| = |2]*? for € K. (4.2)

Let € be a real with 0 < & < 1/2 and S a finite subset of M(K) including all
archimedean places of K. Moreover, let L;, (v e S, i=1,2) be linear forms in
X, Y with coefficients in Q such that

det(Lyy, Loy,) =1 for v € S,

Card (UUGS{le’ LQU}) S R,
[K(Ly): K]<DforveS, i=1,2,
H*(Liy) <H forveS, i=1,2,

10



and e;, (v € S, ¢ =1,2) be reals satisfying

S e =-c (4.4)

veS i=1

Put

A=1+ Z maX{O, €1v, 6211} (2 1)
vES

Finally, let ¥ be a function from O% to R>o, where O is the ring of integers of
K. Suppose every valuation v of K to be extended to Q. Consider the system
of inequalities

[|Livw(X)|]o < ¥(x)¢ (veS,i=1,2), (4.5)
where x € O% with ¥(x) # 0.
PROPOSITION 4.1. The set of solutions x € O of (4.5) with

U(x) > max{2H,2%/¢} (4.6)
is contained in the union of at most
231 A%« =3 log(2RD) log (e "log(2RD))
proper linear subspaces of K2.

Proof. We can prove this proposition in the same way as Theorem 5.1 in [10].
Let E be a finite normal extension of K, containing the coefficients of L;, as well
as the conjugates over K of these coefficients, for v € S, i = 1,2. Let S denote
the set of places of E lying above the places in S. Note that S D M,g,.(E).
Take a place w € M(E) above the place v € M(K). For simplicity, put

dw = d(w|v)
Ifwes , then there exists an automorphism o,, of E satisfying
2] ] = ||Uw($l7)||g“’ for x € E.

For i = 1,2, we define the linear forms L;,, and the real numbers e;,, by

U;I(Lw) (U/ S S),
i=1, w¢gbS)
i=2 w¢?s)

&

€

I
=

and

respectively. Take an x € O with (4.5). If w ¢ S , then w is non-archimedean,
S0

|| Lo (%)[ | < 1.

11



Moreover, since
| Ziw GG = llow (Liw GG = 1| Liwo ()|
x satisfies the system of inequalities
[|Liw (%) < (%) (w e ME), i=1,2). (4.7)

By using (3.9) and (4.4) we get

S Y - ¥ Y S

wEM(E) i=1 vES vEM(E) i=1

wlv

= D> ) ew=-c (4.8)

veS i=1

By the definition of L, with 1 <4 <2 and w € M(E)

Card | ) {Liw L2w} | <2+ DR.
weM(E)

Let £L = (Ljy : w € M(E), i = 1,2). Define the tuple of reals ¢ = (¢;yy : w €
M(E), i = 1,2) by

2
1 1
Ciw:A eiw_§ E €jw
Jj=1

We apply Theorem 3.2 with £, ¢, r =2+ DR(> 4), and

3

It is easy to check the condition (3.4). We verify the condition (3.6). The first
statement is clear by the definition of ¢, and e;,,. The second statement follows
from ¢4y + 24 = 0 for each w € M(E). Moreover, by using (4.4) and (4.8), we
obtain

2
A Z max{ciy, o} = Z max{elw,egw}—% Z Zejw

weM(E) weM(E) weEM(E) j=1

Z Z max{dwelv,dwegv}—i—%

vES weM(E)

wlv

% + Z max{0, e1,, €2, } Z dw

veES wEM(E)

wlv

< 1+ Z max{0, e1,, e, } = A.
veS

IA

Therefore we proved the last inequality of (3.6).

12



Let x € O be a solution of (4.5) with (4.6). Then x also fulfills (4.7). Put
Q=)™

Finally, we show that such an x satisfies (3.10) and (3.12). By (4.7) and the
definition of ¢;y,

| Lie (%)@~ = ||Lilw(x)||wq/(x)78iw\I/(X)(elw+e2w)/2
U (x)(Crwten)/2

IN

for w € M(E), i = 1,2. By taking product over w € M(E) and using (4.8), we
get

Hq,r.e(x)

T ma (2o (oll@
weM(E) —

H \I/(X)(elw+egw)/2

weM(E)
U(x)"?=Q7.

IN

Thus (3.10) is verified. Put
U {Ll’waLQw} = {Lla"'vLS}a
weM(E)

where s < r. We check H*(L;,,) < H for w € M(E) and i = 1,2. We
may assume that w € S. There exists an automorphism o, of E such that
Liw = 0 (Liy), where v € S is the place below w. By (4.1) and (4.3)

H*(Liw) = I max{1llo,"(Li)llu}
ueM(E)
= ] wax{L||Li|lu} = H* (L) < H.
ueEM(E)

Let D=[E:Q]and 1<i<j<s. If wis an Archimedean place, then
[l det(Li, Lllw < 2P| Li] ||| L]
< 2B ®/D T max{1, || L] }-
1=1
Similarly, if w is non-Archimedean, then by the ultrametric inequality
S
[l det(Li, L)l [w < [ Lillwl | Ljllw < ][ max{1, || L]l }-
=1

Since 3, m,, . (m) [Ew  R] = D, we conclude that

HL) =[] max |ldet(Li, L;)l
weM(B) — U=

H 9[E.,:R]/D HH*(Lz) < 2H"
WEMarc(E) 1=1

IN

13



hence
max{H(ﬁ)l/(;),QQ/é} < max{Zl/(;)Hr/(g),TlA/E}
A
< max {20,247 < w(x)" = Q

Let t; = t1(r,6) be defined as (3.11). Theorem 3.2 implies the following: there
are proper subspaces 11, ...,7T;, of Q all defined over E such that any solution
x € Ok of (4.5) with (4.6) satisfies

X € O(TZ NK?).
i=1
Therefore, for the proof of the proposition it suffices to check
t1 <231 A% ?log(2RD) log (¢~ ' log(2RD)) (4.9)
Since DR > 2, we have
log(2r) < 2log(2DR).

Moreover, by 0 < e < 1/2

log (67" log(2r))

IN

log (4A£_1 10g(2DR))

A

4Alog (5*1 log(QDR)) .

Thus (4.9) follows. O

5 Proof of main results

We give another proof of the in equality (1.4). Without loss of generality, we may
assume that 1/a < & < 1. In fact, there is an integer R with 1/a < aft < 1.
Then since £a” = (Eaft)a™ | we have

|)‘N(a7£) - )\N(aafaR” S |R|

In particular, for any n < 0, [£a”] =0, and so s_,(§) =0 by (2.1).

Recall that s_, (&) # 0 for infinitely many positive n, which we introduced
in Section 1. Define the increasing sequence of positive integers (nj)})i1 by
s_n(§) # 0 if and only if n = n; for some j > 1. By the first statement of
Lemma 2.1, it suffices to show that

. loo M -1
lim inf —2. > | log og Mfa) .
j—oo logn; log M () — log(aqa)

Write the conjugates of a by a3 = a, as, ..., aq. Without loss of generality, we

may assume that

| > 1 (1 <k <p),
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where p is the number of the conjugates of o whose absolute values are greater
than 1. In what follows, C (), Ca(c),... denote positive constants depending
only on a. We first check

n;

D alsin,(€)
i=0

for any sufficiently large j > 1. By using s$,,(£§) = 0 for any m > 0 and the
second statement of Proposition 2.2, we get

Zaisz;nj(f) = Zaisi*nj(g)
i=0 =0
- -1
= a% Z a' s (€) — Z a"si—n, (€)

1=—00 i=—00

= ety (1) - 2w

1=—00

Ja™i < < Cy(a)a™ (5.1)

where (P%)’ is defined in Proposition 2.2. Thus

Zaisi—nj (&) + §a71+nj (P;)/ (ié) |
i=0

IN

max{L, (« )} Z o

1=—00

S C3(Oé).

By considering (PX)'(1/a) # 0, we obtain (5.1). Recall that, for any nonempty
subset I of {1,2,...,d}, the number

adHak

kel

is an algebraic integer (for example, see pages 71 and 72 of [20]). So (5.1) implies
that

=0

d
1l (z (5))‘ 52)

since the right-hand side of this inequality is the absolute value of a nonzero
rational integer. By the first statement of Proposition 2.2, for 2 < k < p,

n; 00 —1
Z O‘;-ﬁsi—nj (§)| i Z aitsi_nj (5) - Z ai:si—'flj (f)
=0

i=1+n; 1=—00

Because s;_y,(§) = 0 for each i with i > 1+ n;, we have

j TG —N14j
S i@ < maclraio) L) 3 e
1=0 1=—00
S C4(O[)|Oék|nj_nl+j. (53)

15



Similarly, if p4+ 1 < k < d, then

nj

Z a;; Si*’ﬂ]’ (5)
=0

Take an arbitrary positive e. By combining (5.1), (5.2), (5.3), and (5.4), we
conclude for sufficiently large j that

S C5(a)nj. (54)

—
IN

p d
Co(a)ayiar <H '“’f"”'"l”> 11 »
k=2 k=1+p
< Jag e ap| T (L) M (@)™
Hence, for j > jo,

Mivj log((1 + €)M (av))
n; ~ logM(a)—log(aqc)

=: Fi(¢)
and

n; < nj, Fy(e) .
Therefore we conclude that

o J 1
1 f >
s logn; ~— log Fi(e)

Since € is an arbitrary positive number, (1.4) is proved.

Proof of Theorem 1.2. Theorem 3 of [11] shows for infinitely many n > 0 that
s_n(§) # 0. There exists the unique increasing sequence of positive integers
(n;)52, such that s_,,(§) # 0 if and only if n = n; for some j > 1. Put

-1 -1
¢=Y asi(§andg= > als(9).

We may assume £ € [1/a,1). Then s,(§) = 0 for any n > 0. By Proposition
22, ¢ & Qo). Thus we get & # &; for any j > 1. Recall that oo is the
archimedean place defined by (4.2). In what follows, let C(«), Ca(a),... be
positive constants depending only on a. Then

{ 0< Hgl - g]”oo < Cl(a)ofnlﬂ'/d,
1]l < Ci(a).

(5.5)
Take an arbitrary positive number €. Apply Theorem 3.1 with
K = Q(a), S = Mare(K) U {v € Myon(K)|lJe], <1},

and

= g e

0  (otherwise).
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Consider solutions v of (3.3) satisfying v = 1/¢; for some j. Let us take any
Jjo > 0. By (5.5) there exists at most finitely many j > 1 with & = ;,. Thus
by Theorem 3.1 there exist at most finitely many j such that v = 1/¢; fulfills
(3.3). Namely, for all sufficiently large j,

—2—¢
H min {1, ‘ 0, — gl } > H <§1> =H(¢&) e (5.6)
veES J 1o J
We have
1 1 1 1
i 1, (10, — — =|l=-= i =
Ulggmln{ s §j v} ‘5, §j oovegoo}mm{l fj U}
-1
1
=lg & max{1, [|&;|]cc } (H max{1, IIEjllu}>
J oo veES
-1
< Oy (a)2am+i/d <H max{1, ||§J||U}> .
ves

Note that if v € M(K)\S, then ||¢;||, <1 by the ultrametric inequality. Hence

H min {1, 0, — i }
s &illy
< Ci(@PamEE) T [ max{Lllg])

veEM(K)\S
< Cia)’a ™M/ H (E)

By combining the inequality above and (5.6), we obtain, for any sufficiently
large j,

o™t < Cy(a)* H (&)

Write the conjugates of a by a1 = «, s, ..., aq. Let p (resp. ¢) be the number
of the conjugates of o whose absolute values are greater (resp. smaller) than
1. Without loss of generality we may assume |ag| > 1if 1 <k <p, |ag| < 1 if
p+1<k<p+gq, and |ag| =1 otherwise. By the ultrametric inequality

[T wmax{niglly < [I  max{fla [}

VEMpon (K) VEMpon (K)

Since s, (€) < max{L;(«), L_(a)} for every integer n

d -1 1/d ptaq RV R »
II1Y as@ < I @™ II ©en)”
k=p+1 |i=—n; k=p+1 k=p+q+1
ptaq
= Cz(a)(dfp)/dngd_p—@/d H |ak|nj/d'
k=p+1

17



By using the first statement of Proposition 2.2 and s, (£) = 0 for any n > 0,

1/d 1/d 1/d
P —1 ) -1 , p | TNt
II1Y s = | > o9 I alsi(€)
k=1 |i=—n; i=—n; k=2 |i=—o00
P 1/d
< Cy() T |Csla)o, ™
k=2
p 1/d
= Co( I o™
k=2
Hence we obtain
d 1 1/d
[I metrigly =11 > aisi©
VEMgre(K) k=1 |i=—n;
(d—p—a)/d Tl [V
< i@ T max{,lla ]} [T Jag™ "
vEMgrc(K) k=2
and so
(d—p—q)/d P, (M
H(f]) < C4(oz)nj P—q H(Oéfl)’ﬂj H ’ak 145
k=2

Finally, we conclude for sufficiently large j that

1 d—p— L .| (AE)
Qi < C5(a)n§ +e)(d—p q)H(aq)(He)dnj H ‘akmﬂ
k=2
u (1)
S H(afl)(1+26)dnj H ‘a;npﬁ
k=2

(14¢)

9

p
— M(a)(1+2s)nj H ‘a;ﬂ1+j
k=2

where for the last equality we use (3.1). Taking logarithms of both sides of the
inequality above, we get
Mty (14 2¢)log M(«)
n; ~ loga+ (1+¢)loglag---ayl

= F2(5), (57)
consequently

lim inf > L
j—oo logn; — log Fa(e)

Therefore by the first statement of Lemma 2.1

. . >\N (a7 g) 1
1 f > .
Nooo log N~ log Fx(e)

18



Since € is an arbitrary positive number, we proved the theorem. In fact,
. 1 log M () -t
1 P —— 1 .
<o log Fi(¢) < °8 (log M (o) —logaq

Proof of Theorem 1.1. We may assume & € [1/a, 1), and so s,(£) = 0 for any
n > 0. Put

O

-1

¢= > a'si(é). (5.8)

1=—00

By the second statement of Proposition 2.2, we have &’ ¢ Q(a). Let p be the
number of the conjugates of o whose absolute values are greater than 1. Write
the conjugates of a by a3 = a, as, ..., aq, where d is the degree of a. Without
loss of generality, we may assume that |ag| > 1 for k=1,2,...,p.

First we show the following:

LEMMA 5.1. There is a sequence of integers y = (yn)52 satisfying the fol-
lowing:

1.y =0 o0ry, = an(f);'

2 Yty =&
3. > yia;i =0 for any k with 2 <k < p;
4. Put
(n>1y, #0 = {ny <ny <---}
and

n
&= o
i=1
Then, for any h and | with h <1, &, # &.

Proof. We construct the bounded sequences of integers y,,, = (y(m,n))>; (m =
1,2,...) by induction on m fulfilling the following:

1. For any n > 1,

y(m,n) =0 or y(m,n) = s_n(£); (5.9)

> ay(m,i) = ¢ (5.10)
=1
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3. For any k with 2 < k < p,
> agty(m,i) =0. (5.11)
i=1

In particular, we have, for any m,n > 1,
ly(m,n)| < |s—n(§)] < max{Li(a),L_(a)}.
Define y; = (y(1,n))52, by
y(Ln) =s_n(§) (n=1).

For m =1, (5.9) and (5.10) hold. Moreover, (5.11) follows from the first state-
ment of Proposition 2.2.

Next, assume that we have a sequence of integers y,, with (5.9), (5.10), and
(5.11) for m > 1. Let

En = A{n=>1ly(m,n) # 0}
= {n(m,1) <n(m,2) <---}
and
nmg)
§m.g) = Y a”y(m,i).

By (5.10) and ¢’ ¢ Q(«), E,, is an infinite set. If £(m,h) # £(m,l) for any
h # 1, then then y = y,, satisfies the last condition of Lemma 5.1. Moreover,
first, second, and third conditions of Lemma 5.1 follow immediately from (5.9),
(5.10), and (5.11). Otherwise, we define y,,+1 by using y,,. There exists an
h > 1 such that {(m,h) = &(m,l) for some [ > h. For such an h, write the
minimal value by h,,. Put

A = {1 > b |§(m, 1) = E(m, hin ) }-

Then A,, is a finite set. In fact, if A,, is an infinite set, then

5/ = ,}H@C E(mvn) = §(m, hm) € (@(a),

neEAm

which contradicts to £ € Q(«). So let
l;, = max A,,.

We define y,41 = (y(m +1,n))72, by

_ 0 (i 14+ n(m,hpy) <n <n(m,ly)),
y(m +1,n) = { y(m,n) (otherwise).
Note that
N §(m, j) (if j < him)
g(m+1,]){ &(moj +lm —hum) (G j > o). (512)
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Now we verify that y,,4+1 fulfills (5.9), (5.10), and (5.11). (5.9) is obvious by
the definition of y,,11. By the inductive hypothesis and

n(m,ly,)

0=<¢&m,ly) —&(m, hy) = Z a”y(m, i), (5.13)

i=1+n(m,hy,)
we get

n(m,lm)

Za_iy(m +1,1) = Z o ty(m,i) — Z a ty(m,i) =¢.
i=1 i=1

i=1+n(m,hy)
By taking the conjugate of (5.13), we deduce for any k£ with 2 < k < p that

n(m,lm,)
0= Z ayg "y(m, ).
i=14+n(m,hm,)

Thus
o0 ) o0 ) n(malm) )
dagtym+1,0) = D ogymi)— D agy(m,i)
i=1 i=1 i=14n(m,h)

= Za;iy(m,i) =0.
i=1

For the proof of Lemma 5.1 we may assume that, for any m > 1, y = yn,,
is defined and does not satisfy the conditions of Lemma 5.1. We verify that
Rimg1 > hy, for each m > 1. It suffices to check for 1 < h <1 with h < h,,, that

Em+1,1) £&(m+1,h).

In the case of h < hy,, this follows from (5.12) and the definition of h,,. So
consider the case of h = h,,. Since [ + l,,, — hy, > 1, We get

by the definition of /,,. Hence the sequence h,, (m =1,2,...) is strictly increas-
ing. In particular, h,, > m.
Let n > 1. Take an integer m with m > n. Note that
n<m < hy < n(m, hy).
So, by the definition of y,,11, we have y(m + 1,n) = y(m,n). Thus
y(m,n) = y(n,n) for any m > n. (5.14)

We define the sequence y = (y,)52; by

Yn = y(n,n).
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In what follows we check the conditions of Lemma 5.1. The first condition is
clear. Let m > 1 be any integer. Then by (5.14)

> .
& - Z o'y
i=1

Z a”" (y(m,i) — y(i,7))

= Z a”H(y(m,i) — i‘/(%l))‘
i=m-+1
< 2max{L, (), Lf(a)}m-
Similarly, for 2 < k < p,
Zalziyi = Za;z(y(m,z) _y(zvl))‘
= | Y apt(y(m,i) —y(ii)
i=m—+1
1

< 2max{L, (), L,(a)}ma

where for the first equality we use (5.11). Since m is arbitrary, we obtain the
second and third conditions.

Finally, assume that &, = & for some h < [. Take an integer m with m > [.
Then by (5.14)

E(m,h) =& =& = E(m, ).

By the definition of h,,, we get h,, < h < m, which contradicts to h,, > m.
Therefore, the last condition follows. O]

For N > 1 put
v = Card{n € Z|1 <n < N,y, # 0}.
By the first condition of Lemma 5.1
v < Card{n € Z|1 <n < N,s_,(§) # 0}. (5.15)
In what follows, we verify for all sufficiently large N that

(log o)? (log N)3/2
(log M (a))? (10g(6D)) 72 (log log N) /2

™ 2 (5.16)
Theorem 1.1 follows from (5.15), (5.16), and the first statement of Lemma 2.1.

Put K = Q(«). Let oo be the Archimedean place in K which is defined by
(4.2). In what follows, let Cy(a, &), Ca(e, &), ... be positive constants depending
only on o and . Put

1/d
Oy (e, &) = max{L, (a), L_(a)}? max (11> .

1<k<p \ 1 — |ay,
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Then we have
1/d

> .
Z yia™'

1=n14j

Ci(a, O|el[

0 < 1§ = &llso

IN

(5.17)

Let € be an arbitrary positive number with ¢ < 1/2 and Fy(e) be defined by

(5.7). In the same way as the proof of Theorem 1.2, we can verify that

Mty < Fy(e)
g

for sufficiently large j. In particular, since

51—1>I—ri-10 F2(E) - 1,

we get, for j > Ca(a,§),
niy; < 2nj.

We count the numbers of j fulfilling

nig; > (14 2e)n;.
Assume (5.19) and

n; > Cy(a, )/,
We determine Cs(a, &) later. Let

S = Mare(K) U {v € Myon (K)|[Jals < 1} .

Define the linear forms L; , (v € S, i =1,2) by

I — X -¢&Y forv=o0,
to = X for v € S\{o0},
Ly, = Y forvelsS.

Then (4.3) is satisfied with R = 3, D = [Q(«,&) : Q(«)], and H =

Consider the system of inequalities (4.5) with

—(5¢)/4  for v = o0,

ey = e/(4d")  for v € Myr(K)\{oo},
0 for v € Mnon(K) N S’
ezv = (logllellv)/(logllalls), for ve S
U(z,y) = [yl

(5.18)

(5.19)

(5.20)

H(E).

where d’ = Card(Mg,.(K)\{oc}). Then (4.4) follows from the product formula.

Apply Proposition 4.1 with
n;
Xj = (Z yz‘Oé”"-%Oé’”) € Ok.
i=1
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If C5(e, §) is sufficiently large, then (4.6) follows from (5.20). In fact,

log ¥(x;) = n;log||a||« > max{log(2H), — log 2}.

(LRSS

We check that x; satisfies the system of inequalities (4.5). If ¢ = 2, then

||Low(x)||le = o], = || ||(ogllalle)/(og llalle)

= Wlxy)=.

In the case of v € S N M0, (K), by the ultrametric inequality

nj

[ Lo (%) 0 = S 1=W(x;)".
i=1 v
Now we show that
n 0 (a, &) < [|a || 44) = W(x;)=/ ()., 5.21
J s j

(5.21) is equivalent to

ad’ (1 N 1og01(a,§)) < oy

log [laf]oc \ d logn; ~ logn;’

In what follows, constants implied by the Vinogradov symbols <, > are abso-
lute. If n; > Cs(a, €)e™%/8, then

ENj

8/9 < 8/9
log n; >en;’” > C3(a, ).

Thus, if C3(«, €) is sufficiently large, then (5.21) follows. By (5.17), (5.19), and
(5.21), we get

| L1oo (%))llo0 = (10" ]|oo]€5 — &'lloo
< Gl 9)llally™™ < Cia,§)lla™ ]|
< || = () G/

Let v € Myre(K)\{oo}. Then there exists an embedding ¢ : K <— C such that

[lz]lo = llo(@)]]oo

for any = € K. Let o(a) = ay, where 2 < k < d. If 2 < k < p, then by (5.21)
and the third condition of Lemma 5.1

n;

77;+1’Lj
E Yioy,
1=1

Cl (aa 5) ’
< COr(en€) < W(x;)* ) = w(x ).

> .
=llo¥ [l || 2= wiow”

o) 1=n14j

Lo (x)llo =

o0

IN

MNj—N1445
ap,

o0
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In the case of k > p+ 1, by using |ax| < 1 and (5.21), we obtain

L1 ()]0 = Zyz e
< |ny max{m(a),Lf(a)}\” * < nl/0y(a,€)
< W(x,)T U = w(x;)er.

Since
A = 1+ Z max{0, €14, €2, }
vES

log||o¢;€||Oo 1ogM(a)
< 1 .
= 0P +Z logllalle ©  loga

Proposition 4.1 indicates that the vectors x; satisfying (5.19) and (5.20) lie in

one-dimensional linear subspaces of K2. By the last condition of Lemma 5.1, if
j # 1, then x; and x; are linearly independent over K. Thus we obtain

Card{j > O|n; 203(04,5)579/8,7114_]‘ > (14 2e)n;}

(%)4531%(61?)1%(61log(6D)). (5.22)

Let ji be the smallest j such that n; > Ca(a,§) and J an integer with

J > max{n? ,2"Cs(a, )"} (5.23)
Moreover, let jo be the largest integer with n;, < 2C3(a, S)J5/12. Then since

n;, < JU3 < 205(a, €)J%/12,
we get

nj, > nj, > Caa,§). (5.24)

So by (5.18)

Nj, > % > Cy(a, £)J°/12,

For a positive integer u(> 2), put

_ (log(6D))3(log M (a))*/3 (logJ 1/3 1
- (log a)*/3 7 ) Eu =5

Note that if C3(a, €) is sufficiently large, then log(e7') > log(6D). Next, let
€9,...,Ey4_1 be any reals satisfying

1 <éEg <<yl <€y
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Then we have
nj, > Cs(a,&)e;,® (5.25)
for h=1,...,u. In fact,
nj,Ca(a, &) 1e)/® > Jo/129/8 > j5/12 j=8/8 >

Let So = {j2,1+7J2,...,J} and, for h = 1,...,u, let S}, denote the set of positive
integers j such that jo < j < J and ni4; > (1 4 2e,)n;. Moreover, write the
cardinality of S, by Ty for h =1,...,u. Then S§o DS D --- D S,. If j € Sy,
then by (5.24) and (5.25) we have

T s
<9
nj
and
;> Cs(a, e, for h=1,.
Thus we get
nyo My Peid M,
Ny N_14J N—24+J T,
n ut n
1475 145
< |\ =210 I =~

X n
jeS, h=0 \jeS\S14n

IA

u(1+ 2¢,) H (14 2ep4q) o Tren,

Taking logarithms, we obtain

u—1
log <TL]> < Tu10g2+2€1J+22€1+h(Th7T1+h)
M h=1
u—1
< Tylog2+2e1J + 2eTy + 2 Z(El+h —ep)Ty — T,
h=2

(5.22) implies

4
T, < <10g]\4(a)> log(6D)e),” log (e, ' log(6D))

log o
for h=1,...,u, and so
log M () \*
log (TU) < eJ+ (og(a)) log(6D)
nj, log o

X (log(log(6D)) + 967 log (e ' log(6D))

u—1
Y (et - )5 osley ow(6D))
h=2
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If w tends to infinity and if maxy<p<y—1(€14n —€n) tends to zero, then the sum
converges to a Riemann integral, so

u—1
Tim 3 (ern — 2n)e;, log(e;, log(6D))
h=2

1/2
= / z3 log(z ! log(6D))dx

€1

< 7% log(erh) + log(log(6D))ey? < ey % log(e ).

Thus

log M(a)\*
log (m) < aJ+ (()g@z)) log(6D)e; 2 log(e1 )
N, log o

loo M 4/3
< ( 0og (Ol)) (10g(6D))1/3J2/3(1og J)1/3,
log o

where for the second inequality we use log(e]') < logJ. By using (5.23) and
the definition of js we obtain

UsP Mo —1/12
< 2C J <1
n}/2 >~ J1/2 >~ 3(0&,6) = 4
and so
loo M 4/3
logn; < (0%08;0(4&)) (log(6D))/3.7%/3(log )13 =: G(J).
Hence
I (log a)? (logn.)*/?

(log M(a))?(log(6D))"/? (loglog n.s)'/2"

In fact, since the function x3/?(log z)~'/? is monotone increasing for = > e,

logn, e ogGUIP (e

a) 2
(log lognJ)1/2 (10g log G(J))1/2 ) (1Og(6D))1/2J

log a

Therefore, we proved the theorem. O
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